
LEC04
DICTIONARY DATA STRUCTURES (77-98)

CSE 373 Analysis of Algorithms
Fall 2016
Instructor: Prof. Sael Lee

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

1

Lecture slide courtesy of Prof. Steven Skiena

Lecture slide courtesy of Prof.
Steven Skiena

PROBLEM OF THE DAY 1:
COMPARING DICTIONARY IMPLEMENTATIONS

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

2

Problem: What is the asymptotic worst-case
running times for each of the seven fundamental
dictionary operations when the data structure is
implemented as
• A singly-linked unsorted list.
• A doubly-linked unsorted list.
• A singly-linked sorted list.
• A doubly-linked sorted list.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

3

The four data structures allow fast search or flexible
update, but not fast search and flexible update.

PROBLEM OF THE DAY 2

A common problem for compilers and text editors is
determining whether the parentheses in a string are
balanced and properly nested. For example, the string ((())())()
contains properly nested pairs of parentheses, which the
strings)()(and
()) do not. Give an algorithm that returns true if a string
contains properly nested and balanced parentheses, and
false if otherwise.

For full credit, identify the position of the first offending
parenthesis if the string is not properly nested and balanced.

REVIEW: DICTIONARY / DYNAMIC SET OPERATIONS

Perhaps the most important class of data structures maintain a
set of items, indexed by keys.

 Search(S,k) – A query that, given a set S and a key value k, returns a
pointer x to an element in S such that key[x] = k, or nil if no such
element belongs to S.

 Insert(S,x) – A modifying operation that augments the set S with the
element x.

 Delete(S,x) – Given a pointer x to an element in the set S, remove x from
S. Observe we are given a pointer to an element x, not a key value.

 Min(S), Max(S) – Returns the element of the totally ordered set S which
has the smallest (largest) key.

 Next(S,x), Previous(S,x) – Given an element x whose key is from a totally
ordered set S, returns the next largest (smallest) element in S, or NIL if x
is the maximum (minimum) element.

 There are a variety of implementations of these dictionary
operations, each of which yield different time bounds for
various operations.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

5

BINARY SEARCH TREES

 A binary search tree labels each node
x in a binary tree such that
 all nodes in the left subtree of x

have keys < x and
 all nodes in the right subtree of x

have key’s > x.
 The search tree labeling enables us to

find where any key is.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

6

* The leaves contain no key and have no structure to distinguish them from one
another. Leaves are commonly represented by a special leaf or nil symbol)

BINARY SEARCH TREES

 Binary search trees provide a data
structure which efficiently
supports all six dictionary
operations.

 A binary tree is a rooted tree where
each node contains at most two
children.
 Internal nodes of the binary search

tree contains a key (and value)
 Each have two distinguished sub-

trees, denoted left and right.

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

7

Lecture slide courtesy of Prof.
Steven Skiena

IMPLEMENTING BINARY SEARCH TREES

 The parent link is optional, since we can store the
pointer on a stack when we encounter it.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

8

recursive search algorithm

SEARCHING IN A BINARY TREE: IMPLEMENTATION

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

9

Start at the root. Unless it contains the query key x, proceed
either left or right depending upon whether x occurs before or
after the root key

SEARCHING IN A BINARY TREE: HOW MUCH

 The algorithm works because both the left and right
subtrees of a binary search tree are binary search
trees
 Recursive structure, Recursive algorithm.

 This takes time proportional to the height of the tree,
O(h).

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

10

MAXIMUM AND MINIMUM

 Where are the maximum and minimum elements in a
binary search tree?

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

11

FINDING THE MINIMUM

 Finding the max or min takes time proportional to the
height of the tree, O(h).

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

12

WHERE IS THE PREDECESSOR: INTERNAL NODE

If X has two children, its predecessor is the maximum
value in its left subtree and its successor the minimum
value in its right subtree.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

13

WHERE IS THE SUCCESSOR: LEAF NODE

 If it does not have a left
child, a node’s
predecessor is its first
left ancestor.

 The proof of correctness
comes from looking at
the in-order traversal of
the tree.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

14

predecessor (x)

x

IN-ORDER TRAVERSAL

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

15

 Binary search trees make it easy to report the labels in sorted
order at O(n)

 By definition, all the keys smaller than the root must lie in the
left subtree of the root, and all keys bigger than the root in the
right subtree.

 Thus, visiting the nodes recursively in accord with such a policy
produces an in-order traversal (DFS) of the search tree.

TREE INSERTION

 Do a binary search to find where it
should be,

 then replace the termination NULL
pointer with the new item.

 Allocating the node and linking it in to
the tree is a constant-time operation a
fter the search has been performed in
O(h) time.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

16

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

17

This implementation uses recursion to combine the search and node insertion
stages of key insertion.

pointer l to the pointer linking
the search subtree to the rest
of the tree

key x to
be
inserted

parent pointer to the parent node
containing l (leaf doesn’t have
storage for parent pointer)

Insert
location
found

Still
searching

TREE DELETION

 Deletion is trickier than insertion, because the node to die
may not be a leaf, and thus effect other nodes.

 There are three cases:
 Case (a), where the node is a leaf, is simple - just NULL out the

parents child pointer.
 Case (b), where a node has one child, the doomed node can just

be cut out and link the grandchild directly to the parent.
 Case (c), where a node two children, relabel the node as its

immediate successor (which has at most one child when z has
two children!) and delete the successor!

 Every deletion requires the cost of at most two search
operations, each taking O(h) time where h is the height of
the tree, plus a constant amount of pointer manipulation

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

18

CASES OF DELETION

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

19

Figure 3.4: Deleting tree nodes with 0, 1, and 2 children

BINARY SEARCH TREES AS DICTIONARIES

 All six of our dictionary operations, when implemented
with binary search trees, take O(h), where h is the
height of the tree.

 The best height we could hope to get is lgn, if the tree
was perfectly balanced, since

 But if we get unlucky with our order of insertion or
deletion, we could get linear height!

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

20

WORST CASE AND AVERAGE HEIGHT

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

21

bad things can happen when
building trees through insertion.

But with high probability the
resulting tree will have O(log n)
height

TREE INSERTION ANALYSIS

 In fact, binary search trees constructed with random
insertion orders on average have (lgn) height.

 The worst case is linear, however.
 Our analysis of Quicksort will later explain why the

expected height is 𝜃(lg n).

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

22

PERFECTLY BALANCED TREES

Perfectly balanced trees require a lot of work to
maintain:

 If we insert the key 1, we must move every single node
in the tree to rebalance it, taking (n) time.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

23

BALANCED SEARCH TREES

 Therefore, when we talk about “balanced” trees, we
mean trees whose height is O(lg n),
 so all dictionary operations (insert, delete, search, min/max,

successor/predecessor) take O(lg n) time.

 Extra care must be taken on insertion and deletion to
guarantee such performance, by rearranging things
when they get too lopsided.

 Examples of balanced search trees used in practice
 Red-Black trees (discussed in Section 12.1), AVL trees, 2-3

trees, splay trees, and B-trees

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

24

HASH TABLES

 Hash tables are a very practical way to maintain a
dictionary.

 The idea is simply that looking an item up in an array
is 𝜃(1) once you have its index.

 A hash function is a mathematical function which
maps keys to integers (index into an array).

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

25

COLLISIONS

 Collisions are the set of keys mapped to the same
bucket.

 If the keys are uniformly distributed, then each bucket
should contain very few keys!

 The resulting short lists are easily searched!

 Collision Resolution: Chaining, open addressing, etc
(review your cse214 class notes)

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

26

HASH FUNCTIONS

 It is the job of the hash function to map keys to
integers.

 A good hash function:
 1. Is cheap to evaluate
 2. Tends to use all positions from 0 … M with uniform

frequency.

 The first step is usually to map the key (ex> a string) to
a big integer, for example

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

27

MODULAR ARITHMETIC

 This large number must be reduced to an integer
whose size is between 1 and the size of our hash
table.

 One way is by h(k) = k mod M, where M is best a large
prime not too close to 2i - 1, which would just mask off
the high bits.

 This works on the same principle as a roulette wheel!

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

28

PERFORMANCE ON SET OPERATIONS

 With either chaining or open addressing:
 Search - O(1) expected, O(n) worst case
 Insert - O(1) expected, O(n) worst case
 Delete - O(1) expected, O(n) worst case
 Min, Max and Predecessor, Successor 𝜃(n+m) expected and

worst case

 Pragmatically, a hash table is often the best data
structure to maintain a dictionary.

 However, the worst-case time is unpredictable.
 The best worst-case bounds come from balanced

binary trees.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

29

RUNNING TIME

Chaining with doubly-linked lists to resolve collisions in
an m-element hash table, the dictionary operations for
n items

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

30

SUBSTRING PATTERN MATCHING

 Problem: Substring Pattern Matching
 Input: A text string t and a pattern string p.
 Output: Does t contain the pattern p as a substring,

and if so where?

 E.g: Is Skiena in the Bible?

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

31

BRUTE FORCE SEARCH

 The simplest algorithm to search for the presence of
pattern string p in text t overlays the pattern string at
every position in the text, and checks whether every
pattern character matches the corresponding text
character.

 This runs in O(nm) time, where n = |t| and m = |p|

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

32

STRING MATCHING VIA HASHING

 Suppose we compute a given hash function on both
the pattern string p and the m-character substring
starting from the ith position of t.

 If these two strings are identical, clearly the resulting
hash values will be the same.

 If the two strings are different, the hash values will
almost certainly be different.

 These false positives should be so rare that we can
easily spend the O(m) time it take to explicitly check
the identity of two strings whenever the hash values
agree.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

33

THE CATCH

 This reduces string matching to n - m + 2 hash value
computations
 (the n - m + 1 windows of t, plus one hash of p),

 plus what should be a very small number of O(m) time
verification steps.

 The catch is that it takes O(m) time to compute a hash
function on an m-character string, and O(n) such
computations seems to leave us with an O(mn)
algorithm again.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

34

THE TRICK: RABIN-KARP ALGORITHM.

 Look closely at our string hash function, applied to the m
characters starting from the jth position of string S:

 A little algebra reveals that

 Thus once we know the hash value from the j position, we can

find the hash value from the (j + 1)st position for the cost of two
multiplications, one addition, and one subtraction.

 This can be done in constant time.

 Linear expected-time algorithm for string matching,

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

35

HASHING, HASHING, AND HASHING

Udi Manber says that the three most important algorithms at
Yahoo are hashing, hashing, and hashing.
Hashing has a variety of clever applications beyond just
speeding up search, by giving you a short but distinctive
representation of a larger document.
 Is this new document different from the rest in a large

corpus? – Hash the new document, and compare it to the
hash codes of corpus.

 How can I convince you that a file isn’t changed? – Check
if the cryptographic hash code of the file you give me today
is the same as that of the original. Any changes to the file
will change the hash code.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

36

	Lec04�Dictionary Data Structures (77-98)
	Problem of the Day 1: �Comparing Dictionary Implementations
	Slide Number 3
	Problem of the Day 2
	Review: Dictionary / Dynamic Set Operations
	Binary Search Trees
	Binary Search Trees
	Implementing Binary Search Trees
	Searching in a Binary Tree: Implementation
	Searching in a Binary Tree: How Much
	Maximum and Minimum
	Finding the Minimum
	Where is the Predecessor: Internal Node
	Where is the Successor: Leaf Node
	In-Order Traversal
	Tree Insertion
	Slide Number 17
	Tree Deletion
	Cases of Deletion
	Binary Search Trees as Dictionaries
	Worst Case and Average Height
	Tree Insertion Analysis
	Perfectly Balanced Trees
	Balanced Search Trees
	Hash Tables
	Collisions
	Hash Functions
	Modular Arithmetic
	Performance on Set Operations
	Running time
	Substring Pattern Matching
	Brute Force Search
	String Matching via Hashing
	The Catch
	The Trick: Rabin-Karp algorithm.
	Hashing, Hashing, and Hashing

