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EXERCISE 1-6 

The set cover problem is as follows: given a set of subsets S1, 
..., Sm of the universal set U = {1, ..., n}, find the smallest 
subset of subsets T ⊂ S such that ∪ti∈T ti =U. For example, 
there are the following subsets, S1 = {1, 3, 5}, S2 ={2, 4}, S3 = 
{1, 4}, and S4 = {2, 5}.  The set cover would then be S1 and S2. 
 
Find a counterexample for the following algorithm: Select the 
largest subset for the cover, and then delete all its elements 
from the universal set. Repeat by adding the subset 
containing the largest number of uncovered elements until all 
are covered. 
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APPLICATIONS OF SET COVER? 

 Efficiently acquire items that have been packaged in a 
fixed set of lots. Seeking a collection of at least one of 
each distinct type of item.  
 

 Boolean logic minimization of k variables which describes 
whether the desired output is 0 or 1 for each of the 2k 

possible input vectors. Given a set of feasible “and” terms, 
each of which covers a subset of the vectors we need, we 
seek to “or” together the smallest number of terms that 
realized the function.   

 
 For more on Set Cover, read pg 621-624 
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THE RAM MODEL OF COMPUTATION 

Algorithms are an important and durable part of 
computer science because they can be studied in a 
machine/language independent way. 
This is because we use the RAM model of computation 
for all our analysis. 

 Each “simple” operation (+,*, -, =, if, call) takes 1 step. 
 Loops and subroutines are not simple operations. They 

depend upon the size of the data and the contents of a 
subroutine.  
ex> “Sort” is not a single step operation. 
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 Each memory access takes exactly one time step (in cache 
or on disk)  Further, we have as much memory as we need. 

 We measure the run time of an algorithm by counting 
the number of steps, where:  
 This model is useful and accurate in the same sense as the 

flat-earth model (which is useful)! 
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WORST-CASE TIME COMPLEXITY 

The worst case (time) complexity of an algorithm is the 
function defined by the maximum number of steps taken 
on any instance of size n. 
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BEST-CASE AND AVERAGE-CASE COMPLEXITY 

The best case (time) complexity of an algorithm is the 
function defined by the minimum number of steps taken 
on any instance of size n. 
 
The average-case (time) complexity of the algorithm is 
the function defined by an average number of steps 
taken on any instance of size n. 
 
Each of these complexities defines a numerical function: 
time vs. size! 
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EXACT ANALYSIS IS HARD! 

Best, worst, and average are difficult to deal with precise
ly because the details are very complicated: 

 
 
 
 
 

It easier to talk about upper and lower bounds of the fun
ction. Asymptotic notation (𝑶,𝚯,𝛀) are as well as we can 
practically deal with complexity functions. 
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NAMES OF BOUNDING FUNCTIONS 

 Big-Oh: g(n) = O(f(n)) means C*f(n) is an upper 
bound on g(n). 
 

 Big-Omega: g(n) = 𝛀(f(n)) means C*f(n) is a lower 
bound on g(n). 
 

 Big-Theta: g(n) = 𝚯(f(n)) means C1*f(n) is an upper 
bound on g(n) and C2*f(n) is a lower bound on g(n). 
(a.k.a. tight bound) 

 
C, C1, and C2 are all constants independent of n. 
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FORMAL DEFINITIONS 
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The definitions imply a constant n0 beyond which they 
are satisfied. We do not care about small values of n. 

 f(n) = O(g(n)) if there are positive constants n0 
and c such that to the right of n0, the value of 
f(n) always lies on or below c*g(n). 
 

  f(n) = 𝛀(g(n)) if there are positive constants 
n0 and c such that to the right of n0, the value 
of f(n) always lies on or above c*g(n). 
 

  f(n) = 𝚯 (g(n)) if there exist positive constants 
n0, c1, and c2 such that to the right of n0, the 
value of f(n) always lies between c1*g(n) and 
c2*g(n) inclusive. 



BIG OH EXAMPLES 

Think of the equality as meaning in the set of functions 
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BIG OMEGA EXAMPLES 
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BIG THETA EXAMPLES 
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GROWTH RATES 
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Growth rates of common functions measured in nanoseconds 



DOMINANCE RELATIONS 

 Faster-growing function dominates a slower-growing one 
 Common functions that appear in algorithms analysis 

order of increasing dominance:  
 
 
 Constant functions, f(n) = 1 
 Logarithmic functions, f(n) = log n 
 Linear functions, f(n) = n 
 Superlinear functions, f(n) = n lg n 
 Quadratic functions, f(n) = n2 

 Cubic functions, f(n) = n3 

 Exponential functions, f(n) = cn for a given constant c > 1 

 Factorial functions, f(n) = n! 
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IMPLICATIONS OF DOMINANCE 

  Exponential algorithms gets hopeless fast. 
  Quadratic algorithms get hopeless at or before 

1,000,000. 
  O(n log n) is possible to about one billion. 
  O(log n) never sweats. 
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TESTING DOMINANCE 

 f(n) dominates g(n) if 
 
 

      which is the same as saying g(n) = o(f(n)). 
 Note: little-oh means “grows strictly slower than”. 
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IMPLICATIONS OF DOMINANCE 

 na dominates nb if a > b since 
 
 

 na + o(na) doesn’t dominate na since 
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ADVANCED DOMINANCE RANKINGS 

 Additional functions arise in more sophisticated analys
is than we will do in this course 
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ASYMPTOTIC NOTATIONS: ADDITION/SUBTRACTION 

Suppose f(n) = O(n2) and g(n) = O(n2). 
 What do we know about g’(n) = f(n)+g(n)?  

 Adding the bounding constants shows g’(n) = O(n2). 
 What do we know about g’’(n) = f(n) -|g(n)|?  

 Since the bounding constants don’t necessary cancel,    
g’’(n) = O(n2) 

 We know nothing about the lower bounds on g’ and g’’ 
because we know nothing about lower bounds on f 
and g. 

 Since the Big Oh gives an upper bound, we can drop 
any negative term without invalidating the upper 
bound. 
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The sum of two functions is governed by the dominant 
one, 



ASYMPTOTIC NOTATIONS: MULTIPLICATION 

 Multiplication by a constant does not change the 
asymptotic notations: 
 
 
 

 when two functions in a product are increasing, both   
are important. 
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ASYMPTOTIC NOTATIONS: MULTIPLICATION BY FUNCTION 

 But when both functions in a product are increasing, 
both are important: 
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