
© 2014 Goodrich, Tamassia, Goldwasser

GRAPHS (CH14)

Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich,
R. Tamassia, and M. H. Goldwasser, Wiley, 2014

Graphs

1

ORD

DFW

SFO

LAX

© 2014 Goodrich, Tamassia, Goldwasser

GRAPHS
 A graph is a pair (V, E), where

 V is a set of nodes, called vertices (aka nodes)
 E is a collection of pairs of vertices, called edges (aka arcs)
 Vertices and edges are positions and store elements

 Example:
 A vertex represents an airport and stores the three-letter airport

code
 An edge represents a flight route between two airports and stor

es the mileage of the route

Graphs

2

ORD PVD

MIA
DFW

SFO

LAX

LGA

HNL

© 2014 Goodrich, Tamassia, Goldwasser

EDGE TYPES

 Directed edge
 ordered pair of vertices (u,v)
 first vertex u is the origin
 second vertex v is the destination
 e.g., a flight

 Undirected edge
 unordered pair of vertices (u,v)
 e.g., a flight route

 Directed graph
 all the edges are directed
 e.g., route network

 Undirected graph
 all the edges are undirected
 e.g., flight network

 Mixed graph : graph that has
both directed and undirected
edges

Graphs

3

ORD PVD
flight

AA 1206

ORD PVD 849
miles

© 2014 Goodrich, Tamassia, Goldwasser

APPLICATIONS

 Electronic circuits
 Printed circuit board
 Integrated circuit

 Transportation networks
 Highway network
 Flight network

 Computer networks
 Local area network
 Internet
 Web

 Databases
 Entity-relationship diagram

Graphs

4

John

DavidPaul

brown.edu

cox.net

cs.brown.edu

att.net
qwest.net

math.brown.edu

cslab1bcslab1a

© 2014 Goodrich, Tamassia, Goldwasser

TERMINOLOGY

 End vertices (or endpoints) of an
edge
 U and V are the endpoints of a

 Edges incident on a vertex
 a, d, and b are incident on V

 Adjacent vertices
 U and V are adjacent

 Degree of a vertex
 deg(X)= 5; X has degree 5

 Parallel edges (multiple edges)
 h and i are parallel edges
 Edges are collections (not sets)

 Self-loop
 j is a self-loop

 outgoing edges of a vertex:
 directed edges whose origin is

that vertex.
 incoming edges of a vertex:

 directed edges whose
destination is that vertex.

 in-degree & out-degree of a vertex v
 the number of the incoming and

outgoing edges of v,
 Denoted indeg(v) and outdeg(v)

Graphs

5

X U

V

W

Z

Y

a

c

b

e

d

f

g

h

i

j

© 2014 Goodrich, Tamassia, Goldwasser

TERMINOLOGY (CONT.)

 Path
 sequence of alternating

vertices and edges
 begins with a vertex
 ends with a vertex
 each edge is preceded and

followed by its endpoints
 Simple path

 path such that all its vertices
and edges are distinct

 Examples
 P1=(V,b,X,h,Z) is a simple path
 P2=(U,c,W,e,X,g,Y,f,W,d,V) is a

path that is not simple

 Graphs are said to be simple if they
do not have parallel edges or self-
loops

 Most graphs are simple; we will
assume that a graph is simple
unless otherwise specified

Graphs

6

P1

X U

V

W

Z

Y

a

c

b

e

d

f

g

h P2

© 2014 Goodrich, Tamassia, Goldwasser

TERMINOLOGY (CONT.)

 Cycle
 circular sequence of alternating

vertices and edges
 each edge is preceded and

followed by its endpoints
 Simple cycle

 cycle such that all its vertices
and edges are distinct, except
for the first and the last

 Examples
 C1=(V,b,X,g,Y,f,W,c,U,a,↵) is a

simple cycle
 C2=(U,c,W,e,X,g,Y,f,W,d,V,a,↵) is

a cycle that is not simple

Graphs

7

C1

X U

V

W

Z

Y

a

c

b

e

d

f

g

h C2

© 2014 Goodrich, Tamassia, Goldwasser

TERMINOLOGY (CONT.)

 Given vertices u and v of a
(directed) graph G,

 u reaches v, and that v is
reachable from u, if G has
a (directed) path from u to
v.

 reachability :
 undirected graph

reachability is symmetric,
that is to say, u reaches v if
an only if v reaches u.

 directed graph reachability is
asymmetric, it is possible
that u reaches v but v does
not reach u,

Graphs

8

strongly connected subgraph a directed path

subgraph of
the vertices and

edges reachable from
ORD

removal of the
dashed edges results
in a directed acyclic

graph

© 2014 Goodrich, Tamassia, Goldwasser

Depth-First Search

9

SUBGRAPHS

 A subgraph S of a graph G
is a graph such that
 The vertices of S are a subset

of the vertices of G
 The edges of S are a subset

of the edges of G

 A spanning subgraph of G is
a subgraph that contains all
the vertices of G

Subgraph

Spanning subgraph

© 2014 Goodrich, Tamassia, Goldwasser

Depth-First Search

10

CONNECTIVITY

 A graph is connected if,
for any two vertices, there
is a path between them.

 A directed graph G is
strongly connected if for
any two vertices u and v
of G, u reaches v and v
reaches u.

 A connected component
of a graph G is a
maximal connected
subgraph of G

Connected graph

Non connected graph with two
connected components

© 2014 Goodrich, Tamassia, Goldwasser

Depth-First Search

11

TREES AND FORESTS

 A (free) tree is an
undirected graph T such
that
 T is connected
 T has no cycles
This definition of tree is

different from the one of a
rooted tree

 A forest is an undirected
graph without cycles

 The connected
components of a forest
are trees

Tree

Forest

© 2014 Goodrich, Tamassia, Goldwasser

Depth-First Search

12

SPANNING TREES AND FORESTS

 A spanning tree of a
connected graph is a
spanning subgraph that is a
tree

 A spanning tree is not unique
unless the graph is a tree

 A spanning forest of a graph
is a spanning subgraph that
is a forest

Graph

Spanning tree

© 2014 Goodrich, Tamassia, Goldwasser

PROPERTIES

Notation
 n number of vertices
 m number of edges
deg(v) degree of vertex v

Let G be an undirected graph
 If G is connected, then m ≥

n−1.
 If G is a tree, then m = n−1.
 If G is a forest, then m ≤ n−1.

Property 1: If G is a graph with m edges and
vertex set V, then

� 𝐝𝐝𝐝 𝒗
𝒗 𝐢𝐧 𝑽

= 𝟐𝟐

Proof: each edge is counted twice
Property 2: If G is a directed graph with m

edges and vertex set V, then

� 𝐢𝐧𝐝𝐝𝐝 𝒗
𝒗 𝐢𝐧 𝑽

= � 𝐨𝐨𝐨𝐝𝐝𝐝 𝒗
𝒗 𝐢𝐧 𝑽

= 𝟐

Property 3: Let G be a simple graph with n

vertices and m edges. If G is undirected,
then

 m ≤ n (n - 1)/2

 Proof: each vertex has degree at most (n - 1)

=> A simple graph with n vertices has O(n2)
edges.

Graphs

13

Example
 n = 4
 m = 6
 deg(v) = 3

© 2014 Goodrich, Tamassia, Goldwasser

VERTICES AND EDGES

 A graph is a collection of vertices and edges.
 We model the abstraction as a combination of three

data types: Vertex, Edge, and Graph.
 A Vertex is a lightweight object that stores an

arbitrary element provided by the user (e.g., an
airport code)
 We assume it supports a method, element(), to retrieve the

stored element.

 An Edge stores an associated object (e.g., a flight
number, travel distance, cost), retrieved with the
element() method.

Graphs

14

© 2014 Goodrich, Tamassia, Goldwasser

GRAPH ADT
Graphs

15

either
undirected or

directed

© 2014 Goodrich, Tamassia, Goldwasser

DATA STRUCTURES FOR GRAPHS

 In an edge list, we maintain an unordered list of all edges.
 This minimally suffices, but there is no efficient way to locate a particular

edge (u,v), or the set of all edges incident to a vertex v.
 In an adjacency list, we additionally maintain, for each vertex, a

separate list containing those edges that are incident to the vertex.
 This organization allows us to more efficiently find all edges incident to a

given vertex.
 An adjacency map is similar to an adjacency list, but the secondary

container of all edges incident to a vertex is organized as a map,
rather than as a list, with the adjacent vertex serving as a key.
 This allows more efficient access to a specific edge (u,v), for example, in O(1)

expected time with hashing.
 An adjacency matrix provides worst-case O(1) access to a specific

edge (u,v) by maintaining an n×n matrix, for a graph with n vertices.
 Each slot is dedicated to storing a reference to the edge (u,v) for a particular

pair of vertices u and v; if no such edge exists, the slot will store null.

Graphs

16

© 2014 Goodrich, Tamassia, Goldwasser

DATA STRUCTURES FOR GRAPHS: EDGE LIST
 All vertex objects are stored in an unordered list V, and

all edge objects are stored in an unordered list E.
 Components:

 Vertex object
 reference to element v, to support getElement()
 reference to position in vertex sequence for efficiently

removed
 Edge object

 reference to element e, to support getElement()
 References to the origin vertex object & destination

vertex object, to support endVertices(e) and opposite(v,
e).

 reference to position in edge sequence sequence for
efficiently removed

 Vertex sequence
 sequence of vertex objects

 Edge sequence
 sequence of edge objects

Graphs

17

space usage is O(n+m)

© 2014 Goodrich, Tamassia, Goldwasser

PERFORMANCE OF THE EDGE LIST STRUCTURE

Graphs

18

space usage is O(n+m)

Exhaustive
inspection of

all edges
needed.

when a vertex v is
removed from the
graph, all edges

incident to v must
also be removed

© 2014 Goodrich, Tamassia, Goldwasser

DATA STRUCTURES FOR GRAPHS: ADJACENCY LIST
 Adds extra information to the edge list

structure that supports direct access to
the incident edges
 For each vertex v, we maintain a

collection I(v), called incidence
collection of v

 Components:
 Incidence sequence for each vertex

 sequence of references to edge objects of
incident edges

 Augmented edge objects
 references to associated positions in

incidence sequences of end vertices

Graphs

19

adjacency list Iout(v)

positional list to
represent V

© 2014 Goodrich, Tamassia, Goldwasser

PERFORMANCE OF THE ADJACENCY LIST STRUCTURE

Graphs

20

adjacency list Iout(v) assuming that the primary collection V and E,
and all secondary collections I(v) are
implemented with doubly linked lists.

using O(n+m) space

based on use
of I(v).

search through
either I(u) or

I(v)

© 2014 Goodrich, Tamassia, Goldwasser

DATA STRUCTURES FOR GRAPHS: ADJACENCY MAP

 use a hash-based map to
implement I(v) for each vertex
v.

 let the opposite endpoint of
each incident edge serve as a
key in the map, with the edge
structure serving as the value

 getEdge(u, v) method can be
implemented in expected O(1)
time

Graphs

21

maps

values
keys

space usage is O(n+m)

© 2014 Goodrich, Tamassia, Goldwasser

DATA STRUCTURES FOR GRAPHS: ADJACENCY MATRIX
 adjacency matrix A allows us to locate an edge

between a given pair of vertices in worst-case
O(1) time.

 cell A[i][j] holds a reference to the edge (u,v),
if it exists, where u is the vertex with index i
and v is the vertex with index j

 Edge list structure
 Augmented vertex objects

 Integer key (index) associated with vertex
 2D-array adjacency array

 Reference to edge object for adjacent verti
ces

 Null for non nonadjacent vertices
 The “old fashioned” version just has 0 for no e

dge and 1 for edge

Graphs

22

O(n2) space usage

© 2014 Goodrich, Tamassia, Goldwasser

PERFORMANCE: SIMPLE GRAPH

Graphs

23

adjacency matrix uses O(n2) space, while all other structures use
O(n+m) space

© 2014 Goodrich, Tamassia, Goldwasser

JAVA IMPLEMENTATION OF ADJACENCY MAP

 Positional lists to represent each of the primary lists V
and E

 use a hash-based map to represent the secondary
incidence map I(v) for each vertex v in V
 each vertex maintains two different map references:

outgoing and incoming.
 Directed graphs: initialized to two distinct map instances,

representing Iout(v) and Iin(v), respectively.
 Undirected graph: assign both outgoing and incoming as

aliases to a single map instance.

 For details of the code: please look at the book.

Graphs

24

Depth-First Search

25

GRAPH TRAVERSALS:
DEPTH-FIRST SEARCH

D B

A

C

E

© 2014 Goodrich, Tamassia, Goldwasser

GRAPH TRAVERSAL

 A traversal is a systematic procedure for exploring a
graph by examining all of its vertices and edges.

 A traversal is efficient if it visits all the vertices and
edges in time proportional to their number, that is, in
linear time.

 We will look at two efficient graph traversal algorithms
 depth-first search (DFS)
 breadth-first search (BFS)

Graphs

26

© 2014 Goodrich, Tamassia, Goldwasser

Depth-First Search

27

DEPTH-FIRST SEARCH

 A DFS traversal of a graph G
 Visits all the vertices and

edges of G
 Determines whether G is

connected
 Computes the connected

components of G
 Computes a spanning forest

of G

 The DFS process naturally
identifies what is known
as the depth-first search
tree rooted at a starting
vertex s.

 DFS on a graph with n
vertices and m edges takes
O(n + m) time

 DFS can be further
extended to solve other
graph problems
 Find and report a path

between two given vertices
 Find a cycle in the graph

 Depth-first search is to
graphs what Euler tour is
to binary trees

© 2014 Goodrich, Tamassia, Goldwasser

Depth-First Search

28

DFS ALGORITHM FROM A VERTEX

© 2014 Goodrich, Tamassia, Goldwasser

JAVA IMPLEMENTATION

Depth-First Search

29

Example of a Depth-First Search

0 visited 0 being visited 0 unvisited

0

1
2

3 4 5 6

Data Structures Abstraction and Design Using Java, 2nd Edition
by Elliot B. Koffman & Paul A. T. Wolfgang, Wiley, 2010

Example of a Depth-First Search
(cont.)

Mark 0 as being
visited

0 visited 0 being visited 0 unvisited

0

1
2

3 4 5 6
Finish order:

Discovery (Visit) order:
0

Example of a Depth-First Search
(cont.)

Choose an
adjacent vertex
that is not being

visited

0 visited 0 being visited 0 unvisited

0

1
2

3 4 5 6
Finish order:

Discovery (Visit) order:
0

Example of a Depth-First Search
(cont.)

Choose an
adjacent vertex
that is not being

visited

0 visited 0 being visited 0 unvisited

0

1
2

3 4 5 6
Finish order:

Discovery (Visit) order:
0, 1

Example of a Depth-First Search
(cont.)

(Recursively) choose
an adjacent vertex

that is not being
visited

0 visited 0 being visited 0 unvisited

0

1
2

3 4 5 6
Finish order:

Discovery (Visit) order:
0, 1, 3

Example of a Depth-First Search
(cont.)

(Recursively) choose
an adjacent vertex

that is not being
visited

0 visited 0 being visited 0 unvisited

0

1
2

3 4 5 6
Finish order:

Discovery (Visit) order:
0, 1, 3

Example of a Depth-First Search
(cont.)

0 visited 0 being visited 0 unvisited

0

1
2

3 4 5 6

(Recursively) choose
an adjacent vertex

that is not being
visited

Finish order:

Discovery (Visit) order:
0, 1, 3, 4

Example of a Depth-First Search
(cont.)

0 visited 0 being visited 0 unvisited

0

1
2

3 4 5 6

There are no
vertices adjacent to

4 that are not
being visited

Finish order:

Discovery (Visit) order:
0, 1, 3, 4

Example of a Depth-First Search
(cont.)

0 visited 0 being visited 0 unvisited

0

1
2

3 4 5 6

Mark 4 as visited

Finish order:
4

Discovery (Visit) order:
0, 1, 3, 4

Example of a Depth-First Search
(cont.)

0 visited 0 being visited 0 unvisited

0

1
2

3 4 5 6

Return from the
recursion to 3; all
adjacent nodes to
3 are being visited

Finish order:
4

Example of a Depth-First Search
(cont.)

0 visited 0 being visited 0 unvisited

0

1
2

3 4 5 6

Mark 3 as visited

Finish order:
4, 3

Example of a Depth-First Search
(cont.)

0 visited 0 being visited 0 unvisited

0

1
2

3 4 5 6

Return from the
recursion to 1

Finish order:
4, 3

Example of a Depth-First Search
(cont.)

0 visited 0 being visited 0 unvisited

0

1
2

3 4 5 6

All vertices
adjacent to 1 are

being visited

Finish order:
4, 3

Example of a Depth-First Search
(cont.)

0 visited 0 being visited 0 unvisited

0

1
2

3 4 5 6

Mark 1 as visited

Finish order:
4, 3, 1

Example of a Depth-First Search
(cont.)

0 visited 0 being visited 0 unvisited

0

1
2

3 4 5 6

Return from the
recursion to 0

Finish order:
4, 3, 1

Example of a Depth-First Search
(cont.)

0 visited 0 being visited 0 unvisited

0

1
2

3 4 5 6

2 is adjacent to 1
and is not being

visited

Finish order:
4, 3, 1

Example of a Depth-First Search
(cont.)

0 visited 0 being visited 0 unvisited

0

1
2

3 4 5 6

2 is adjacent to 1
and is not being

visited

Finish order:
4, 3, 1

Discovery (Visit) order:
0, 1, 3, 4, 2

Example of a Depth-First Search
(cont.)

0 visited 0 being visited 0 unvisited

0

1
2

3 4 5 6

5 is adjacent to 2
and is not being

visited

Finish order:
4, 3, 1

Discovery (Visit) order:
0, 1, 3, 4, 2

Example of a Depth-First Search
(cont.)

0 visited 0 being visited 0 unvisited

0

1
2

3 4 5 6

5 is adjacent to 2
and is not being

visited

Finish order:
4, 3, 1

Discovery (Visit) order:
0, 1, 3, 4, 2, 5

Example of a Depth-First Search
(cont.)

0 visited 0 being visited 0 unvisited

0

1
2

3 4 5 6

6 is adjacent to 5
and is not being

visited

Finish order:
4, 3, 1

Discovery (Visit) order:
0, 1, 3, 4, 2, 5

Example of a Depth-First Search
(cont.)

0 visited 0 being visited 0 unvisited

0

1
2

3 4 5 6

6 is adjacent to 5
and is not being

visited

Finish order:
4, 3, 1

Discovery (Visit) order:
0, 1, 3, 4, 2, 5, 6

Example of a Depth-First Search
(cont.)

0 visited 0 being visited 0 unvisited

0

1
2

3 4 5 6

There are no
vertices adjacent to
6 not being visited;
mark 6 as visited

Finish order:
4, 3, 1

Discovery (Visit) order:
0, 1, 3, 4, 2, 5, 6

Example of a Depth-First Search
(cont.)

0 visited 0 being visited 0 unvisited

0

1
2

3 4 5 6

There are no
vertices adjacent to
6 not being visited;
mark 6 as visited

Finish order:
4, 3, 1, 6

Discovery (Visit) order:
0, 1, 3, 4, 2, 5, 6

Example of a Depth-First Search
(cont.)

0 visited 0 being visited 0 unvisited

0

1
2

3 4 5 6

Return from the
recursion to 5

Finish order:
4, 3, 1, 6

Example of a Depth-First Search
(cont.)

0 visited 0 being visited 0 unvisited

0

1
2

3 4 5 6

Mark 5 as visited

Finish order:
4, 3, 1, 6

Example of a Depth-First Search
(cont.)

0 visited 0 being visited 0 unvisited

0

1
2

3 4 5 6

Mark 5 as visited

Finish order:
4, 3, 1, 6, 5

Example of a Depth-First Search
(cont.)

0 visited 0 being visited 0 unvisited

0

1
2

3 4 5 6

Return from the
recursion to 2

Finish order:
4, 3, 1, 6, 5

Example of a Depth-First Search
(cont.)

0 visited 0 being visited 0 unvisited

0

1
2

3 4 5 6

Mark 2 as visited

Finish order:
4, 3, 1, 6, 5

Example of a Depth-First Search
(cont.)

0 visited 0 being visited 0 unvisited

0

1
2

3 4 5 6

Mark 2 as visited

Finish order:
4, 3, 1, 6, 5, 2

Example of a Depth-First Search
(cont.)

0 visited 0 being visited 0 unvisited

0

1
2

3 4 5 6

Return from the
recursion to 0

Finish order:
4, 3, 1, 6, 5, 2

Example of a Depth-First Search
(cont.)

0 visited 0 being visited 0 unvisited

0

1
2

3 4 5 6

There are no nodes
adjacent to 0 not

being visited

Finish order:
4, 3, 1, 6, 5, 2

Example of a Depth-First Search
(cont.)

0 visited 0 being visited 0 unvisited

0

1
2

3 4 5 6

Mark 0 as visited

Finish order:
4, 3, 1, 6, 5, 2, 0

Discovery (Visit) order:
0, 1, 3, 4, 2, 5, 6, 0

© 2014 Goodrich, Tamassia, Goldwasser

Depth-First Search

62

PROPERTIES OF DFS

Property 1
 DFS(G, v) visits all the v

ertices and edges in the
connected component o
f v

Property 2
 The discovery edges lab

eled by DFS(G, v) form
a spanning tree of the c
onnected component of
v

D B

A

C

E

© 2014 Goodrich, Tamassia, Goldwasser

Depth-First Search

63

ANALYSIS OF DFS

 Setting/getting a vertex/edge label takes O(1) time
 Each vertex is labeled twice

 once as UNEXPLORED
 once as VISITED (Finished)

 Each edge is labeled twice
 once as UNEXPLORED
 once as DISCOVERY or BACK

 Method incidentEdges is called once for each vertex
 DFS runs in O(n + m) time provided the graph is

represented by the adjacency list structure
 Recall that Σv deg(v) = 2m

Breadth-First Search

64

GRAPH TRAVERSALS:
BREADTH-FIRST SEARCH

C B

A

E

D

L0

L1

F
L2

© 2014 Goodrich, Tamassia, Goldwasser

Breadth-First Search

65

BREADTH-FIRST SEARCH

 A BFS traversal of a
graph G
 Visits all the vertices and

edges of G
 Determines whether G is

connected
 Computes the connected

components of G
 Computes a spanning

forest of G

 BFS on a graph with n
vertices and m edges
takes O(n + m) time

 BFS can be further
extended to solve other
graph problems
 Find and report a path

with the minimum
number of edges
between two given
vertices

 Find a simple cycle, if
there is one

© 2014 Goodrich, Tamassia, Goldwasser

Breadth-First Search

66

BFS ALGORITHM

 The algorithm uses a mechanism
for setting and getting “labels” of
vertices and edges

Algorithm BFS(G, s)
 L0 ← new empty sequence

L0.addLast(s)
setLabel(s, VISITED)
i ← 0
while ¬Li.isEmpty()
 Li +1 ← new empty sequence
 for all v ∈ Li.elements()
 for all e ∈ G.incidentEdges(v)
 if getLabel(e) = UNEXPLORED
 w ← opposite(v,e)
 if getLabel(w) = UNEXPLORED
 setLabel(e, DISCOVERY)
 setLabel(w, VISITED)
 Li +1.addLast(w)
 else
 setLabel(e, CROSS)
 i ← i +1

Algorithm BFS(G)
 Input graph G
 Output labeling of the edges
 and partition of the
 vertices of G

for all u ∈ G.vertices()
 setLabel(u, UNEXPLORED)
for all e ∈ G.edges()
 setLabel(e, UNEXPLORED)
for all v ∈ G.vertices()
 if getLabel(v) = UNEXPLORED
 BFS(G, v)

© 2014 Goodrich, Tamassia, Goldwasser

JAVA IMPLEMENTATION

Breadth-First Search

67

Example of a Breadth-First Search

0

2

3 1

9 8

4

7

6

5

0 visited 0 identified 0 unvisited

Data Structures Abstraction and Design Using Java, 2nd Edition
by Elliot B. Koffman & Paul A. T. Wolfgang, Wiley, 2010

Example of a Breadth-First Search
(cont.)

0

2

3 1

9 8

4

7

6

5

Identify the start
node

0 visited 0 identified 0 unvisited

Example of a Breadth-First Search
(cont.)

0

2

3 1

9 8

4

7

6

5

While visiting it, we
can identify its
adjacent nodes

0 visited 0 identified 0 unvisited

Example of a Breadth-First Search
(cont.)

0

2

3 1

9 8

4

7

6

5 We identify its
adjacent nodes

and add them to a
queue of identified

nodes

Visit sequence:
0

0 visited 0 identified 0 unvisited

Example of a Breadth-First Search
(cont.)

0

2

3 1

9 8

4

7

6

5

Visit sequence:
0

Queue:
1, 3

0 visited 0 identified 0 unvisited

We identify its
adjacent nodes

and add them to a
queue of identified

nodes

Example of a Breadth-First Search
(cont.)

0

2

3 1

9 8

4

7

6

5

Visit sequence:
0

Queue:
1, 3

0 visited 0 identified 0 unvisited

We color the node
as visited

Example of a Breadth-First Search
(cont.)

0

2

3 1

9 8

4

7

6

5

Visit sequence:
0

Queue:
1, 3

The queue
determines which
nodes to visit next

0 visited 0 identified 0 unvisited

Example of a Breadth-First Search
(cont.)

0

2

3 1

9 8

4

7

6

5

Visit the first node
in the queue, 1

Visit sequence:
0

Queue:
1, 3

0 visited 0 identified 0 unvisited

Example of a Breadth-First Search
(cont.)

0

2

3 1

9 8

4

7

6

5

Visit sequence:
0, 1

Queue:
3

Visit the first node
in the queue, 1

0 visited 0 identified 0 unvisited

Example of a Breadth-First Search
(cont.)

Select all its
adjacent nodes that

have not been
visited or identified

Visit sequence:
0, 1

Queue:
3

0 visited 0 identified 0 unvisited

0

2

3 1

9 8

4

7

6

5

Example of a Breadth-First Search
(cont.)

Select all its
adjacent nodes that

have not been
visited or identified

Visit sequence:
0, 1

Queue:
3, 2, 4, 6, 7

0 visited 0 identified 0 unvisited

0

2

3 1

9 8

4

7

6

5

Example of a Breadth-First Search
(cont.)

Now that we are
done with 1, we
color it as visited

Visit sequence:
0, 1

Queue:
3, 2, 4, 6, 7

0 visited 0 identified 0 unvisited

0

2

3 1

9 8

4

7

6

5

Example of a Breadth-First Search
(cont.)

and then visit the
next node in the
queue, 3 (which
was identified in
the first selection)

Visit sequence:
0, 1

Queue:
3, 2, 4, 6, 7

0 visited 0 identified 0 unvisited

0

2

3 1

9 8

4

7

6

5

Example of a Breadth-First Search
(cont.)

Visit sequence:
0, 1, 3

Queue:
2, 4, 6, 7

0 visited 0 identified 0 unvisited

and then visit the
next node in the
queue, 3 (which
was identified in
the first selection)

0

2

3 1

9 8

4

7

6

5

Example of a Breadth-First Search
(cont.)

3 has two adjacent
vertices. 0 has
already been

visited and 2 has
already been

identified. We are
done with 3

Visit sequence:
0, 1, 3

Queue:
2, 4, 6, 7

0 visited 0 identified 0 unvisited

0

2

3 1

9 8

4

7

6

5

Example of a Breadth-First Search
(cont.)

The next node in
the queue is 2

Visit sequence:
0, 1, 3

Queue:
2, 4, 6, 7

0 visited 0 identified 0 unvisited

0

2

3 1

9 8

4

7

6

5

Example of a Breadth-First Search
(cont.)

The next node in
the queue is 2

Visit sequence:
0, 1, 3, 2

Queue:
4, 6, 7

0 visited 0 identified 0 unvisited

0

2

3 1

9 8

4

7

6

5

Example of a Breadth-First Search
(cont.)

8 and 9 are the
only adjacent
vertices not

already visited or
identified

Visit sequence:
0, 1, 3, 2

Queue:
4, 6, 7, 8, 9

0 visited 0 identified 0 unvisited

0

2

3 1

9 8

4

7

6

5

Example of a Breadth-First Search
(cont.)

4 is next

Visit sequence:
0, 1, 3, 2, 4

Queue:
6, 7, 8, 9

0 visited 0 identified 0 unvisited

0

2

3 1

9 8

4

7

6

5

Example of a Breadth-First Search
(cont.)

5 is the only vertex
not already visited

or identified

Visit sequence:
0, 1, 3, 2, 4

Queue:
6, 7, 8, 9, 5

0 visited 0 identified 0 unvisited

0

2

3 1

9 8

4

7

6

5

Example of a Breadth-First Search
(cont.)

6 has no vertices
not already visited

or identified

Visit sequence:
0, 1, 3, 2, 4, 6

Queue:
7, 8, 9, 5

0 visited 0 identified 0 unvisited

0

2

3 1

9 8

4

7

6

5

Example of a Breadth-First Search
(cont.)

6 has no vertices
not already visited

or identified

Visit sequence:
0, 1, 3, 2, 4, 6

Queue:
7, 8, 9, 5

0 visited 0 identified 0 unvisited

0

2

3 1

9 8

4

7

6

5

Example of a Breadth-First Search
(cont.)

7 has no vertices
not already visited

or identified

Visit sequence:
0, 1, 3, 2, 4, 6, 7

Queue:
8, 9, 5

0 visited 0 identified 0 unvisited

0

2

3 1

9 8

4

7

6

5

Example of a Breadth-First Search
(cont.)

7 has no vertices
not already visited

or identified

Visit sequence:
0, 1, 3, 2, 4, 6, 7

Queue:
8, 9, 5

0 visited 0 identified 0 unvisited

0

2

3 1

9 8

4

7

6

5

Example of a Breadth-First Search
(cont.)

We go back to the
vertices of 2 and

visit them

Visit sequence:
0, 1, 3, 2, 4, 6, 7

Queue:
8, 9, 5

0 visited 0 identified 0 unvisited

0

2

3 1

9 8

4

7

6

5

Example of a Breadth-First Search
(cont.)

8 has no vertices
not already visited

or identified

Visit sequence:
0, 1, 3, 2, 4, 6, 7, 8

Queue:
9, 5

0 visited 0 identified 0 unvisited

0

2

3 1

9 8

4

7

6

5

Example of a Breadth-First Search
(cont.)

9 has no vertices
not already visited

or identified

Visit sequence:
0, 1, 3, 2, 4, 6, 7, 8, 9

Queue:
5

0 visited 0 identified 0 unvisited

0

2

3 1

9 8

4

7

6

5

Example of a Breadth-First Search
(cont.)

Finally we visit 5

Visit sequence:
0, 1, 3, 2, 4, 6, 7, 8, 9

Queue:
5

0 visited 0 identified 0 unvisited

0

2

3 1

9 8

4

7

6

5

Example of a Breadth-First Search
(cont.)

which has no
vertices not

already visited or
identified

Visit sequence:
0, 1, 3, 2, 4, 6, 7, 8, 9, 5

Queue:
empty

0 visited 0 identified 0 unvisited

0

2

3 1

9 8

4

7

6

5

Example of a Breadth-First Search
(cont.)

The queue is
empty; all vertices
have been visited

Visit sequence:
0, 1, 3, 2, 4, 6, 7, 8, 9, 5

Queue:
empty

0 visited 0 identified 0 unvisited

0

2

3 1

9 8

4

7

6

5

© 2014 Goodrich, Tamassia, Goldwasser

Breadth-First Search

98

PROPERTIES

Notation
Gs: connected component of s

Property 1
 BFS(G, s) visits all the vertices and

edges of Gs
Property 2
 The discovery edges labeled by BF

S(G, s) form a spanning tree Ts of Gs

Property 3
 For each vertex v in Li

 The path of Ts from s to v has i edg
es

 Every path from s to v in Gs has at l
east i edges

C B

A

E

D

L0

L1

F
L2

C B

A

E

D

F

© 2014 Goodrich, Tamassia, Goldwasser

Breadth-First Search

99

ANALYSIS

 Setting/getting a vertex/edge label takes O(1) time
 Each vertex is labeled twice

 once as UNEXPLORED
 once as VISITED

 Each edge is labeled twice
 once as UNEXPLORED
 once as DISCOVERY or CROSS

 Each vertex is inserted once into a sequence Li
 Method incidentEdges is called once for each vertex
 BFS runs in O(n + m) time provided the graph is repre

sented by the adjacency list structure
 Recall that Σv deg(v) = 2m

© 2014 Goodrich, Tamassia, Goldwasser

Breadth-First Search

100

APPLICATIONS

 Using the template method pattern, we can
specialize the BFS traversal of a graph G to solve
the following problems in O(n + m) time
 Compute the connected components of G
 Compute a spanning forest of G
 Find a simple cycle in G, or report that G is a forest
 Given two vertices of G, find a path in G between

them with the minimum number of edges, or report
that no such path exists

	Graphs (CH14)
	Graphs
	Edge Types
	Applications
	Terminology
	Terminology (cont.)
	Terminology (cont.)
	Terminology (cont.)
	Subgraphs
	Connectivity
	Trees and Forests
	Spanning Trees and Forests
	Properties
	Vertices and Edges
	Graph ADT
	Data Structures for Graphs
	Data Structures for Graphs: Edge List
	Performance of the Edge List Structure
	Data Structures for Graphs: Adjacency List
	Performance of the Adjacency List Structure
	Data Structures for Graphs: Adjacency Map
	Data Structures for Graphs: Adjacency Matrix
	Performance: simple Graph
	Java Implementation OF adjacency map
	Graph Traversals: �Depth-First Search
	Graph Traversal
	Depth-First Search
	DFS Algorithm from a Vertex
	Java Implementation
	Example of a Depth-First Search
	Example of a Depth-First Search (cont.)
	Example of a Depth-First Search (cont.)
	Example of a Depth-First Search (cont.)
	Example of a Depth-First Search (cont.)
	Example of a Depth-First Search (cont.)
	Example of a Depth-First Search (cont.)
	Example of a Depth-First Search (cont.)
	Example of a Depth-First Search (cont.)
	Example of a Depth-First Search (cont.)
	Example of a Depth-First Search (cont.)
	Example of a Depth-First Search (cont.)
	Example of a Depth-First Search (cont.)
	Example of a Depth-First Search (cont.)
	Example of a Depth-First Search (cont.)
	Example of a Depth-First Search (cont.)
	Example of a Depth-First Search (cont.)
	Example of a Depth-First Search (cont.)
	Example of a Depth-First Search (cont.)
	Example of a Depth-First Search (cont.)
	Example of a Depth-First Search (cont.)
	Example of a Depth-First Search (cont.)
	Example of a Depth-First Search (cont.)
	Example of a Depth-First Search (cont.)
	Example of a Depth-First Search (cont.)
	Example of a Depth-First Search (cont.)
	Example of a Depth-First Search (cont.)
	Example of a Depth-First Search (cont.)
	Example of a Depth-First Search (cont.)
	Example of a Depth-First Search (cont.)
	Example of a Depth-First Search (cont.)
	Example of a Depth-First Search (cont.)
	Properties of DFS
	Analysis of DFS
	Graph Traversals: �Breadth-First Search
	Breadth-First Search
	BFS Algorithm
	Java Implementation
	Example of a Breadth-First Search
	Example of a Breadth-First Search (cont.)
	Example of a Breadth-First Search (cont.)
	Example of a Breadth-First Search (cont.)
	Example of a Breadth-First Search (cont.)
	Example of a Breadth-First Search (cont.)
	Example of a Breadth-First Search (cont.)
	Example of a Breadth-First Search (cont.)
	Example of a Breadth-First Search (cont.)
	Example of a Breadth-First Search (cont.)
	Example of a Breadth-First Search (cont.)
	Example of a Breadth-First Search (cont.)
	Example of a Breadth-First Search (cont.)
	Example of a Breadth-First Search (cont.)
	Example of a Breadth-First Search (cont.)
	Example of a Breadth-First Search (cont.)
	Example of a Breadth-First Search (cont.)
	Example of a Breadth-First Search (cont.)
	Example of a Breadth-First Search (cont.)
	Example of a Breadth-First Search (cont.)
	Example of a Breadth-First Search (cont.)
	Example of a Breadth-First Search (cont.)
	Example of a Breadth-First Search (cont.)
	Example of a Breadth-First Search (cont.)
	Example of a Breadth-First Search (cont.)
	Example of a Breadth-First Search (cont.)
	Example of a Breadth-First Search (cont.)
	Example of a Breadth-First Search (cont.)
	Example of a Breadth-First Search (cont.)
	Example of a Breadth-First Search (cont.)
	Properties
	Analysis
	Applications

