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PROBLEM OF THE DAY 1:  
COMPARING DICTIONARY IMPLEMENTATIONS 
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Problem: What is the asymptotic worst-case 
running times for each of the seven fundamental 
dictionary operations when the data structure is 
implemented as 
• A singly-linked unsorted list. 
• A doubly-linked unsorted list. 
• A singly-linked sorted list. 
• A doubly-linked sorted list. 
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The four data structures allow fast search or flexible 
update, but not fast search and flexible update. 



PROBLEM OF THE DAY 2  

A common problem for compilers and text editors is 
determining whether the parentheses in a string are 
balanced and properly nested. For example, the string ((())())() 
contains properly nested pairs of parentheses, which the 
strings )()( and 
()) do not. Give an algorithm that returns true if a string 
contains properly nested and balanced parentheses, and 
false if otherwise.  
 
For full credit, identify the position of the first offending 
parenthesis if the string is not properly nested and balanced. 



REVIEW: DICTIONARY / DYNAMIC SET OPERATIONS  

Perhaps the most important class of data structures maintain a 
set of items, indexed by keys. 

 Search(S,k) – A query that, given a set S and a key value k, returns a 
pointer x to an element in S such that key[x] = k, or nil if no such 
element belongs to S. 

 Insert(S,x) – A modifying operation that augments the set S with the 
element x. 

 Delete(S,x) – Given a pointer x to an element in the set S, remove x from 
S. Observe we are given a pointer to an element x, not a key value. 

 Min(S), Max(S) – Returns the element of the totally ordered set S which 
has the smallest (largest) key. 

 Next(S,x), Previous(S,x) – Given an element x whose key is from a totally 
ordered set S, returns the next largest (smallest) element in S, or NIL if x 
is the maximum (minimum) element.  

 There are a variety of implementations of these dictionary 
operations, each of which yield different time bounds for 
various operations. 
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BINARY SEARCH TREES 

 A binary search tree labels each node 
x in a binary tree such that  
 all nodes in the left subtree of x 

have keys < x and 
 all nodes in the right subtree of x 

have key’s > x. 
 The search tree labeling enables us to 

find where any key is. 
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*  The leaves contain no key and have no structure to distinguish them from one 
another. Leaves are commonly represented by a special leaf or nil symbol) 



BINARY SEARCH TREES 

 Binary search trees provide a data 
structure which efficiently 
supports all six dictionary 
operations. 

 A binary tree is a rooted tree where 
each node contains at most two 
children. 
 Internal nodes of the binary search 

tree contains a key (and value)  
 Each have two distinguished sub-

trees, denoted left and right. 
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IMPLEMENTING BINARY SEARCH TREES 

 The parent link is optional, since we can store the 
pointer on a stack when we encounter it. 
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recursive search algorithm 
 
 
 
 
 
 
 
 

SEARCHING IN A BINARY TREE: IMPLEMENTATION 
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Start at the root. Unless it contains the query key x, proceed 
either left or right depending upon whether x occurs before or 
after the root key 



SEARCHING IN A BINARY TREE: HOW MUCH 

 The algorithm works because both the left and right 
subtrees of a binary search tree are binary search 
trees  
 Recursive structure, Recursive algorithm. 

 This takes time proportional to the height of the tree, 
O(h). 
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MAXIMUM AND MINIMUM 

 Where are the maximum and minimum elements in a 
binary search tree? 
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FINDING THE MINIMUM 

 Finding the max or min takes time proportional to the 
height of the tree, O(h). 

Lecture slide courtesy of Prof. 
Steven Skiena  

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 

12 



WHERE IS THE PREDECESSOR: INTERNAL NODE 

If X has two children, its predecessor is the maximum 
value in its left subtree and its successor the minimum 
value in its right subtree. 
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WHERE IS THE SUCCESSOR: LEAF NODE 

 If it does not have a left 
child, a node’s 
predecessor is its first 
left ancestor. 

 The proof of correctness 
comes from looking at 
the in-order traversal of 
the tree. 
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predecessor (x) 

x 



IN-ORDER TRAVERSAL 
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 Binary search trees make it easy to report the labels in sorted 
order at O(n) 

 By definition, all the keys smaller than the root must lie in the 
left subtree of the root, and all keys bigger than the root in the 
right subtree.  

 Thus, visiting the nodes recursively in accord with such a policy 
produces an in-order traversal (DFS) of the search tree.  



TREE INSERTION 

 Do a binary search to find where it 
should be,  

 then replace the termination NULL 
pointer with the new item. 

 Allocating the node and linking it in to 
the tree is a constant-time operation a
fter the search has been performed in 
O(h) time. 
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This implementation uses recursion to combine the search and node insertion 
stages of key insertion. 

pointer l to the pointer linking 
the search subtree to the rest 
of the tree 

key x to 
be 
inserted 

parent pointer to the parent node 
containing l (leaf doesn’t have 
storage for parent pointer)  

Insert 
location 
found  

Still 
searching 



TREE DELETION 

 Deletion is trickier than insertion, because the node to die 
may not be a leaf, and thus effect other nodes. 

 There are three cases: 
 Case (a), where the node is a leaf, is simple - just NULL out the 

parents child pointer.  
 Case (b), where a node has one child, the doomed node can just 

be cut out and link the grandchild directly to the parent.  
 Case (c), where a node two children,  relabel the node as its 

immediate successor (which has at most one child when z has 
two children!) and delete the successor! 

 Every deletion requires the cost of at most two search 
operations, each taking O(h) time where h is the height of 
the tree, plus a constant amount of pointer manipulation 
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CASES OF DELETION 
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Figure 3.4: Deleting tree nodes with 0, 1, and 2 children 



BINARY SEARCH TREES AS DICTIONARIES 

 All six of our dictionary operations, when implemented 
with binary search trees, take O(h), where h is the 
height of the tree. 

 The best height we could hope to get is lgn, if the tree 
was perfectly balanced, since 
 
 

 But if we get unlucky with our order of insertion or 
deletion, we could get linear height! 
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WORST CASE AND AVERAGE HEIGHT 
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bad things can happen when 
building trees through insertion. 

But with high probability the 
resulting tree will have O(log n) 
height  



TREE INSERTION ANALYSIS 

 In fact, binary search trees constructed with random 
insertion orders on average have (lgn) height. 

 The worst case is linear, however.  
 Our analysis of Quicksort will later explain why the 

expected height is 𝜃(lg n). 
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PERFECTLY BALANCED TREES 

Perfectly balanced trees require a lot of work to 
maintain: 

 
 
 
 
 

 If we insert the key 1, we must move every single node 
in the tree to rebalance it, taking (n) time. 
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BALANCED SEARCH TREES 

 Therefore, when we talk about “balanced” trees, we 
mean trees whose height is O(lg n),  
 so all dictionary operations (insert, delete, search, min/max, 

successor/predecessor) take O(lg n) time. 

 Extra care must be taken on insertion and deletion to 
guarantee such performance, by rearranging things 
when they get too lopsided. 

 Examples of balanced search trees used in practice 
 Red-Black trees (discussed in Section 12.1), AVL trees, 2-3 

trees, splay trees, and B-trees 
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HASH TABLES 

 Hash tables are a very practical way to maintain a 
dictionary.  

 The idea is simply that looking an item up in an array 
is 𝜃(1) once you have its index. 

 A hash function is a mathematical function which 
maps keys to integers (index into an array). 
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COLLISIONS 

 Collisions are the set of keys mapped to the same 
bucket. 

 If the keys are uniformly distributed, then each bucket 
should contain very few keys! 

 The resulting short lists are easily searched! 
 
 
 
 

 Collision Resolution: Chaining, open addressing, etc 
(review your cse214 class notes)  

Lecture slide courtesy of Prof. 
Steven Skiena  

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 

26 



HASH FUNCTIONS 

 It is the job of the hash function to map keys to 
integers.  

 A good hash function: 
 1. Is cheap to evaluate 
 2. Tends to use all positions from 0 … M with uniform 

frequency. 

 The first step is usually to map the key (ex> a string) to 
a big integer, for example 
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MODULAR ARITHMETIC 

 This large number must be reduced to an integer 
whose size is between 1 and the size of our hash 
table. 

 One way is by h(k) = k mod M, where M is best a large 
prime not too close to 2i - 1, which would just mask off 
the high bits. 

 This works on the same principle as a roulette wheel! 
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PERFORMANCE ON SET OPERATIONS 

 With either chaining or open addressing: 
 Search - O(1) expected, O(n) worst case 
 Insert - O(1) expected, O(n) worst case 
 Delete - O(1) expected, O(n) worst case 
 Min, Max and Predecessor, Successor 𝜃(n+m) expected and 

worst case 

 Pragmatically, a hash table is often the best data 
structure to maintain a dictionary.  

 However, the worst-case time is unpredictable. 
 The best worst-case bounds come from balanced 

binary trees. 
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RUNNING TIME 

Chaining with doubly-linked lists to resolve collisions in 
an m-element hash table, the dictionary operations for 
n items 
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SUBSTRING PATTERN MATCHING 

 Problem: Substring Pattern Matching 
 Input: A text string t and a pattern string p. 
 Output: Does t contain the pattern p as a substring, 

and if so where? 
 

 E.g: Is Skiena in the Bible? 
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BRUTE FORCE SEARCH 

 The simplest algorithm to search for the presence of 
pattern string p in text t overlays the pattern string at 
every position in the text, and checks whether every 
pattern character matches the corresponding text 
character. 

 This runs in O(nm) time, where n = |t| and m = |p| 
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STRING MATCHING VIA HASHING 

 Suppose we compute a given hash function on both 
the pattern string p and the m-character substring 
starting from the ith position of t.  

 If these two strings are identical, clearly the resulting 
hash values will be the same. 

 If the two strings are different, the hash values will 
almost certainly be different. 

 These false positives should be so rare that we can 
easily spend the O(m) time it take to explicitly check 
the identity of two strings whenever the hash values 
agree. 
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THE CATCH 

 This reduces string matching to n - m + 2 hash value 
computations  
 (the n - m + 1 windows of t, plus one hash of p),  

 plus what should be a very small number of O(m) time 
verification steps. 

 The catch is that it takes O(m) time to compute a hash 
function on an m-character string, and O(n) such 
computations seems to leave us with an O(mn) 
algorithm again. 
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THE TRICK: RABIN-KARP ALGORITHM. 

 Look closely at our string hash function, applied to the m 
characters starting from the jth position of string S: 
 
 

 A little algebra reveals that 
 
 
 Thus once we know the hash value from the j position, we can 

find the hash value from the (j + 1)st position for the cost of two 
multiplications, one addition, and one subtraction. 

 This can be done in constant time. 

 Linear expected-time algorithm for string matching, 
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HASHING, HASHING, AND HASHING 

Udi Manber says that the three most important algorithms at 
Yahoo are hashing, hashing, and hashing. 
Hashing has a variety of clever applications beyond just 
speeding up search, by giving you a short but distinctive 
representation of a larger document. 
 Is this new document different from the rest in a large 

corpus? – Hash the new document, and compare it to the 
hash codes of corpus. 

 How can I convince you that a file isn’t changed? – Check 
if the cryptographic hash code of the file you give me today 
is the same as that of the original. Any changes to the file 
will change the hash code. 

Lecture slide courtesy of Prof. 
Steven Skiena  

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 

36 


	Lec04�Dictionary Data Structures  (77-98)
	Problem of the Day 1: �Comparing Dictionary Implementations
	Slide Number 3
	Problem of the Day 2 
	Review: Dictionary / Dynamic Set Operations 
	Binary Search Trees
	Binary Search Trees
	Implementing Binary Search Trees
	Searching in a Binary Tree: Implementation
	Searching in a Binary Tree: How Much
	Maximum and Minimum
	Finding the Minimum
	Where is the Predecessor: Internal Node
	Where is the Successor: Leaf Node
	In-Order Traversal
	Tree Insertion
	Slide Number 17
	Tree Deletion
	Cases of Deletion
	Binary Search Trees as Dictionaries
	Worst Case and Average Height
	Tree Insertion Analysis
	Perfectly Balanced Trees
	Balanced Search Trees
	Hash Tables
	Collisions
	Hash Functions
	Modular Arithmetic
	Performance on Set Operations
	Running time
	Substring Pattern Matching
	Brute Force Search
	String Matching via Hashing
	The Catch
	The Trick: Rabin-Karp algorithm.
	Hashing, Hashing, and Hashing

