
LEC05 SORTING I :
HEAPSORT / PRIORITY QUEUES (PG. 103-120)

CSE 373 Analysis of Algorithms
Fall 2016
Instructor: Prof. Sael Lee

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

1

Lecture slide courtesy of Prof. Steven Skiena

Lecture slide courtesy of Prof.
Steven Skiena

PROBLEM OF THE DAY

Problem: You are given the task of reading n numbers and
then printing them out in sorted order. Suppose you have
access to a balanced dictionary data structure, which
supports the operations search, insert, delete, minimum,
maximum, successor, and predecessor each in O(log n) time.

1. How can you sort in O(n log n) time using only insert and
in-order traversal?
2. How can you sort in O(n log n) time using only minimum,
successor, and insert?
3. How can you sort in O(n log n) time using only minimum,
insert, delete, search?

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

2

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

3

Solution:
1. We can build a search
tree by inserting all n
elements, then do a
traversal to access the
items in sorted order:

2. We can start from the
minimum element, and
then repeatedly find the
successor to traverse the
elements in sorted order.

3. We can repeatedly find
and delete the minimum
element to once again
traverse all the elements
in sorted order.

Each of these algorithms does a linear number of logarithmic-time operations,
and hence runs in O(n log n) time.

IMPORTANCE OF SORTING

 1. Sorting is the basic building block that many other
algorithms are built around.

 2. Computers spend more time sorting than anything else,
historically 25% on mainframes.

 3. Sorting is the best studied problem in computer
science, with a variety of different algorithms known.

 4. Most of the interesting ideas we will encounter in the
course can be taught in the context of sorting, such as
divide-and-conquer, randomized algorithms, and lower
bounds.

You should have seen most of the algorithms - we will concen
trate on the analysis.

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

4

Lecture slide courtesy of Prof.
Steven Skiena

EFFICIENCY OF SORTING

 Sorting is important because that once a set of items is
sorted, many other problems become easy.

 Further, using O(n log n) sorting algorithms leads naturally
to sub-quadratic algorithms (o(n2)) for these problems.

 Large-scale data processing would be impossible if sorting
took 𝛺(n2) time.

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

5

Lecture slide courtesy of Prof.
Steven Skiena

APPLICATION OF SORTING: SEARCHING

 Solution approach: After sorting, binary search lets
you test whether an item is in a dictionary in O(lg n)
time.

 Search preprocessing is perhaps the single most
important application of sorting.

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

6

Lecture slide courtesy of Prof.
Steven Skiena

APPLICATION OF SORTING: 1-D CLOSEST PAIR

 Problem: Given n numbers, find the pair which are
closest to each other.

 Solution approach: Once the numbers are sorted, the
closest pair will be next to each other in sorted order.

 Analysis: An O(n) linear scan completes the job, for a
total of O(n log n) time including the sorting

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

7

Lecture slide courtesy of Prof.
Steven Skiena

APPLICATION OF SORTING: 1-D ELEMENT UNIQUENESS

 Problem: Given a set of n items, are they all unique or
are there any duplicates?

 Solution Approach: Sort them and do a linear scan to
check all adjacent pairs.

 This is a special case of closest pair above.

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

8

Lecture slide courtesy of Prof.
Steven Skiena

APPLICATION OF SORTING: MODE

 Problem: Given a set of n items, which element occurs
the largest number of times? More generally, compute
the frequency distribution.

 Solution Approach 1: Sort them and do a linear scan
to measure the length of all adjacent runs.

 Solution Approach 2 : The number of instances of k in
a sorted array can be found in O(log n) by using binary
search to look for the positions of both k - 𝜀 and k + 𝜀
and take the difference.

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

9

Lecture slide courtesy of Prof.
Steven Skiena

APPLICATION OF SORTING: MEDIAN AND SELECTION

 Problem: What is the kth largest item in the set?
 Solution Approach: Once the keys are placed in sorted

order in an array, the kth largest can be found in
constant time by simply looking in the kth position of
the array.

 * There is a linear time algorithm for this problem, but
the idea comes from partial sorting.

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

10

Lecture slide courtesy of Prof.
Steven Skiena

APPLICATION OF SORTING: CONVEX HULLS

 Problem: Given n points in 2-D, find the smallest area
polygon which contains them all.

 The convex hull is like a rubber band stretched over
the points.

 Convex hulls are the most important building block for
more sophisticated geometric algorithms.

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

11

Lecture slide courtesy of Prof.
Steven Skiena

FINDING CONVEX HULLS

 Once you have the points sorted by x-coordinate, they can be
inserted from left to right into the hull, since the rightmost point
is always on the boundary.

 Sorting eliminates the need check whether points are inside
the current hull.

 Adding a new point might cause others to be deleted which can
be quickly identify by checking whether they lie inside the
polygon formed by adding the new point.

 The total time is linear after the sorting has been done.

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

12

Lecture slide courtesy of Prof.
Steven Skiena

PRAGMATICS OF SORTING: COMPARISON FUNCTIONS

 Alphabetizing is the sorting of text strings.
 Libraries have very complete and complicated rules

concerning the relative collating sequence of
characters and punctuation.
 Is Skiena the same key as skiena?
 Is Brown-Williams before or after Brown America before or

after Brown, John?
 Explicitly controlling the order of keys is the job of the

comparison function we apply to each pair of
elements.

 This is how you resolve the question of increasing or
decreasing order.

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

13

Lecture slide courtesy of Prof.
Steven Skiena

PRAGMATICS OF SORTING: EQUAL ELEMENTS

 Elements with equal key values will all bunch together
in any total order, but sometimes the relative order
among these keys matters.

 Sorting algorithms that always leave equal items in
the same relative order as in the original permutation
are called stable.

 Unfortunately very few fast algorithms are stable, but
Stability can be achieved by adding the initial position
as a secondary key.

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

14

Lecture slide courtesy of Prof.
Steven Skiena

PRAGMATICS OF SORTING: LIBRARY FUNCTIONS

 Any reasonable programming language has a built-in
sort routine as a library function.

 You are almost always better off using the system sort
than writing your own routine.

 For example, the standard library for C contains the
function qsort for sorting:

 #include <stdlib.h>
 void qsort(void *base, size t nel, size t width,
 int (*compare) (const void *, const void *));

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

15

Lecture slide courtesy of Prof.
Steven Skiena

sorts the first nel elements of an array (pointed to by base), where
each element is width-bytes long using compare function.

SELECTION SORT

 Selection sort scans through the entire array,
repeatedly finding the smallest remaining element.

 SelectionSort(A)
 For i = 1 to n do
 T(A): Sort[i] = Find-Minimum from A
 T(B): Delete-Minimum from A
 Return(Sort)
 Selection sort takes O(n(T(A) + T(B)) time.

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

16

Lecture slide courtesy of Prof.
Steven Skiena

THE DATA STRUCTURE MATTERS

 Using arrays or unsorted linked lists as the data
structure,
 operation A takes O(n) time and
 operation B takes O(1),

 for an O(n2) selection sort.

Key question: “Can we use a different data structure?”
 Using balanced search trees or heaps:

 both of these operations can be done within O(lg n) time,
for an O(n log n) selection sort, balancing the work
and achieving a better tradeoff.

 Selection sort using a Heap is called a Heapsort.

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

17

Lecture slide courtesy of Prof.
Steven Skiena

PRIORITY QUEUES

 Priority queues are data structures which provide
extra flexibility over sorting.

 This is important because jobs often enter a system at
arbitrary intervals.

 It is more cost-effective to insert a new job into a
priority queue than to re-sort everything on each new
arrival.

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

18

Textbook Section 3.5

Lecture slide courtesy of Prof.
Steven Skiena

PRIORITY QUEUE OPERATIONS

Priority queue supports three primary operations:
 Insert(Q,x): Given an item x with key k, insert it into the

priority queue Q.
 Find-Minimum(Q) or Find-Maximum(Q): Return a

pointer to the item whose key value is smaller (larger)
than any other key in the priority queue Q.

 Delete-Minimum(Q) or Delete-Maximum(Q): Remove
the item from the priority queue Q whose key is
minimum (maximum).

Each of these operations can be easily supported using
heaps or balanced binary trees in O(log n).

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

19

Lecture slide courtesy of Prof.
Steven Skiena

BASIC PRIORITY QUEUE IMPLEMENTATIONS

Unsorted
Array

Sorted
Array

Balanced
Tree

Heap

Insert(Q, x) O(1) O(n) O(lgn) O(lgn)
Find-Min(Q)* O(1) O(1) O(1) O(1)
Delete-Min(Q) O(n) O(1) O(lgn) O(lgn)

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

20

* Making Find-Min constant:
 Use extra variable to store a pointer/index to the minimum entry.
 Updating this pointer on each insertion is easy
 — we update it if and only if the newly inserted value is
 less than the current minimum.

* What happened for delete-minimum?
 We can delete the minimum entry,
 then do an honest find-minimum to restore our pointer/index to
 min value.

Lecture slide courtesy of Prof.
Steven Skiena

APPLICATIONS OF PRIORITY QUEUES: DATING

 What data structure should be used to suggest who to
ask out next for a date?

 It needs to support retrieval by desirability, not name.
 Desirability changes (up or down), so you can re-insert

the max with the new score after each date.
 New people you meet get inserted with your observed

desirability level.
 There is never a reason to delete anyone until they

arise to the top

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

21

Lecture slide courtesy of Prof.
Steven Skiena

APPLICATIONS OF PRIORITY QUEUES:
DISCRETE EVENT SIMULATIONS
 In simulations of airports, and parking lots – priority

queues can be used to maintain who goes next.
 The stack and queue orders are just special cases of

orderings.
 In real life, certain people cut in line.

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

22

Lecture slide courtesy of Prof.
Steven Skiena

APPLICATIONS OF PRIORITY QUEUES:
GREEDY ALGORITHMS

 In greedy algorithms, we always pick the next thing
which locally maximizes our score. By placing all the
things in a priority queue and pulling them off in order,
we can improve performance over linear search or
sorting, particularly if the weights change.

 War Story: sequential strips in triangulations

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

23

Lecture slide courtesy of Prof.
Steven Skiena

	Lec05 Sorting I : �Heapsort / Priority Queues (pg. 103-120)
	Problem of the Day
	Slide Number 3
	Importance of Sorting
	Efficiency of Sorting
	Application of Sorting: Searching
	Application of Sorting: 1-D Closest pair
	Application of Sorting: 1-D Element Uniqueness
	Application of Sorting: Mode
	Application of Sorting: Median and Selection
	Application of Sorting: Convex hulls
	Finding Convex Hulls
	Pragmatics of Sorting: Comparison Functions
	Pragmatics of Sorting: Equal Elements
	Pragmatics of Sorting: Library Functions
	Selection Sort
	The Data Structure Matters
	Priority Queues
	Priority Queue Operations
	Basic Priority Queue Implementations
	Applications of Priority Queues: Dating
	Applications of Priority Queues: �Discrete Event Simulations
	Applications of Priority Queues: �Greedy Algorithms

