GRAPHS (CH14)

Presentation for use with the textbook Data Structures and Algorithms in Java, $6{ }^{\text {th }}$ edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014
© 2014 Goodrich, Tamassia, Goldwasser

GRAPHS

* A graph is a pair (V, E), where
\boldsymbol{V} is a set of nodes, called vertices (aka nodes)
$+\boldsymbol{E}$ is a collection of pairs of vertices, called edges (aka arcs)
+ Vertices and edges are positions and store elements
Example:
A vertex represents an airport and stores the three-letter airport code
+ An edge represents a flight route between two airports and stor

ERGE TYPES

Directed edge

+ ordered pair of vertices (u, v)
+ first vertex u is the origin
+ second vertex v is the destination
+ e.g., a flight
* Undirected edge
+ unordered pair of vertices (u, v)
+ e.g., a flight route
* Directed graph
+ all the edges are directed
+ e.g., route network
* Undirected graph
+ all the edges are undirected
+ e.g., flight network
* Mixed graph : graph that has both directed and undirected edges

APPLICATIONS

Electronic circuits

+ Printed circuit board
+ Integrated circuit
Transportation networks
+ Highway network
+ Flight network
* Computer networks
+ Local area network
+ Internet
+ Web
Databases

+ Entity-relationship diagram

TERMINOLOGY

* End vertices (or endpoints) of an edge
+U and V are the endpoints of a
* Edges incident on a vertex
$+\mathrm{a}, \mathrm{d}$, and b are incident on V
* Adjacent vertices
$+U$ and V are adjacent
* Degree of a vertex
$+\operatorname{deg}(X)=5$; X has degree 5
* Parallel edges (multiple edges)
+ h and i are parallel edges
+ Edges are collections (not sets)
* Self-loop
+j is a self-loop

outgoing edges of a vertex:
+ directed edges whose origin is that vertex.
incoming edges of a vertex:
+ directed edges whose destination is that vertex.
in-degree \& out-degree of a vertex v
+ the number of the incoming and outgoing edges of v,
+ Denoted indeg(v) and outdeg(v)

TERMINOLOGGY (CONT.)

Path

+ sequence of alternating vertices and edges
+ begins with a vertex
+ ends with a vertex
+ each edge is preceded and followed by its endpoints
* Simple path
+ path such that all its vertices and edges are distinct
* Examples
$+P_{1}=(V, b, X, h, Z)$ is a simple path
$+P_{2}=(U, c, W, e, X, g, Y, f, W, d, V)$ is a path that is not simple

* Graphs are said to be simple if they do not have parallel edges or selfloops
* Most graphs are simple; we will assume that a graph is simple unless otherwise specified

TERMINOLOGY (CONT.)

Cycle

+ circular sequence of alternating vertices and edges
+ each edge is preceded and followed by its endpoints
* Simple cycle
+ cycle such that all its vertices and edges are distinct, except
 for the first and the last
* Examples
$\left.+C_{1}=(V, b, X, g, Y, f, W, c, U, a\lrcorner,\right)$ is a simple cycle
$\left.+C_{2}=(U, c, W, e, X, g, Y, f, W, d, V, a\lrcorner,\right)$ is a cycle that is not simple

TERMINOLOGGY (CONT.)

Given vertices u and v of a (directed) graph G,

* u reaches v, and that v is reachable from u, if G has a (directed) path from u to v.
* reachability:
+ undirected graph reachability is symmetric, that is to say, u reaches v if an only if v reaches u.
+ directed graph reachabilityis asymmetric, it is possible that u reaches v but v does not reach u,

SUBGRAPHS

* A subgraph S of a graph G is a graph such that
+ The vertices of S are a subset of the vertices of G
+ The edges of S are a subset of the edges of G
A spanning subgraph of G is a subgraph that contains all the vertices of G

Subgraph

Spanning subgraph

CONNECTIVITY

* A graph is connected if, for any two vertices, there is a path between them.
* A directed graph G is strongly connected if for any two vertices u and v of G, u reaches v and v reaches u.
* A connected component of a graph G is a maximal connected subgraph of G

Connected graph

Non connected graph with two connected components

TREES AND FORESTS,

* A (free) tree is an undirected graph T such that
+T is connected
T has no cycles
This definition of tree is
different from the one of a rooted tree
* A forest is an undirected graph without cycles
* The connected components of a forest are trees

Forest

SPANNING TREES AND FORESTS

* A spanning tree of a connected graph is a spanning subgraph that is a tree
* A spanning tree is not unique unless the graph is a tree
A spanning forest of a graph is a spanning subgraph that is a forest

Graph

Spanning tree

PROPERTIES

Property 1: If G is a graph with m edges and vertex set V, then

$$
\sum_{v \mathrm{in} V} \operatorname{deg}(v)=2 m
$$

Proof: each edge is counted twice
Property 2: If G is a directed graph with m edges and vertex set V, then

$$
\sum_{v \text { in } V} \operatorname{indeg}(v)=\sum_{v \text { in } V} \operatorname{outdeg}(v)=m
$$

Property 3: Let G be a simple graph with n vertices and m edges. If G is undirected, then

$$
m \leq n(n-1) / 2
$$

Proof: each vertex has degree at most ($n-1$)
$=>$ A simple graph with n vertices has $O\left(n^{2}\right)$ edges.
© 2014 Goodrich, Tamassia, Goldwasser

Notation

\boldsymbol{n}
\boldsymbol{m}
$\operatorname{deg}(\boldsymbol{v})$
number of vertices
degree of vertex \boldsymbol{v}

Let G be an undirected graph

* If G is connected, then $m \geq$ $n-1$.
If G is a tree, then $m=n-1$.
If G is a forest, then $m \leq n-1$.

VERTICES AND EDGES

A graph is a collection of vertices and edges. We model the abstraction as a combination of three data types: Vertex, Edge, and Graph.
A Vertex is a lightweight object that stores an arbitrary element provided by the user (e.g., an airport code)

+ We assume it supports a method, element(), to retrieve the stored element.
An Edge stores an associated object (e.g., a flight number, travel distance, cost), retrieved with the element() method.

either

undirected or directed
numVertices(): Returns the number of vertices of the graph.
vertices(): Returns an iteration of all the vertices of the graph.
numEdges(): Returns the number of edges of the graph.
edges(): Returns an iteration of all the edges of the graph.
getEdge (u, v) : Returns the edge from vertex u to vertex v, if one exists; otherwise return null. For an undirected graph, there is no difference between $\operatorname{getEdge}(u, v)$ and getEdge (v, u).
endVertices (e) : Returns an array containing the two endpoint vertices of edge e. If the graph is directed, the first vertex is the origin and the second is the destination.
opposite (v, e) : For edge e incident to vertex v, returns the other vertex of the edge; an error occurs if e is not incident to v.
outDegree (v) : Returns the number of outgoing edges from vertex v.
inDegree(v): Returns the number of incoming edges to vertex v. For an undirected graph, this returns the same value as does outDegree (v).
outgoingEdges (v) : Returns an iteration of all outgoing edges from vertex v.
incomingEdges (v) : Returns an iteration of all incoming edges to vertex v. For an undirected graph, this returns the same collection as does outgoingEdges (v).
insertVertex (x) : Creates and returns a new Vertex storing element x.
insertEdge (u, v, x) : Creates and returns a new Edge from vertex u to vertex v, storing element x; an error occurs if there already exists an edge from u to v.
removeVertex(v): Removes vertex v and all its incident edges from the graph. removeEdge (e) : Removes edge e from the graph.

DATA STRUCTURES FOR GRAPHS

* In an edge list, we maintain an unordered list of all edges.
+ This minimally suffices, but there is no efficient way to locate a particular edge (u, v), or the set of all edges incident to a vertex v.
In an adjacency list, we additionally maintain, for each vertex, a separate list containing those edges that are incident to the vertex. This organization allows us to more efficiently find all edges incident to a given vertex.
An adjacency map is similar to an adjacency list, but the secondary container of all edges incident to a vertex is organized as a map, rather than as a list, with the adjacent vertex serving as a key.
+ This allows more efficient access to a specific edge (u, v), for example, in $O(1)$ expected time with hashing.
* An adjacency matrix provides worst-case $O(1)$ access to a specific edge (u, v) by maintaining an $n \times n$ matrix, for a graph with n vertices.

Each slot is dedicated to storing a reference to the edge (u, v) for a particular pair of vertices u and v; if no such edge exists, the slot will store null.

DATA STRUCTURES FOR GRAPHS: EDGE LIST

* All vertex objects are stored in an unordered list V, and all edge objects are stored in an unordered list E.
* Components:

Vertex object
\times reference to element v, to support getElement()
\times reference to position in vertex sequence for efficientl. removed
Edge object
reference to element e, to support getElement() References to the origin vertex object \& destination vertex object, to support endVertices(e) and oppositє e).
\times reference to position in edge sequence sequence for efficiently removed

+ Vertex sequence
sequence of vertex objects
Edge sequence

sequence of edge objects
space usage is $O(n+m)$

PERFORMANCE OF THE EDGE LISTT STTRUCTURE

$$
\text { space usage is } \alpha(n+m)
$$

Method	Running Time
numVertices($),$ numEdges($O(1)$
vertices ()	$O(n)$
edges ()	$O(m)$
getEdge (u, v), outDegree (v), outgoingEdges (v)	$O(m)$
insertVertex (x), insertEdge (u, v, x), removeEdge (e)	$O(1)$
removeVertex (v)	$O(m)$

Exhaustive inspection of all edges needed.
when a vertex v is removed from the graph, all edges incident to v must also be removed

RATA STRUCTURES FOR GRAPHS; ADJ ACENCY LIST

* Adds extra information to the edge list structure that supports direct access to the incident edges
+ For each vertex v, we maintain a
 collection $I(v)$, called incidence collection of v
* Components:
+ Incidence sequence for each vertex
sequence of references to edge objects of incident edges
Augmented edge objects references to associated positions in incidence sequences of end vertices

PERFORMANCE OF THE ARJACENCY LIST STTRUCTURE

ádjacency list $I_{\text {out }}(V)$

assuming that the primary collection V and E, and all secondary collections $/(v)$ are implemented with doubly linked lists.

using $O(n+m)$ space

Method	Running Time
numVertices (), numEdges ()	$O(1)$
vertices ()	$O(n)$
edges ()	$O(m)$
getEdge (u, v)	$O(\min (\operatorname{deg}(u), \operatorname{deg}(v)))$
outDegree (v), inDegree (v)	$O(1)$
outgoingEdges (v), incomingEdges (v)	$O(\operatorname{deg}(v))$
insertVertex (x), insertEdge (u, v, x)	$O(1)$
removeEdge (e)	$O(1)$
removeVertex (v)	$O(\operatorname{deg}(v))$

search through either $/(u)$ or $/(v)$
based on use of $/(v)$.

DATA STRUCTURES FOR GRAPHS: ADJ ACENCY MAP

use a hash-based map to implement l(v) for each vertex v.
let the opposite endpoint of each incident edge serve as a key in the map, with the edge structure serving as the value getEdge(u, v) method can be implemented in expected $O(1)$ time
space usage is $\alpha n+m)$

DATA STRUCTURES FOR GRAPHS: ADJ ACENCY MATRIX

* adjacency matrix A allows us to locate an edge between a given pair of vertices in worst-case O(1) time.
x cell $A[i][j]$ holds a reference to the edge (u, v), if it exists, where u is the vertex with index i
$\left.O n^{2}\right)$ space usage and v is the vertex with index j
* Edge list structure
* Augmented vertex objects
+ Integer key (index) associated with vertex
* 2D-array adjacency array
+ Reference to edge object for adjacent verti ces
+ Null for non nonadjacent vertices
* The "old fashioned" version just has 0 for no e dge and 1 for edge

PERFORMANCE: SIMPLE GRAPH

Method	Edge List	Adj. List	Adj. Map	Adj. Matrix
numVertices ()	$O(1)$	$O(1)$	$O(1)$	$O(1)$
numEdges ()	$O(1)$	$O(1)$	$O(1)$	$O(1)$
vertices($)$	$O(n)$	$O(n)$	$O(n)$	$O(n)$
edges ()	$O(m)$	$O(m)$	$O(m)$	$O(m)$
getEdge (u, v)	$O(m)$	$O\left(\min \left(d_{u}, d_{v}\right)\right)$	$O(1)$ exp.	$O(1)$
outDegree (v) inDegree (v)	$O(m)$	$O(1)$	$O(1)$	$O(n)$
outgoingEdges (v) incomingEdges (v)	$O(m)$	$O\left(d_{v}\right)$	$O\left(d_{v}\right)$	$O(n)$
insertVertex (x)	$O(1)$	$O(1)$	$O(1)$	$O\left(n^{2}\right)$
removeVertex (v)	$O(m)$	$O\left(d_{v}\right)$	$O\left(d_{v}\right)$	$O\left(n^{2}\right)$
insertEdge (u, v, x)	$O(1)$	$O(1)$	$O(1)$ exp.	$O(1)$
removeEdge (e)	$O(1)$	$O(1)$	$O(1)$ exp.	$O(1)$

adjacency matrix uses $O\left(n^{2}\right)$ space, while all other structures use

JAVA IMPLEMENTATION OF ADJACENCY MAP

* Positional lists to represent each of the primary lists V and E use a hash-based map to represent the secondary incidence map I(v) for each vertex vin V
+ each vertex maintains two different map references: outgoing and incoming.
+ Directed graphs: initialized to two distinct map instances, representing $l_{\text {out }}(v)$ and $\operatorname{lin}^{(}(v)$, respectively.
+ Undirected graph: assign both outgoing and incoming as aliases to a single map instance.
* For details of the code: please look at the book.

GRAPH TRAVERSALS; DEPTH-FIRST SEARCH

GRAPH TRAVERSAL

* A traversal is a systematic procedure for exploring a graph by examining all of its vertices and edges.
* A traversal is efficient if it visits all the vertices and edges in time proportional to their number, that is, in linear time.
* We will look at two efficient graph traversal algorithms
+ depth-first search (DFS)
+ breadth-first search (BFS)

REPTH-FIRST SEARCH

* A DFS traversal of a graph G
+ Visits all the vertices and edges of G
+ Determines whether G is connected
+ Computes the connected components of G
+ Computes a spanning forest of G
The DFS process naturally identifies what is known as the depth-first search tree rooted at a starting vertex s.

DFS on a graph with n vertices and m edges takes
$O(n+m)$ time
DFS can be further extended to solve other graph problems

Find and report a path between two given vertices
Find a cycle in the graph
Depth-first search is to graphs what Euler tour is to binary trees

DFS ALGORITHM FROM A VERTEX

Algorithm $\operatorname{DFS}(G, u)$:
Input: A graph G and a vertex u of G
Output: A collection of vertices reachable from u, with their discovery edges Mark vertex u as visited.
for each of u 's outgoing edges, $e=(u, v)$ do
if vertex v has not been visited then
Record edge e as the discovery edge for vertex v. Recursively call DFS(G, v).

JAVA IMPLEMENTATION

```
/** Performs depth-first search of Graph g starting at Vertex u. */
public static \(<\mathrm{V}, \mathrm{E}>\) void \(\mathrm{DFS}(\mathrm{Graph}<\mathrm{V}, \mathrm{E}>\mathrm{g}\), Vertex \(<\mathrm{V}>\mathrm{u}\),
    Set<Vertex<V>> known, Map<Vertex<V>,Edge<E>> forest) \{
    known.add(u); // u has been discovered
    for \((\) Edge \(<\mathrm{E}>\mathrm{e}:\) g.outgoingEdges( u\()\) ) \{ // for every outgoing edge from u
        Vertex \(<\mathrm{V}>\mathrm{v}=\mathrm{g}\).opposite( \(\mathrm{u}, \mathrm{e}\) );
        if (!known.contains(v)) \{
        forest.put(v, e);
    // \(e\) is the tree edge that discovered \(v\)
        DFS(g, v, known, forest); // recursively explore from v
        \}
    \}
\}
```

Data Structures Abstraction and Design Using J ava, 2nd Edition by Elliot B. Koffman \& Paul A. T. Wolfgang, Wiley, 2010

Example of a Depth-First Search

Example of a Depth-First Search

 (cont.)

Discovery (Visit) order: 0

Finish order:

unvisited

0 being visited

Example of a Depth-First Search

 (cont.)
Choose an

adjacent vertex that is not being visited

Discovery (Visit) order: 0

Finish order:

0 being visited

Example of a Depth-First Search

 (cont.)

Discovery (Visit) order: 0, 1

Finish order:

0 being visited

Example of a Depth-First Search

 (cont.)

Discovery (Visit) order: 0, 1, 3

Finish order:

unvisited

0 being visited

Example of a Depth-First Search

 (cont.)

Discovery (Visit) order: 0, 1, 3

Finish order:

unvisited

0 being visited

Example of a Depth-First Search

 (cont.)

Discovery (Visit) order: 0, 1, 3, 4

Finish order:

Example of a Depth-First Search

 (cont.)

Discovery (Visit) order: 0, 1, 3, 4

Finish order:

0 being visited

Example of a Depth-First Search

 (cont.)

Discovery (Visit) order: 0, 1, 3, 4

Finish order:
 4

0 being visited

Example of a Depth-First Search

 (cont.)Return from the recursion to 3; all adjacent nodes to 3 are being visited

Finish order:
 4

0 being visited

Example of a Depth-First Search

 (cont.)

Finish order:

4, 3
unvisited

0 being visited

Example of a Depth-First Search

 (cont.)Return from the recursion to 1

Finish order:

4, 3
unvisited

0 being visited

Example of a Depth-First Search

 (cont.)All vertices
adiacent to 1 are being visited

Finish order:

4, 3
unvisited

0 being visited

Example of a Depth-First Search

 (cont.)

Finish order:

4, 3, 1
unvisited

0 being visited

Example of a Depth-First Search

 (cont.)Return from the
recursion to 0

Finish order:

4, 3, 1
unvisited

0 being visited

Example of a Depth-First Search

 (cont.)

Finish order:

4, 3, 1
unvisited

0 being visited

Example of a Depth-First Search

 (cont.)

Discovery (Visit) order:
0, 1, 3, 4, 2
Finish order:

4, 3, 1

0 being visited

Example of a Depth-First Search

 (cont.)5 is adjacent to 2
and is not being
visited

Discovery (Visit) order:
0, 1, 3, 4, 2
Finish order:

4, 3, 1

0 being visited

Example of a Depth-First Search

 (cont.)5 is adjacent to 2
and is not being
visited

Discovery (Visit) order:
$0,1,3,4,2,5$
Finish order:

4, 3, 1

0 being visited

Example of a Depth-First Search

 (cont.)6 is adjacent to 5
and is not being
visited

Discovery (Visit) order:
$0,1,3,4,2,5$
Finish order:

4, 3, 1

0 being visited

Example of a Depth-First Search

 (cont.)6 is adjacent to 5
and is not being
visited

Discovery (Visit) order:
$0,1,3,4,2,5,6$
Finish order:

4, 3, 1

0 being visited

Example of a Depth-First Search

 (cont.)There are no vertices adiacent to 6 not being visited; mark 6 as visited

Discovery (Visit) order:
0, 1, 3, 4, 2, 5, 6
Finish order:

4, 3, 1

0 being visited

Example of a Depth-First Search

(cont.)

There are no vertices adjacent to 6 not being visited; mark 6 as visited

Discovery (Visit) order:
0, 1, 3, 4, 2, 5, 6
Finish order:

4, 3, 1, 6

Example of a Depth-First Search

 (cont.)Return from the recursion to 5

Finish order:

4, 3, 1, 6
unvisited

Example of a Depth-First Search

 (cont.)

Finish order:

4, 3, 1, 6
unvisited

0 being visited

Example of a Depth-First Search

 (cont.)

Finish order:

4, 3, 1, 6, 5
unvisited

0 being visited

Example of a Depth-First Search

 (cont.)Return from the recursion to 2

Finish order:

4, 3, 1, 6, 5
unvisited
0
being visited

Example of a Depth-First Search

 (cont.)

Finish order:

4, 3, 1, 6, 5
unvisited

0 being visited

Example of a Depth-First Search

 (cont.)

Finish order:

4, 3, 1, 6, 5, 2
unvisited

0 being visited

Example of a Depth-First Search

 (cont.)Return from the
recursion to 0

Finish order:

4, 3, 1, 6, 5, 2
unvisited
0
being visited

Example of a Depth-First Search

 (cont.)| There are no nodes |
| :---: |
| adjacent to 0 not |
| being visited |

Finish order:

4, 3, 1, 6, 5, 2
unvisited
0
being visited

Example of a Depth-First Search

 (cont.)

Discovery (Visit) order:
$0,1,3,4,2,5,6,0$
Finish order:
4, 3, 1, 6, 5, 2, 0

unvisited

PROPERTIES OF DFS

Property 1
$\operatorname{DFS}(G, v)$ visits all the v ertices and edges in the connected component o $f v$
Property 2
The discovery edges lab eled by $\operatorname{DFS}(G, v)$ form a spanning tree of the c onnected component of V

ANALYSIS OF DFS

Setting/getting a vertex/edge label takes $\boldsymbol{O}(1)$ time

* Each vertex is labeled twice
+ once as UNEXPLORED
+ once as VISITED (Finished)
* Each edge is labeled twice
+ once as UNEXPLORED
+ once as DISCOVERY or BACK
* Method incidentEdges is called once for each vertex
* DFS runs in $\boldsymbol{O}(\boldsymbol{n}+\boldsymbol{m})$ time provided the graph is represented by the adjacency list structure
+ Recall that $\sum_{v} \operatorname{deg}(v)=2 \boldsymbol{m}$

GRAPH TRAVERSALS; BREARTH-FIRST SEARCH

BREADTH-FIRST SEARCH

A BFS traversal of a graph G

Visits all the vertices and edges of G

+ Determines whether G is connected
+ Computes the connected components of G
+ Computes a spanning forest of G
* BFS on a graph with \boldsymbol{n} vertices and m edges takes $\mathbf{O}(\boldsymbol{n}+\boldsymbol{m})$ time BFS can be further extended to solve other graph problems
+ Find and report a path with the minimum number of edges between two given vertices
+ Find a simple cycle, if there is one

BFS ALGORITHM

The algorithm uses a mechanism for setting and getting "labels" of vertices and edges

Algorithm BFS(G)

Input graph G
Output labeling of the edges
and partition of the vertices of G
for all $u \in$ G.vertices()
setLabel(u, UNEXPLORED)
for all $e \in$ G.edges()
setLabel(e, UNEXPLORED)
for all $v \in$ G.vertices()
if $\operatorname{getLabel}(v)=$ UNEXPLORED
BFS(G, v)

```
Algorithm \(\operatorname{BFS}(G, s)\)
    \(L_{0} \leftarrow\) new empty sequence
    \(L_{0}\).addLast(s)
    setLabel(s, VISITED)
    \(i \leftarrow 0\)
    while \(\neg L_{i}\) isEmpty()
        \(L_{i+1} \leftarrow\) new empty sequence
        for all \(v \in L_{i}\). elements()
            for all \(e \in\) G.incidentEdges(v)
            if \(\operatorname{getLabel}(e)=\) UNEXPLORED
            \(w \leftarrow\) opposite (v,e)
            if \(\operatorname{getLabel}(w)=\) UNEXPLORED
                setLabel(e, DISCOVERY)
                setLabel(w, VISITED)
                    \(L_{i+1}\).addLast( \(w\) )
            else
                    setLabel(e, CROSS)
    \(i \leftarrow i+1\)
```


JAVA IMPLEMENTATION

```
    1 /** Performs breadth-first search of Graph g starting at Vertex u. */
```

 2 public static \(<\mathrm{V}, \mathrm{E}>\) void \(\mathrm{BFS}(\mathrm{Graph}<\mathrm{V}, \mathrm{E}>\mathrm{g}\), Vertex \(<\mathrm{V}>\mathrm{s}\),
 Set \(<\) Vertex \(<\mathrm{V} \gg\) known, Map \(<\) Vertex \(<\mathrm{V}>\),Edge \(<\mathrm{E} \gg\) forest) \{
 PositionalList \(<\) Vertex \(<\mathrm{V} \gg\) level \(=\) new LinkedPositionalList \(<>(\));
 known.add(s);
 level.addLast(s);
 // first level includes only s
 while (!level.isEmpty()) \{
 PositionalList<Vertex<V>> nextLevel \(=\) new LinkedPositionalList \(<>()\);
 for (Vertex \(<\mathrm{V}>\mathrm{u}\) : level)
 for (Edge \(<\mathrm{E}>\mathrm{e}\) : g. outgoingEdges(u)) \{
 Vertex \(<\mathrm{V}>\mathrm{v}=\mathrm{g}\).opposite(\(\mathrm{u}, \mathrm{e}\));
 if (!known.contains(v)) \{
 known.add(v);
 forest.put(v, e);
 // \(e\) is the tree edge that discovered \(v\)
 nextLevel.addLast(v); //v will be further considered in next pass
 \}
 \}
 level \(=\) nextLevel; \(\quad / /\) relabel 'next' level to become the current

Example of a Breadth-First Search

0 unvisited
0
identified

Example of a Breadth-First Search

 (cont.)

0
identified

Example of a Breadth-First Search

 (cont.)While visiting it, we
can identify its
adiacent nodes

0
identified

Example of a Breadth-First Search

 (cont.)> We identify its adjacent nodes and add them to a queue of identified nodes

Visit sequence:
0

0
identified

Example of a Breadth-First Search

 (cont.)> We identify its adjacent nodes and add them to a queue of identified nodes

Queue:
1, 3
Visit sequence:
0

Example of a Breadth-First Search

(cont.)

Queue:
1, 3
Visit sequence:
0

0
identified

Example of a Breadth-First Search

(cont.)

Queue:
1, 3
Visit sequence:
0

Example of a Breadth-First Search

(cont.)

Visit the first node in the queve, 1

Queue:
1, 3
Visit sequence:
0

Example of a Breadth-First Search

 (cont.)Visit the first node in the queve, 1

Queue:
3
Visit sequence:
0, 1

Example of a Breadth-First Search

 (cont.)| Select all its |
| :---: |
| adjacent nodes that |
| have not been |
| visited or identified |

Queue:
3
Visit sequence:
0, 1

Example of a Breadth-First Search

 (cont.)Select all its
adjacent nodes that
have not been
visited or identified

Queue:
3, 2, 4, 6, 7
Visit sequence:
0, 1

Example of a Breadth-First Search

 (cont.)| Now that we are |
| :---: |
| done with 1, we |
| color it as visited |

Queue:
3, 2, 4, 6, 7
Visit sequence:
0, 1

0
identified

Example of a Breadth-First Search

 (cont.)and then visit the
next node in the
queue, 3 (which
was identified in
the first selection)

Queue:
3, 2, 4, 6, 7
Visit sequence:
0, 1

0
identified

Example of a Breadth-First Search

 (cont.)and then visit the next node in the queue, 3 (which was identified in the first selection)

Queue:
2, 4, 6, 7
Visit sequence:
0, 1, 3

0
identified

Example of a Breadth-First Search

 (cont.)3 has two adjacent vertices. 0 has already been
visited and 2 has already been
identified. We are done with 3

Queue:

2, 4, 6, 7
Visit sequence:
0, 1, 3

0
identified

Example of a Breadth-First Search

 (cont.)The next node in the queve is 2

Queue:
2, 4, 6, 7
Visit sequence:
0, 1, 3

Example of a Breadth-First Search

 (cont.)The next node in the queve is 2

Queue:
4, 6, 7
Visit sequence:
0, 1, 3, 2

Example of a Breadth-First Search

 (cont.)```
8 and 9 are the
 only adjacent
 vertices not
already visited or
 identified
```

Queue:
4, 6, 7, 8, 9
Visit sequence:
0, 1, 3, 2


0
identified

## Example of a Breadth-First Search

 (cont.)

Queue:
$6,7,8,9$
Visit sequence:
0, 1, 3, 2, 4


0
identified

## Example of a Breadth-First Search

## (cont.)



Queue:
$6,7,8,9,5$
Visit sequence:
0, 1, 3, 2, 4


## Example of a Breadth-First Search

 (cont.)

Queue:
7, 8, 9, 5
Visit sequence:
0, 1, 3, 2, 4, 6


0
identified

## Example of a Breadth-First Search

 (cont.)

Queue:
7, 8, 9, 5
Visit sequence:
0, 1, 3, 2, 4, 6


0
identified

## Example of a Breadth-First Search

 (cont.)

Queue:
8, 9, 5
Visit sequence:
0, 1, 3, 2, 4, 6, 7


## Example of a Breadth-First Search

 (cont.)

Queue:
8, 9, 5
Visit sequence:
0, 1, 3, 2, 4, 6, 7


## Example of a Breadth-First Search

 (cont.)

Queue:
8, 9, 5
Visit sequence:
0, 1, 3, 2, 4, 6, 7


## Example of a Breadth-First Search

 (cont.)

Queue:
9, 5
Visit sequence:
0, 1, 3, 2, 4, 6, 7, 8


0
identified

## Example of a Breadth-First Search

 (cont.)

Queue: 5

Visit sequence:
0, 1, 3, 2, 4, 6, 7, 8, 9


0
identified

## Example of a Breadth-First Search

 (cont.)

Queue: 5

Visit sequence:
$0,1,3,2,4,6,7,8,9$


0
identified

## Example of a Breadth-First Search

 (cont.)

Queue:
empty
Visit sequence:
$0,1,3,2,4,6,7,8,9,5$


0 unvisited
0
identified

## Example of a Breadth-First Search

 (cont.)

Queue: empty

Visit sequence:
$0,1,3,2,4,6,7,8,9,5$


0
identified

## PROPERTIES

Notation
$G_{s}$ : connected component of $s$ Property 1
$\operatorname{BFS}(G, s)$ visits all the vertices and edges of $G_{s}$
Property 2


The discovery edges labeled by $\boldsymbol{B F}$ $\boldsymbol{S}(\boldsymbol{G}, s)$ form a spanning tree $T_{s}$ of $G_{s}$ Property 3

For each vertex $v$ in $L_{i}$

+ The path of $T_{s}$ from $s$ to $v$ has $i$ edfo es
+ Every path from $s$ to $v$ in $G_{s}$ has at I east $i$ edges



## ANALYSIS

Setting/getting a vertex/edge label takes $\boldsymbol{O}(1)$ time Each vertex is labeled twice

+ once as UNEXPLORED
+ once as VISITED
* Each edge is labeled twice
+ once as UNEXPLORED
+ once as DISCOVERY or CROSS
* Each vertex is inserted once into a sequence $L_{i}$
* Method incidentEdges is called once for each vertex
* BFS runs in $\boldsymbol{O}(\boldsymbol{n}+\boldsymbol{m})$ time provided the graph is repre sented by the adjacency list structure
+ Recall that $\sum_{v} \operatorname{deg}(v)=2 \boldsymbol{m}$


## APPLICATIONS

* Using the template method pattern, we can specialize the BFS traversal of a graph $G$ to solve the following problems in $\boldsymbol{O}(\boldsymbol{n}+\boldsymbol{m})$ time
+ Compute the connected components of $G$
+ Compute a spanning forest of $G$
+ Find a simple cycle in $\boldsymbol{G}$, or report that $G$ is a forest + Given two vertices of $\boldsymbol{G}$, find a path in $\boldsymbol{G}$ between them with the minimum number of edges, or report that no such path exists

