
LEC02
PROGRAM ANALYSIS (40-51)

CSE 373 Analysis of Algorithms
Fall 2016
Instructor: Prof. Sael Lee

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

1

Lecture slide courtesy of Prof. Steven Skiena

EXERCISE 2-4

2-4. [8] What value is returned by the following
function? Express your answer as a function of n. Give
the worst-case running time using Big Oh notation.

function conundrum(n)
 r := 0
 for i := 1 to n do
 for j := i + 1 to n do
 for k := i + j − 1 to n do
 r := r + 1
 return(r)

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

3

 r<-1:10
 r^3
 1 8 27 64 125 216 343 512 729 1000

> conundrum(1) [1] 3
> conundrum(2) [1] 6
> conundrum(3) [1] 12
> conundrum(4) [1] 21
> conundrum(5) [1] 35
> conundrum(6) [1] 54
> conundrum(7) [1] 80
> conundrum(8) [1] 113
> conundrum(9) [1] 155
> conundrum(10) [1] 206

REASONING ABOUT EFFICIENCY: SELECTION SORT

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

4

SELECTION SORT WORST CASE ANALYSIS

 The outer loop goes around n times.
 The inner loop goes around at most n times for each it

eration of the outer loop
 Thus selection sort takes at most n*n -> O(n2) time in

the worst case.

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

5

MORE CAREFUL ANALYSIS

 An exact count of the number of
times the if statement is executed
is given by:

 Thus the worst case running time is
Θ(n2).

 Can we say 0(n2) or Ω(n2) ?

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

6

REASONING ABOUT EFFICIENCY: INSERTION SORT

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

7

INSERTION SORT WORST CASE ANALYSIS

 How often does the inner while loop iterate?
 two different stopping conditions:
 One to prevent us from running off the bounds of the array (j

> 0)
 One to mark when the element finds its proper place in

sorted order (s[j] < s[j − 1]).

 Since worst-case analysis seeks an upper bound on
the running time, we ignore the early termination and
assume that this loop always goes around i times.

 insertion sort must be a quadratic-time algorithm, i.e.
O(n2).

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

8

REASONING ABOUT EFFICIENCY: STRING PATTERN MATCHING

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

9

Problem: Substring Pattern Matching
Input: A text string t and a pattern string p.
Output: Does t contain the pattern p as a substring, and if so where?

Searching for the substring
abba in the text aababba.

WORST CASE ANALYSIS

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

10

What is the worst-case running time of these two nested loops?

Θ(n)
Θ(m)

Θ(n − m)
O(m + 2)

n ≥ m, n ≤ nm,

O(nm)

O(n + m + (n − m)(m + 2)) ?

MATRIX MULTIPLICATION

Problem: Matrix Multiplication
Input: Two matrices, A (of dim. x × y) and B (dim. y × z).
Output: An x × z matrix C where C[i][j] is the dot product of the
ith row of A and the jth column of B.

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

11

WORST CASE ANALYSIS
The number of multiplications M(x, y, z) is given by the following summation:

𝑀(𝑥,𝑦, 𝑧) = ��� 1
𝑧

𝑘=1

𝑦

𝑗=1

𝑥

𝑖=1

Sums get evaluated from the right inward. The sum of z ones is z, so

𝑀(𝑥,𝑦, 𝑧) = ��𝑧
𝑦

𝑗=1

𝑥

𝑖=1

The sum of y zs is just as simple, yz, so

𝑀(𝑥,𝑦, 𝑧) = �𝑦𝑦
𝑥

𝑖=1

Finally, the sum of x yzs is xyz.
Thus the running of this matrix multiplication algorithm is O(xyz).
If we consider the common case where all three dimensions are the same, this
becomes O(n3)—i.e. , a cubic algorithm.

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

12

LOGARITHMS

 It is important to understand deep in your bones what
logarithms are and where they come from.

 A logarithm is simply an inverse exponential function.
Saying bx = y is equivalent to saying that x = logb y.

 Logarithms reflect how many times we can double
something until we get to n, or halve something until
we get to 1.

 Logarithms arise in any process where things are repe
atedly halved.

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

13

BINARY SEARCH

 In binary search we throw away half the possible
number of keys after each comparison. Thus twenty
comparisons suffice to find any name in the million-
name Manhattan phone book!

 How many time can we halve n before getting to 1?
 Answer: ceiling(lgn)

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

14

A height h tree with d
children per node as dh
leaves.

Here h = 2 and d = 3

LOGARITHMS AND TREES

 How tall a binary tree do we need until we have n
leaves? The number of potential leaves doubles with
each level.

 How many times can we double 1 until we get to n?
 Answer: ceiling(lgn)

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

15

MORE ABOUT TREES

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

16

A binary tree of height 1 can have up to 2 leaf nodes
What is the height h of a rooted binary tree with n leaf nodes?
• Note that the number of leaves doubles every time we increase the

height by one.
• To account for n leaves, n = 2h which implies that h = log2 n.
What if we generalize to trees that have d children, where d = 2 for the
case
of binary trees?
• A tree of height 1 can have up to d leaf nodes, while one of height
two can have up to d2 leaves.

The number of possible leaves multiplies by d every time we increase the
height by one, so to account for n leaves, n = dh which implies that h =
logd n,

LOGARITHMS AND BITS

 How many bits do you need to represent the numbers
from 0 to 2i - 1?

 Each bit you add doubles the possible number of bit
patterns,

 so the number of bits equals lg(2i) = i

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

17

LOGARITHMS AND MULTIPLICATION

 Recall that

 This is how people used to multiply before calculators,
and remains useful for analysis.

 What if x = a?

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

18

THE BASE IS NOT ASYMPTOTICALLY IMPORTANT

Recall the definition, clogc x = x and that

log𝑏 𝑎 =
log𝑐 𝑎
log𝑐 𝑏

Thus log2 𝑛 = 1
log100 2

∗ log100 𝑛. Since 1
log100 2

 = 6.643

is just a constant, it does not matter in the Asymptotic
notations .

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

19

FEDERAL SENTENCING GUIDELINES

 2F1.1. Fraud and Deceit;
Forgery; Offenses Involving
Altered or Counterfeit
Instruments other than
Counterfeit Bearer
Obligations of the United
States.
 (a) Base offense Level: 6
 (b) Specific offense

Characteristics
 (1) If the loss exceeded

$2,000, increase the offense
level as follows:

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

20

MAKE THE CRIME WORTH THE TIME

 The increase in punishment level grows
logarithmically in the amount of money stolen.

 Thus it pays to commit one big crime rather than many
small crimes totaling the same amount.

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

21

	Lec02�Program Analysis (40-51)
	Exercise 2-4
	Slide Number 3
	Reasoning About Efficiency: Selection Sort
	Selection Sort Worst Case Analysis
	More Careful Analysis
	Reasoning About Efficiency: Insertion Sort
	Insertion Sort Worst Case Analysis
	Reasoning About Efficiency: String Pattern Matching
	Worst Case analysis
	Matrix Multiplication
	Worst Case analysis
	Logarithms
	Binary Search
	Logarithms and Trees
	More about TreeS
	Logarithms and Bits
	Logarithms and Multiplication
	The Base is not Asymptotically Important
	Federal Sentencing Guidelines
	Make the Crime Worth the Time

