Exercise 1-6

The *set cover problem* is as follows: given a set of subsets S_1, \ldots, S_m of the universal set $U = \{1, \ldots, n\}$, find the smallest subset of subsets $T \subset S$ such that $\bigcup_{t_i \in T} t_i = U$. For example, there are the following subsets, $S_1 = \{1, 3, 5\}$, $S_2 = \{2, 4\}$, $S_3 = \{1, 4\}$, and $S_4 = \{2, 5\}$. The set cover would then be S_1 and S_2.

Find a counterexample for the following algorithm: Select the largest subset for the cover, and then delete all its elements from the universal set. Repeat by adding the subset containing the largest number of uncovered elements until all are covered.