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EXERCISE 2-4 

2-4. [8] What value is returned by the following 
function? Express your answer as a function of n. Give 
the worst-case running time using Big Oh notation. 

function conundrum(n) 
    r := 0 
    for i := 1 to n do 
        for j := i + 1 to n do 
            for k := i + j − 1 to n do 
                r := r + 1 
   return(r) 
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 r<-1:10  
 r^3  
 1 8 27 64 125 216 343 512 729 1000 

> conundrum(1) [1] 3  
> conundrum(2) [1] 6  
> conundrum(3) [1] 12  
> conundrum(4) [1] 21  
> conundrum(5) [1] 35 
> conundrum(6) [1] 54  
> conundrum(7) [1] 80  
> conundrum(8) [1] 113  
> conundrum(9) [1] 155  
> conundrum(10) [1] 206 



REASONING ABOUT EFFICIENCY: SELECTION SORT 
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SELECTION SORT WORST CASE ANALYSIS 

 The outer loop goes around n times. 
 The inner loop goes around at most n times for each it

eration of the outer loop 
 Thus selection sort takes at most n*n -> O(n2) time in 

the worst case. 
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MORE CAREFUL ANALYSIS 

 An exact count of the number of 
times the if statement is executed 
is given by: 
 
 
 
 

 Thus the worst case running time is 
Θ(n2). 

 Can we say 0(n2) or Ω(n2) ?  
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REASONING ABOUT EFFICIENCY: INSERTION SORT 
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INSERTION SORT WORST CASE ANALYSIS 

 How often does the inner while loop iterate? 
 two different stopping conditions:  
 One to prevent us from running off the bounds of the array (j 

> 0) 
 One to mark when the element finds its proper place in 

sorted order (s[j] < s[j − 1]).  

 Since worst-case analysis seeks an upper bound on 
the running time, we ignore the early termination and 
assume that this loop always goes around i times. 

 insertion sort must be a quadratic-time algorithm, i.e. 
O(n2). 
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REASONING ABOUT EFFICIENCY: STRING PATTERN MATCHING 
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Problem: Substring Pattern Matching 
Input: A text string t and a pattern string p. 
Output: Does t contain the pattern p as a substring, and if so where? 

Searching for the substring 
abba in the text aababba. 



WORST CASE ANALYSIS 

Lecture slide courtesy of Prof. 
Steven Skiena  

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/ 

10 

What is the worst-case running time of these two nested loops? 

Θ(n) 
Θ(m) 

Θ(n − m) 
O(m + 2) 

n ≥ m, n ≤ nm, 

O(nm) 

O(n + m + (n − m)(m + 2)) ? 



MATRIX MULTIPLICATION 

Problem: Matrix Multiplication  
Input: Two matrices, A (of dim. x × y) and B (dim. y × z). 
Output: An x × z matrix C where C[i][j] is the dot product of the 
ith row of A and the jth column of B. 
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WORST CASE ANALYSIS 
The number of multiplications M(x, y, z) is given by the following summation:  

𝑀(𝑥,𝑦, 𝑧) = ��� 1
𝑧

𝑘=1

𝑦

𝑗=1

𝑥

𝑖=1

 

Sums get evaluated from the right inward. The sum of z ones is z, so 

𝑀(𝑥,𝑦, 𝑧) = ��𝑧
𝑦

𝑗=1

𝑥

𝑖=1

 

The sum of y zs is just as simple, yz, so 

𝑀(𝑥,𝑦, 𝑧) = �𝑦𝑦
𝑥

𝑖=1

 

Finally, the sum of x yzs is xyz. 
Thus the running of this matrix multiplication algorithm is O(xyz). 
If we consider the common case where all three dimensions are the same, this 
becomes O(n3)—i.e. , a cubic algorithm. 
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LOGARITHMS 

 It is important to understand deep in your bones what 
logarithms are and where they come from. 

 A logarithm is simply an inverse exponential function. 
Saying bx = y is equivalent to saying that x = logb y. 

 Logarithms reflect how many times we can double 
something until we get to n, or halve something until 
we get to 1. 

 Logarithms arise in any process where things are repe
atedly halved.  
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BINARY SEARCH 

 In binary search we throw away half the possible 
number of keys after each comparison. Thus twenty 
comparisons suffice to find any name in the million-
name Manhattan phone book! 

 How many time can we halve n before getting to 1? 
 Answer: ceiling(lgn) 
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A height h tree with d 
children per node as dh 
leaves.  
 
Here h = 2 and d = 3 



LOGARITHMS AND TREES 

 How tall a binary tree do we need until we have n 
leaves? The number of potential leaves doubles with 
each level. 

 How many times can we double 1 until we get to n? 
 Answer: ceiling(lgn) 
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MORE ABOUT TREES 
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A binary tree of height 1 can have up to 2 leaf nodes 
What is the height h of a rooted binary tree with n leaf nodes?  
• Note that the number of leaves doubles every time we increase the 

height by one.  
• To account for n leaves, n = 2h which implies that h = log2 n.  
What if we generalize to trees that have d children, where d = 2 for the 
case 
of binary trees?  
• A tree of height 1 can have up to d leaf nodes, while one of height 
two can have up to d2 leaves.  
 
The number of possible leaves multiplies by d every time we increase the 
height by one, so to account for n leaves, n = dh which implies that h = 
logd n, 



LOGARITHMS AND BITS 

 How many bits do you need to represent the numbers 
from 0 to 2i - 1? 

 Each bit you add doubles the possible number of bit 
patterns, 

 so the number of bits equals lg(2i) = i 
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LOGARITHMS AND MULTIPLICATION 

 Recall that 
 
 

 This is how people used to multiply before calculators, 
and remains useful for analysis. 

 What if x = a? 
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THE BASE IS NOT ASYMPTOTICALLY IMPORTANT 

Recall the definition, clogc x = x and that 

log𝑏 𝑎 =  
log𝑐 𝑎
log𝑐 𝑏

  

Thus log2 𝑛 = 1
log100 2 

∗ log100 𝑛. Since 1
log100 2 

 = 6.643 

is just a constant, it does not matter in the Asymptotic 
notations .  
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FEDERAL SENTENCING GUIDELINES 

 2F1.1. Fraud and Deceit; 
Forgery; Offenses Involving 
Altered or Counterfeit 
Instruments other than 
Counterfeit Bearer 
Obligations of the United 
States. 
 (a) Base offense Level: 6 
 (b) Specific offense 

Characteristics 
 (1) If the loss exceeded 

$2,000, increase the offense 
level as follows: 
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MAKE THE CRIME WORTH THE TIME 

 The increase in punishment level grows 
logarithmically in the amount of money stolen. 

 Thus it pays to commit one big crime rather than many 
small crimes totaling the same amount. 
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