Assignment 1 (Sept. 8 ${ }^{\text {th }}$ 2016)

Due date and time: Sept $21^{\text {st }} 17: 00$ p.m.
Submit in class (handwritten hardcopy).
For the first Assignment, you must work alone.
Following are problems taken from the Book:
1-3. [5] Design/draw a road network with two points a and b such that the fastest route between a and b is not the shortest route.

1-5. [4] The knapsack problem is as follows: given a set of integers $S=\{s 1, s 2, \ldots, s n\}$, and a target number T, find a subset of S which adds up exactly to T. For example, there exists a subset within $S=\{1,2,5,9,10\}$ that adds up to $T=22$ but not $T=23$.
Find counterexamples to each of the following algorithms for the knapsack problem. That is, giving an S and T such that the subset is selected using the algorithm does not leave the knapsack completely full, even though such a solution exists.

Put the elements of S in the knapsack in left to right order if they fit, i.e. the first-fit algorithm.

1-9. [3] Prove the correctness of the following sorting algorithm.

$$
\begin{aligned}
& \text { function bubblesort }(A: \operatorname{list}[1 \ldots n]) \\
& \text { var int } i, j \\
& \text { for } i \text { from } n \text { to } 1 \\
& \text { for } j \text { from } 1 \text { to } i-1 \\
& \quad \text { if }(A[j]>A[j+1]) \\
& \quad \text { swap the values of } A[j] \text { and } A[j+1]
\end{aligned}
$$

1-14. [5] Prove by induction on $n \geq 1$ that for every $a!=1$,

$$
\sum_{i=0}^{n} a^{i}=\frac{a^{n+1}-1}{a-1}
$$

1-28. [5] Write a function to perform integer division without using either the / or * operators. Find a fast way to do it.

2-1. [3] What value is returned by the following function? Express your answer as a function of n. Give the worstcase running time using the Big Oh notation.

$$
\begin{aligned}
& \text { function mystery }(n) \\
& \qquad \begin{array}{l}
r:=0 \\
\text { for } i:=1 \text { to } n-1 \text { do } \\
\text { for } j:=i+1 \text { to } n \text { do } \\
\text { for } k:=1 \text { to } j \text { do } \\
r:=r+1 \\
\operatorname{return}(r)
\end{array}
\end{aligned}
$$

2-5. [5] Suppose the following algorithm is used to evaluate the polynomial

$$
\begin{aligned}
& p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0} \\
& \quad p:=a_{0} ; \\
& \text { xpower }:=1 ; \\
& \text { for } i:=1 \text { to } n \text { do } \\
& \quad \text { xpower }:=x * \text { xpower } ; \\
& \quad p:=p+a_{i} * \text { xpower } \\
& \text { end }
\end{aligned}
$$

(a) How many multiplications are done in the worst-case? How many additions?
(b) How many multiplications are done on the average?
(c) Can you improve this algorithm?

2-9. [3] For each of the following pairs of functions $f(n)$ and $g(n)$, determine whether $f(n)=O(g(n)), g(n)=O(f(n))$, or both.
(a) $f(n)=\left(n^{2}-n\right) / 2, g(n)=6 n$
(c) $f(n)=n \log n, g(n)=n \sqrt{ } n / 2$
(f) $f(n)=4 n \log n+n, g(n)=\left(n^{2}-n\right) / 2$

2-10. [3] Prove that $n^{3}-3 n^{2}-n+1=\Theta\left(n^{3}\right)$.

2-20. [5] Find two functions $f(n)$ and $g(n)$ that satisfy the following relationship. If no such f and g exist, write "None."
(a) $f(n)=o(g(n))$ and $f(n)_{-}=\Theta(g(n))$
(c) $f(n)=\Theta(g(n))$ and $f(n)_{-}=O(g(n))$

2-23. [3] For each of these questions, briefly explain your answer.
(a) If I prove that an algorithm takes $O\left(n^{2}\right)$ worst-case time, is it possible that it takes $O(n)$ on some inputs?
(b) If I prove that an algorithm takes $O\left(n^{2}\right)$ worst-case time, is it possible that it takes $O(n)$ on all inputs?
(c) If I prove that an algorithm takes $\Theta\left(n^{2}\right)$ worst-case time, is it possible that it takes $O(n)$ on some inputs?

