
LEC03
ELEMENTARY DATA STRUCTURE (65-77)

CSE 373 Analysis of Algorithms
Fall 2016
Instructor: Prof. Sael Lee

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

1

Lecture slide courtesy of Prof. Steven Skiena

Lecture slide courtesy of Prof.
Steven Skiena

PROBLEM OF THE DAY

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

2

ELEMENTARY DATA STRUCTURES

 Elementary data structures such as stacks, queues,
lists, and heaps are the “off-the-shelf” components we
build our algorithm from.

 Changing the data structure does not change the
correctness of the program. However, it can change
the total performance time.

 There are two aspects to any data structure:
 The abstract operations which it supports.
 The implementation of these operations.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

3

DATA ABSTRACTION

 That we can describe the behavior of our data
structures in terms of abstract operations is why we
can use them without thinking.

 That there are different implementations of the same
abstract operations enables us to optimize
performance.

 containers, dictionaries, and priority queues

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

4

CONTIGUOUS VS. LINKED DATA STRUCTURES

 Data structures can be neatly classified as either
contiguous or linked depending upon whether they
are based on arrays or pointers:
 Contiguously-allocated structures are composed of

single slabs of memory
Ex> arrays, matrices, heaps, and hash tables.

 Linked data structures are composed of multiple
distinct chunks of memory bound together by
pointers
Ex> lists, trees, and graph adjacency lists.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

5

ARRAYS

 An array is a structure of fixed-size data records such
that each element can be efficiently located by its
index or (equivalently) address.

 Advantages of contiguously-allocated arrays include:
 Constant-time access given the index.
 Arrays consist purely of data, so no space is wasted with

links or other formatting information.
 Physical continuity (memory locality) between successive

data accesses helps exploit the high-speed cache memory
on modern computer architectures.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

6

DYNAMIC ARRAYS

 Unfortunately we cannot adjust the size of simple
arrays in the middle of a program’s execution.

 Compensating by allocating extremely large arrays can
waste a lot of space.

 With dynamic arrays we start with an array of size 1,
and double its size from m to 2m each time we run
out of space.

 How many times will we double for n elements?
 Only ceil(log2 n).

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

7

HOW MUCH TOTAL WORK?

 The apparent waste in this procedure involves the
recopying of the old contents on each expansion.

 If half the elements move once, a quarter of the
elements twice, and so on, the total number of
movements M is given by:

𝑀 = �𝑖 ∗
𝑛
2𝑖

𝑙𝑙𝑙

𝑖=1

= 𝑛�
𝑖

2𝑖

𝑙𝑙𝑙

𝑖=1

≤ 𝑛�
𝑖

2𝑖

∞

𝑖=1

= 2𝑛

 Thus each of the n elements move an average of only
twice, and the total work of managing the dynamic
array is the same O(n) as a simple array.

Lecture slide courtesy of Prof.
Steven Skiena http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

8

POINTERS AND LINKED STRUCTURES

 Pointers represent the address of a location in
memory.

 A cell-phone number can be thought of as a pointer to
its owner as they move about the planet.

 In C, *p denotes the item pointed to by p, and &x
denotes the address (i.e. pointer) of a particular
variable x.

 A special NULL pointer value is used to denote
structure-terminating or unassigned pointers.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

9

LINKED LIST STRUCTURES

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

10

1. one or more data fields

2. a pointer field
to at least one
other node

3. pointer to
the head of
the
structure

SEARCHING A LIST

 Searching in a linked list can be done iteratively or
recursively.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

11

Recursive implementation: .

INSERTION INTO A LIST

 Since we have no need to maintain the list in any
particular order, we might as well insert each new
item at the head.

 Note the **l, since the head element of the list
changes.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

12

DELETING FROM A LIST - RECURSIVE

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

13

1. find a
pointer to the
predecessor of the
item to be deleted

2. Reset the pointer to
the head of the list (l)
when the first element
is deleted:

ADVANTAGES OF LINKED LISTS

 The relative advantages of linked lists over static
arrays include:
1. Overflow on linked structures can never occur

unless the memory is actually full.
2. Insertions and deletions are simpler than for

contiguous (array) lists.
3. With large records, moving pointers is easier and

faster than moving the items themselves.
 Dynamic memory allocation provides us with flexibility

on how and where we use our limited storage
resources.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

14

CONTAINERS: STACKS AND QUEUES

 Sometimes, the order in which we retrieve data is
independent of its content, being only a function of when
it arrived. (DS called Containers)

 A stack supports last-in, first-out (LIFO) operations:
 – Push(x,s): Insert item x at the top of stack s.
 – Pop(s): Return (and remove) the top item of stack s.

 A queue supports first-in, first-out (FIFO) operations:
 – Enqueue(x,q): Insert item x at the back of queue q.
 – Dequeue(q): Return (and remove) the front item from queue q.

 Lines in banks are based on queues, while food in my
refrigerator is treated as a stack.

 Stacks and queues can be effectively implemented using
either arrays or linked lists.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

15

IMPACT ON TREE TRAVERSAL

 Both can be used to store nodes to visit in a tree, but
the order of traversal is completely different.

 Which order is friendlier for WWW crawler robots?

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

16

DICTIONARY / DYNAMIC SET OPERATIONS

The dictionary data type permits access to data items by
content.
Perhaps the most important class of data structures
maintain a set of items, indexed by keys.
 Search(S,k) – A query that, given a set S and a key

value k, returns a pointer x to an element in S such
that key[x] = k, or nil if no such element belongs to S.

 Insert(S,x) – A modifying operation that augments the
set S with the element x.

 Delete(S,*x) – Given a pointer x to an element in the
set S, remove x from S. Observe we are given a pointer
to an element x, not a key value.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

17

May also have following functions:
 Min(S), Max(S) – Returns the element of the totally

ordered set S which has the smallest (largest) key.
 Next(S,k), Previous(S,) – Retrieve the item from D

whose key is immediately before (or after) k in sorted
order.

 These enable us to iterate through the elements of the
data structure. There are a variety of implementations
of these dictionary operations, each of which yield
different time bounds for various operations.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

18

ARRAY BASED SETS: UNSORTED ARRAYS

 Search(S,k) - sequential search, O(n)
 Insert(S,x) - place in first empty spot, O(1)
 Delete(S,*x) - copy nth item to the xth spot, O(1)
 Min(S), Max(S) - sequential search, O(n)
 Successor(S,k), Predecessor(S,k) - sequential search,

O(n)

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

19

ARRAY BASED SETS: SORTED ARRAYS

 Search(S,k) - binary search, O(lg n)
 Insert(S,x) - search, then move to make space, O(n)
 Delete(S,*x) - move to fill up the hole, O(n)
 Min(S), Max(S) - first or last element, O(1)
 Successor(S,k), Predecessor(S,k) - Add or subtract 1

from pointer, O(1)

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

20

POINTER BASED IMPLEMENTATION

We can maintain a dictionary in either a singly or doubly
linked list.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

21

DOUBLY LINKED LISTS

 We gain extra flexibility on predecessor queries at a
cost of doubling the number of pointers by using
doubly-linked lists.

 Since the extra big-Oh costs of doubly-linked lists is
zero, we will usually assume they are, although it
might not be necessary.

 Singly linked to doubly-linked list is as a Conga line is
to a Can-Can line.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

22

STOP AND THINK:
COMPARING DICTIONARY IMPLEMENTATIONS

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

23

Problem: What is the asymptotic worst-case
running times for each of the seven fundamental
dictionary operations when the data structure is
implemented as
• A singly-linked unsorted list.
• A doubly-linked unsorted list.
• A singly-linked sorted list.
• A doubly-linked sorted list.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

24

	Lec03�Elementary Data Structure (65-77)
	Problem of the Day
	Elementary Data Structures
	Data Abstraction
	Contiguous vs. Linked Data Structures
	Arrays
	Dynamic Arrays
	How Much Total Work?
	Pointers and Linked Structures
	Linked List Structures
	Searching a List
	Insertion into a List
	Deleting from a List - recursive
	Advantages of Linked Lists
	Containers: Stacks and Queues
	Impact on Tree Traversal
	Dictionary / Dynamic Set Operations
	Slide Number 18
	Array Based Sets: Unsorted Arrays
	Array Based Sets: Sorted Arrays
	Pointer Based Implementation
	Doubly Linked Lists
	Stop and Think: �Comparing Dictionary Implementations
	Slide Number 24

