CSE 373 Analysis of Algorithms
Fall 2016
Instructor: Prof. Sael Lee
LECO2
PROGRAM ANALYSIS (40-51)

Lecture slide courtesy of Prof. Steven Skiena

EXERCISE 2-4

2-4. [8] What value is returned by the following function? Express your answer as a function of n. Give the worst-case running time using Big Oh notation.

$$
\begin{aligned}
& \text { function conundrum(n) } \\
& r:=0 \\
& \text { for } i:=1 \text { to } n \text { do } \\
& \text { for } j:=i+1 \text { to } n \text { do } \\
& \quad \text { for } k:=i+j-1 \text { to } n \text { do } \\
& r:=r+1 \\
& \text { return(r) }
\end{aligned}
$$

> conundrum(1) [1] 3
$>$ conundrum(2) [1] 6
$>$ conundrum(3) [1] 12
$>$ conundrum(4) [1] 21
> conundrum(5) [1] 35
$>$ conundrum(6) [1] 54
$>$ conundrum(7) [1] 80
> conundrum(8) [1] 113
> conundrum(9) [1] 155
> conundrum(10) [1] 206

$$
\begin{array}{ll}
\sum_{i=1}^{n} 1=n \quad \sum_{i=1}^{n} c=n c & \sum_{i=1}^{n} i=\frac{n(n+1)}{2} \\
\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6} & \sum_{i=1}^{n} i^{3}=\left(\frac{n(n+1)}{2}\right)^{2}
\end{array}
$$

$>r<-1: 10$
$>r^{\wedge} 3$
> 1827641252163435127291000

REASONING ABOUT EFFICIENCY: SELECTION SORT

```
```

selection_sort(int s[], int n)

```
```

selection_sort(int s[], int n)
{
{
int i,j; 1* counters */
int i,j; 1* counters */
for (i=0; i<n; i++) {
for (i=0; i<n; i++) {
min=i;
min=i;
for (j=i+1; j<n; j++)
for (j=i+1; j<n; j++)
if (s[j] < s[min]) min=j;
if (s[j] < s[min]) min=j;
swap(\&s[i],\&s [min]);
swap(\&s[i],\&s [min]);
}

```
}
```

```
}
```

}
void selectionSort(int[] array, int start Index)
void selectionSort(int[] array, int start Index)
void selectionSort(int[] array, int start Index)
{
{
{
if (startIndex >= array. length - 1)
if (startIndex >= array. length - 1)
if (startIndex >= array. length - 1)
return;
return;
return;
int minIndex = startIndex;
int minIndex = startIndex;
int minIndex = startIndex;
for (int index = start Index + 1; index < array.length; index++)
for (int index = start Index + 1; index < array.length; index++)
for (int index = start Index + 1; index < array.length; index++)
{
{
{
if (array[index] < array[minlndex])
if (array[index] < array[minlndex])
if (array[index] < array[minlndex])
minIndex = index;
minIndex = index;
minIndex = index;
}
}
}
int temp = array[startIndex];
int temp = array[startIndex];
int temp = array[startIndex];
array[start Index] = array [minIndex];
array[start Index] = array [minIndex];
array[start Index] = array [minIndex];
array[minIndex] = temp;
array[minIndex] = temp;
array[minIndex] = temp;
selectionSort(array, startIndex + 1);
selectionSort(array, startIndex + 1);
selectionSort(array, startIndex + 1);
}

```
}
```

}

```

SELECTIONSORT CELESTIONSORT
C ELESTIONSORT
CEELSTIONSORT
CEETSTLONSORT
CEEILTSONSORT
CEEILNSOTSORT
CEEILNOSTSORT
CEEILNOGTSSRT
CEEILNOORSSTT
C EEILNOORSSTT
CEEILNOORSSTT
CEEILNOORSSTT
CEEILNOORSSTT

\section*{SELECTION SORT WORST CASE ANALYSIS}

The outer loop goes around \(n\) times.
The inner loop goes around at most \(n\) times for each it eration of the outer loop
Thus selection sort takes at most \(\mathrm{n} * \mathrm{n}\)-> \(\mathrm{O}\left(\mathrm{n}^{2}\right)\) time in the worst case.
```

selection_sort(int s[], int n)
{
int i,j; /* counters */
int min; /* index of minimum */
for (i=0; i<n; i++) {
min=i;
for (j=i+1; j<n; j++)
if (s[j] < s[min]) min=j;
swap(\&s[i],\&s[min]);
}
}

```

\section*{MORE CAREFUL ANALYSIS}

An exact count of the number of times the if statement is executed
```

 int i,j; 1* counters */
 for (i=0; i<n; i++) {
min=i;
for (j=i+1; j<n; j++)
if (s[j] < s[min]) min=j;
swap(\&s[i],\&s[min]);

``` is given by:
\[
S(n)=\sum_{i=0}^{n-1} \sum_{j=i+1}^{n-1} 1=\sum_{i=0}^{n-1} n-i-1
\]
\(S(n)=(n-2)+(n-3)+\ldots+2+1+0=(n-1)(n-2) / 2\)
* Thus the worst case running time is \(\Theta\left(n^{2}\right)\).
* Can we say \(0\left(\mathrm{n}^{2}\right)\) or \(\Omega\left(\mathrm{n}^{2}\right)\) ?

\section*{REASONING ABOUT EFFICIENCY: INSERTION SORT}


\section*{INSERTION SORT WORST CASE ANALYSIS}
\(\times\) How often does the inner while loop iterate?
+ two different stopping conditions:
+ One to prevent us from running off the bounds of the array \((j\) \(>0\) )
+ One to mark when the element finds its proper place in sorted order (s[j] < s[j - 1]).
* Since worst-case analysis seeks an upper bound on the running time, we ignore the early termination and assume that this loop always goes around \(i\) times.
* insertion sort must be a quadratic-time algorithm, i.e. \(O\left(n^{2}\right)\).

\section*{REASONING ABOUT EFFICIENCY: STRING PATTERN MATCHING}

Problem: Substring Pattern Matching
Input: A text string \(t\) and a pattern string \(p\).
Output: Does \(t\) contain the pattern \(p\) as a substring, and if so where?


Searching for the substring abba in the text aababba.
```

int findmatch(char *p, char *t)
{
int i,j; 1* counters */
m = strlen(p);
n = strlen(t);
for (i=0; i<=(n-m); i=i+1) {
j=0;
while ((j<m) \&\& (t[i+j]==p[j]))
if (j == m) return(i);
}
return(-1);
}

```

\section*{WORST CASE ANALYSIS}

What is the worst-case running time of these two nested loops?
```

int findmatch(char *p, char *t)
int i,j; /* counters */
int m, n; /* string lengths */
m = strlen(p);
n = strlen(t);
for (i=0; i<=(n-m); i=i+1) {
while ((j<m) \&\& (t[i+j]==p[j]))
j = j+1;
if (j == m) return(i);
}
return(-1);
O(n+m+(n-m)(m+2))?

```
\}
\(n \geq m, n \leq n m\),

\section*{MATRIX MULTIPLICATION}

Problem: Matrix Multiplication
Input: Two matrices, \(A\) (of dim. \(x \times y\) ) and \(B\) (dim. \(y \times z\) ).
Output: An \(x \times z\) matrix \(C\) where \(C[i][j]\) is the dot product of the \(i\) th row of \(A\) and the \(j\) th column of \(B\).
```

for (i=1; i<=x; i++)
for (j=1; j<=y; j++) {
C[i][j] = 0;
for (k=1; k<=z; k++)
C[i][j] += A[i][k] * B|[k][j];
}

```

\section*{WORST CASE ANALYSIS}

The number of multiplications \(M(x, y, z)\) is given by the following summation:
\[
M(x, y, z)=\sum_{i=1}^{x} \sum_{j=1}^{y} \sum_{k=1}^{z} 1
\]

Sums get evaluated from the right inward. The sum of \(z\) ones is \(z\), so
\[
M(x, y, z)=\sum_{i=1}^{x} \sum_{j=1}^{y} z
\]

The sum of \(y\) zs is just as simple, \(y z\), so
\[
M(x, y, z)=\sum_{i=1}^{x} y z
\]

Finally, the sum of \(x y z s\) is \(x y z\).
Thus the running of this matrix multiplication algorithm is \(O(x y z)\).
If we consider the common case where all three dimensions are the same, this becomes \(O\left(n^{3}\right)\)-i.e. , a cubic algorithm.

\section*{LOGARITHMS}
* It is important to understand deep in your bones what logarithms are and where they come from.
* A logarithm is simply an inverse exponential function. Saying \(b^{x}=y\) is equivalent to saying that \(x=\log _{b} y\).
* Logarithms reflect how many times we can double something until we get to \(n\), or halve something until we get to 1.
* Logarithms arise in any process where things are repe atedly halved.

\section*{BINARY SEARCH}
* In binary search we throw away half the possible number of keys after each comparison. Thus twenty comparisons suffice to find any name in the millionname Manhattan phone book!
* How many time can we halve n before getting to 1 ?
* Answer: ceiling(Ign)

A height \(h\) tree with \(d\)
children per node as \(d^{h}\)
leaves.
Here \(h=2\) and \(d=3\)

\section*{LOGARITHMS AND TREES}
* How tall a binary tree do we need until we have \(n\) leaves? The number of potential leaves doubles with each level.
* How many times can we double 1 until we get to \(n\) ? Answer: ceiling(lgn)

\section*{MORE ABOUT TREES}

A binary tree of height 1 can have up to 2 leaf nodes What is the height \(h\) of a rooted binary tree with \(n\) leaf nodes?
- Note that the number of leaves doubles every time we increase the height by one.
- To account for \(n\) leaves, \(n=2^{h}\) which implies that \(h=\log _{2} n\).

What if we generalize to trees that have \(d\) children, where \(d=2\) for the case of binary trees?
- A tree of height 1 can have up to \(d\) leaf nodes, while one of height two can have up to \(d^{2}\) leaves.

The number of possible leaves multiplies by \(d\) every time we increase the height by one, so to account for \(n\) leaves, \(n=d^{h}\) which implies that \(h=\) \(\log _{d} n\),

\section*{LOGARITHMS AND BITS}
* How many bits do you need to represent the numbers from 0 to \(2^{i}\)-1?

Each bit you add doubles the possible number of bit patterns,
so the number of bits equals \(\lg \left(2^{i}\right)=\mathrm{i}\)

\section*{LOGARITHMS AND MULTIPLICATION}
* Recall that
\[
\log _{a}(x y)=\log _{a}(x)+\log _{a}(y)
\]

This is how people used to multiply before calculators, and remains useful for analysis.
\(x\) What if \(x=a\) ?
\[
\log _{a} n^{b}=b \cdot \log _{a} n
\]

\section*{THE BASE IS NOT ASYMPTOTICALLY IMPORTANT}

Recall the definition, \(c^{\log c} x=x\) and that
\[
\log _{b} a=\frac{\log _{c} a}{\log _{c} b}
\]

Thus \(\log _{2} n=\frac{1}{\log _{100} 2} * \log _{100} n\). Since \(\frac{1}{\log _{100} 2}=6.643\) is just a constant, it does not matter in the Asymptotic notations.

\section*{FEDERAL SENTENCING GUIDELINES}

2F1.1. Fraud and Deceit; Forgery; Offenses Involving Altered or Counterfeit Instruments other than Counterfeit Bearer Obligations of the United States.
(a) Base offense Level: 6
(b) Specific offense

Characteristics
(1) If the loss exceeded \$2,000, increase the offense level as follows:
\begin{tabular}{||l|r||}
\hline Loss(Apply the Greatest) & Increase in Level \\
\hline (A) \(\$ 2,000\) or less & no increase \\
\hline (B) More than \(\$ 2,000\) & add 1 \\
\hline (C) More than \(\$ 5,000\) & add 2 \\
\hline (D) More than \(\$ 10,000\) & add 3 \\
\hline (E) More than \(\$ 20,000\) & add 4 \\
\hline (F) More than \(\$ 40,000\) & add 5 \\
\hline (G) More than \(\$ 70,000\) & add 6 \\
\hline (H) More than \(\$ 120,000\) & add 7 \\
\hline (I) More than \(\$ 200,000\) & add 8 \\
\hline (J) More than \(\$ 350,000\) & add 9 \\
\hline (K) More than \(\$ 500,000\) & add 10 \\
\hline (L) More than \(\$ 800,000\) & add 11 \\
\hline (M) More than \(\$ 1,500,000\) & add 12 \\
\hline (N) More than \(\$ 2,500,000\) & add 13 \\
\hline (O) More than \(\$ 5,000,000\) & add 14 \\
\hline (P) More than \(\$ 10,000,000\) & add 15 \\
\hline (Q) More than \(\$ 20,000,000\) & add 16 \\
\hline (R) More than \(\$ 40,000,000\) & add 17 \\
\hline (Q) More than \(\$ 80,000,000\) & add 18 \\
\hline
\end{tabular}

\section*{MAKE THE CRIME WORTH THE TIME}

The increase in punishment level grows logarithmically in the amount of money stolen.
Thus it pays to commit one big crime rather than many small crimes totaling the same amount.```

