
LEC01
ASYMPTOTIC NOTATIONS (PP. 31-41)

CSE 373 Analysis of Algorithms
Fall 2016
Instructor: Prof. Sael Lee

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

1

Lecture slide courtesy of Prof.
Steven Skiena

Lecture slide courtesy of Prof. Steven Skiena

EXERCISE 1-6

The set cover problem is as follows: given a set of subsets S1,
..., Sm of the universal set U = {1, ..., n}, find the smallest
subset of subsets T ⊂ S such that ∪ti∈T ti =U. For example,
there are the following subsets, S1 = {1, 3, 5}, S2 ={2, 4}, S3 =
{1, 4}, and S4 = {2, 5}. The set cover would then be S1 and S2.

Find a counterexample for the following algorithm: Select the
largest subset for the cover, and then delete all its elements
from the universal set. Repeat by adding the subset
containing the largest number of uncovered elements until all
are covered.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

2

APPLICATIONS OF SET COVER?

 Efficiently acquire items that have been packaged in a
fixed set of lots. Seeking a collection of at least one of
each distinct type of item.

 Boolean logic minimization of k variables which describes
whether the desired output is 0 or 1 for each of the 2k

possible input vectors. Given a set of feasible “and” terms,
each of which covers a subset of the vectors we need, we
seek to “or” together the smallest number of terms that
realized the function.

 For more on Set Cover, read pg 621-624

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

3

THE RAM MODEL OF COMPUTATION

Algorithms are an important and durable part of
computer science because they can be studied in a
machine/language independent way.
This is because we use the RAM model of computation
for all our analysis.

 Each “simple” operation (+,*, -, =, if, call) takes 1 step.
 Loops and subroutines are not simple operations. They

depend upon the size of the data and the contents of a
subroutine.
ex> “Sort” is not a single step operation.

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

4

Lecture slide courtesy of Prof.
Steven Skiena

 Each memory access takes exactly one time step (in cache
or on disk) Further, we have as much memory as we need.

 We measure the run time of an algorithm by counting
the number of steps, where:
 This model is useful and accurate in the same sense as the

flat-earth model (which is useful)!

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

5

WORST-CASE TIME COMPLEXITY

The worst case (time) complexity of an algorithm is the
function defined by the maximum number of steps taken
on any instance of size n.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

6

BEST-CASE AND AVERAGE-CASE COMPLEXITY

The best case (time) complexity of an algorithm is the
function defined by the minimum number of steps taken
on any instance of size n.

The average-case (time) complexity of the algorithm is
the function defined by an average number of steps
taken on any instance of size n.

Each of these complexities defines a numerical function:
time vs. size!

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

7

EXACT ANALYSIS IS HARD!

Best, worst, and average are difficult to deal with precise
ly because the details are very complicated:

It easier to talk about upper and lower bounds of the fun
ction. Asymptotic notation (𝑶,𝚯,𝛀) are as well as we can
practically deal with complexity functions.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

8

NAMES OF BOUNDING FUNCTIONS

 Big-Oh: g(n) = O(f(n)) means C*f(n) is an upper
bound on g(n).

 Big-Omega: g(n) = 𝛀(f(n)) means C*f(n) is a lower
bound on g(n).

 Big-Theta: g(n) = 𝚯(f(n)) means C1*f(n) is an upper
bound on g(n) and C2*f(n) is a lower bound on g(n).
(a.k.a. tight bound)

C, C1, and C2 are all constants independent of n.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

9

FORMAL DEFINITIONS

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

10

The definitions imply a constant n0 beyond which they
are satisfied. We do not care about small values of n.

 f(n) = O(g(n)) if there are positive constants n0
and c such that to the right of n0, the value of
f(n) always lies on or below c*g(n).

 f(n) = 𝛀(g(n)) if there are positive constants
n0 and c such that to the right of n0, the value
of f(n) always lies on or above c*g(n).

 f(n) = 𝚯 (g(n)) if there exist positive constants
n0, c1, and c2 such that to the right of n0, the
value of f(n) always lies between c1*g(n) and
c2*g(n) inclusive.

BIG OH EXAMPLES

Think of the equality as meaning in the set of functions

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

11

BIG OMEGA EXAMPLES

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

12

BIG THETA EXAMPLES

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

13

GROWTH RATES

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

14

Growth rates of common functions measured in nanoseconds

DOMINANCE RELATIONS

 Faster-growing function dominates a slower-growing one
 Common functions that appear in algorithms analysis

order of increasing dominance:

 Constant functions, f(n) = 1
 Logarithmic functions, f(n) = log n
 Linear functions, f(n) = n
 Superlinear functions, f(n) = n lg n
 Quadratic functions, f(n) = n2

 Cubic functions, f(n) = n3

 Exponential functions, f(n) = cn for a given constant c > 1

 Factorial functions, f(n) = n!

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

15

IMPLICATIONS OF DOMINANCE

 Exponential algorithms gets hopeless fast.
 Quadratic algorithms get hopeless at or before

1,000,000.
 O(n log n) is possible to about one billion.
 O(log n) never sweats.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

16

TESTING DOMINANCE

 f(n) dominates g(n) if

 which is the same as saying g(n) = o(f(n)).
 Note: little-oh means “grows strictly slower than”.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

17

IMPLICATIONS OF DOMINANCE

 na dominates nb if a > b since

 na + o(na) doesn’t dominate na since

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

18

ADVANCED DOMINANCE RANKINGS

 Additional functions arise in more sophisticated analys
is than we will do in this course

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

19

ASYMPTOTIC NOTATIONS: ADDITION/SUBTRACTION

Suppose f(n) = O(n2) and g(n) = O(n2).
 What do we know about g’(n) = f(n)+g(n)?

 Adding the bounding constants shows g’(n) = O(n2).
 What do we know about g’’(n) = f(n) -|g(n)|?

 Since the bounding constants don’t necessary cancel,
g’’(n) = O(n2)

 We know nothing about the lower bounds on g’ and g’’
because we know nothing about lower bounds on f
and g.

 Since the Big Oh gives an upper bound, we can drop
any negative term without invalidating the upper
bound.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

20

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

21

The sum of two functions is governed by the dominant
one,

ASYMPTOTIC NOTATIONS: MULTIPLICATION

 Multiplication by a constant does not change the
asymptotic notations:

 when two functions in a product are increasing, both
are important.

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

22

ASYMPTOTIC NOTATIONS: MULTIPLICATION BY FUNCTION

 But when both functions in a product are increasing,
both are important:

Lecture slide courtesy of Prof.
Steven Skiena

http://www3.cs.stonybrook.edu/~sael/teaching/cse373/

23

	Lec01�Asymptotic Notations (pp. 31-41)
	Exercise 1-6
	Applications of Set Cover?
	The RAM Model of Computation
	Slide Number 5
	Worst-Case Time Complexity
	Best-Case and Average-Case Complexity
	Exact Analysis is Hard!
	Names of Bounding Functions
	Formal Definitions
	Big Oh Examples
	Big Omega Examples
	Big Theta Examples
	Growth Rates
	Dominance Relations
	Implications of Dominance
	Testing Dominance
	Implications of Dominance
	Advanced Dominance Rankings
	asymptotic notations: Addition/Subtraction
	Slide Number 21
	asymptotic notations: Multiplication
	asymptotic notations: Multiplication by Function

