
LEC05 SORTING II :
HEAPSORT / PRIORITY QUEUES CONT. (PG. 103-120)

CSE 373 Analysis of Algorithms
Fall 2016
Instructor: Prof. Sael Lee

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

1

Lecture slide courtesy of Prof. Steven Skiena

Lecture slide courtesy of Prof.
Steven Skiena

PROBLEM OF THE DAY

Take as input a sequence of 2n real numbers. Design an
O(n log n) algorithm that partitions the numbers into n
pairs, with the property that the partition minimizes the
maximum sum of a pair.
For example, say we are given the numbers (1,3,5,9).
The possible partitions are ((1,3),(5,9)), ((1,5),(3,9)), and
((1,9),(3,5)). The pair sums for these partitions are
(4,14), (6,12), and (10,8). Thus the third partition has 10
as its maximum sum, which is the minimum over the
three partitions.

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

2

HEAP DEFINITION

A binary heap is defined to be a binary tree with a key in
each node such that:

 1. All leaves are on, at most, two adjacent levels.
 2. All leaves on the lowest level occur to the left, and

all levels except the lowest one are completely filled.
 3. The key in root is ≤ all its children (min heap), and

the left and right subtrees are again binary heaps.

Conditions 1 and 2 specify shape of the tree, and
condition 3 the labeling of the tree.

* heap property: If A is a parent node of B then the key (the value) of node A is
ordered with respect to the key of node B with the same ordering applying
across the heap

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

3

Lecture slide courtesy of Prof.
Steven Skiena

BINARY HEAPS

 Heaps maintain a partial order on the set of elements
which is weaker than the sorted order (so it can be
efficient to maintain) yet stronger than random order
(so the minimum element can be quickly identified).

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

4

A heap-labeled
tree of important
years (l), with the
corresponding
implicit heap
representation (r)

Lecture slide courtesy of Prof.
Steven Skiena

ARRAY-BASED HEAPS

 The most natural representation of this binary tree
would involve storing each key in a node with pointers
to its two children.

 However, we can store a tree as an array of keys, using
the position of the keys to implicitly satisfy the role of
the pointers.
 The left child of k sits in position 2k and
 The right child in 2k + 1.
 The parent of k is in position floor(k/2).

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

5

Lecture slide courtesy of Prof.
Steven Skiena

CAN WE IMPLICITLY REPRESENT ANY BINARY TREE?

 The implicit representation (array-based) is not
efficient if the tree is sparse, meaning that the
number of nodes n < 2h.
 All missing internal nodes still take up space in our

structure.
 Space efficiency demands that the heap be

balanced/full at each level as possible.

 The array-based representation is also not as flexible
to arbitrary modifications as a pointer-based tree. (we
don’t use it for binary search trees)

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

6

Lecture slide courtesy of Prof.
Steven Skiena

CONSTRUCTING HEAPS

 Heaps can be constructed incrementally, by inserting
new elements into the left-most open spot (n+1
position) in the array.

 If the new element is greater than its parent, swap
their positions and recur.

 Since all but the last level is always filled, the height h
of an n element heap is bounded because:

∑ 2𝑖ℎ
𝑖=1 = 2ℎ+1 − 1 ≥ 𝑛

 so ℎ = lg𝑛
 Doing n such insertions takes 𝜃(𝑛 log𝑛), since the

last n/2 insertions require O(log𝑛) time each

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

7

Lecture slide courtesy of Prof.
Steven Skiena

HEAP INSERTION

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

8

pq_insert(priority_queue *q, item_type x)
{

if (q->n >= PQ_SIZE)
 printf(“Warning: overflow insert”);
 else {
 q->n = (q->n) + 1;
 q->q[q->n] = x;
 bubble_up(q, q->n);
 }
}

Lecture slide courtesy of Prof.
Steven Skiena

bubbling up the new key to its
proper position in the hierarchy.

BUBBLE UP

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

9

bubble_up(priority_queue *q, int p)
{
 /* at root of heap, no parent */
 if (pq_parent(p) == -1) return;

 if (q->q[pq_parent(p)] > q->q[p]) {
 pq_swap(q,p,pq parent(p));
 bubble_up(q, pq parent(p));
 }
}

Lecture slide courtesy of Prof.
Steven Skiena

BUILDING HEAP

 Thus an initial heap of n elements can be constructed
in O(n log n) time through n such insertions:

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

10

EXTRACTING THE MINIMUM

 Delete_Min by removing the top element (first element in
the array).

 This leaves a hole in the array.
 This can be filled by moving the element from the right-

most leaf (sitting in the nth position of the array) into the
first position.

 This may violate the heap property.
 We need to move the dissatisfied element bubbles down

the heap until it dominates all its children, perhaps by
becoming a leaf node and ceasing to have any.

 This percolate-down operation is also called heapify,
because it merges two heaps (the subtrees below the
original root) with a new key.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

11

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

12

We will reach a leaf after lg 𝑛 bubble_down steps, each constant time.
Thus root deletion is completed in O(log n) time.

BUBBLE DOWN IMPLEMENTATION

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

13

bubble_down(priority_queue *q, int p)
{
 int c; /* child index */
 int i; /* counter */
 int min_index; /* index of lightest child */

 c = pq_young_child(p);
 min_index = p;

 for (i=0; i<=1; i++){
 if ((c+i) <= q->n) {
 if (q->q[min_index] > q->q[c+i]) min_index = c+i;
 }
 }
 if (min_index ! = p) {
 pq_swap(q,p,min_index);
 bubble_down(q, min_index);
 }
}

Lecture slide courtesy of Prof.
Steven Skiena

BUILDING HEAP FASTER

 Robert Floyd found a better way to build a heap, using
heapify.

 Given two heaps and a fresh element, they can be
merged into one by making the new one the root and
bubbling down.

 Build-heap(A)
 n = |A|
 For 𝑖 = 𝑛/2 to 1 do
 Heapify(A,i)

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

14

Lecture slide courtesy of Prof.
Steven Skiena

Worst case running time analysis of O(n log n). Is this tight?

IS OUR ANALYSIS TIGHT?

 “Are we doing a careful analysis? Might our algorithm
be faster than it seems?”

 Doing at most x operations of at most y time each
takes total time O(xy).

 However, if we overestimate too much, our bound may
not be as tight as it should be!

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

15

Lecture slide courtesy of Prof.
Steven Skiena

TIGHTER ANALYSIS OF BUILD HEAP WITH HEAPIFY

 The identify for the sum of a geometric series is

 If we take the derivative of both sides, . . .

 Multiplying both sides of the equation by x gives:

 Substituting x = 1/2 gives a sum of 2, so Build-heap
uses at most 2n comparisons and thus linear time.

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

16

�𝑥𝑘
∞

𝑘=0

=
1

1 − 𝑥

�𝑘𝑥𝑘−1
∞

𝑘=0

=
1

1 − 𝑥 2

�𝑘𝑥𝑘
∞

𝑘=0

=
𝑥

1 − 𝑥 2

Lecture slide courtesy of Prof.
Steven Skiena

HEAPSORT

Heapify can be used to construct a heap, using the
observation that an isolated element forms a heap of size 1.

 Heapsort(A)
 Build-heap(A)
 for i = n to 1 do
 swap(A[1],A[i])
 n = n - 1
 Heapify(A,1)

Exchanging the min element with the last element and
calling heapify repeatedly gives an O(n lg n) sorting
algorithm. Why is it not O(n)?

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

17

Lecture slide courtesy of Prof.
Steven Skiena

	Lec05 Sorting II : �Heapsort / Priority Queues cont. (pg. 103-120)
	Problem of the Day�
	Heap Definition
	Binary Heaps
	Array-Based Heaps
	Can we Implicitly Represent Any Binary Tree?
	Constructing Heaps
	Heap Insertion
	Bubble Up
	Building Heap
	Extracting the Minimum
	Slide Number 12
	Bubble Down Implementation
	Building Heap Faster
	Is our Analysis Tight?
	Tighter Analysis of Build Heap with Heapify
	Heapsort

