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GRAPHS (CH14) 

Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, 
R. Tamassia, and M. H. Goldwasser, Wiley, 2014 
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GRAPHS 
 A graph is a pair (V, E), where 

 V is a set of nodes, called vertices (aka nodes) 
 E is a collection of pairs of vertices, called edges (aka arcs) 
 Vertices and edges are positions and store elements 

 Example: 
 A vertex represents an airport and stores the three-letter airport 

code 
 An edge represents a flight route between two airports and stor

es the mileage of the route 
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EDGE TYPES 

 Directed edge 
 ordered pair of vertices (u,v) 
 first vertex u is the origin 
 second vertex v is the destination 
 e.g., a flight 

 Undirected edge 
 unordered pair of vertices (u,v) 
 e.g., a flight route 

 Directed graph 
 all the edges are directed 
 e.g., route network 

 Undirected graph 
 all the edges are undirected 
 e.g., flight network 

 Mixed graph : graph that has 
both directed and undirected 
edges 

Graphs 
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APPLICATIONS 

 Electronic circuits 
 Printed circuit board 
 Integrated circuit 

 Transportation networks 
 Highway network 
 Flight network 

 Computer networks 
 Local area network 
 Internet 
 Web 

 Databases 
 Entity-relationship diagram 

Graphs 
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TERMINOLOGY 

 End vertices (or endpoints) of an 
edge 
 U and V are the endpoints of a 

 Edges incident on a vertex 
 a, d, and b are incident on V 

 Adjacent vertices 
 U and V are adjacent 

 Degree of a vertex 
 deg(X)= 5;  X has degree 5  

 Parallel edges (multiple edges)  
 h and i are parallel edges 
 Edges are collections (not sets) 

 Self-loop 
 j is a self-loop 

 outgoing edges of a vertex:  
 directed edges whose origin is 

that vertex.  
 incoming edges of a vertex: 

 directed edges whose 
destination is that vertex.  

 in-degree  & out-degree of a vertex v  
 the number of the incoming and 

outgoing edges of v,  
 Denoted indeg(v) and outdeg(v) 
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TERMINOLOGY (CONT.) 

 Path 
 sequence of alternating 

vertices and edges  
 begins with a vertex 
 ends with a vertex 
 each edge is preceded and 

followed by its endpoints 
 Simple path 

 path such that all its vertices 
and edges are distinct 

 Examples 
 P1=(V,b,X,h,Z) is a simple path 
 P2=(U,c,W,e,X,g,Y,f,W,d,V) is a 

path that is not simple 

 Graphs are said to be simple if they 
do not have parallel edges or self-
loops 

 Most graphs are simple; we will 
assume that a graph is simple 
unless otherwise specified 

Graphs 
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TERMINOLOGY (CONT.) 

 Cycle 
 circular sequence of alternating 

vertices and edges  
 each edge is preceded and 

followed by its endpoints 
 Simple cycle 

 cycle such that all its vertices 
and edges are distinct, except 
for the first and the last 

 Examples 
 C1=(V,b,X,g,Y,f,W,c,U,a,↵) is a 

simple cycle 
 C2=(U,c,W,e,X,g,Y,f,W,d,V,a,↵) is 

a cycle that is not simple 
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TERMINOLOGY (CONT.) 

 Given vertices u and v of a 
(directed) graph G,  

 u reaches v, and that v is 
reachable from u, if G has 
a (directed) path from u to 
v.  

 reachability :  
 undirected graph 

reachability is symmetric, 
that is to say, u reaches v if 
an only if v reaches u. 

 directed graph reachability is 
asymmetric, it is possible 
that u reaches v but v does 
not reach u, 

Graphs 
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Depth-First Search 
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SUBGRAPHS 

 A subgraph S of a graph G 
is a graph such that  
 The vertices of S are a subset 

of the vertices of G 
 The edges of S are a subset 

of the edges of G 

 A spanning subgraph of G is 
a subgraph that contains all 
the vertices of G 

Subgraph 

Spanning subgraph 
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Depth-First Search 
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CONNECTIVITY 

 A graph is connected if, 
for any two vertices, there 
is a path between them.  

 A directed graph G is 
strongly connected if for 
any two vertices u and v 
of G, u reaches v and v 
reaches u. 

 A connected component 
of a graph G is a 
maximal connected 
subgraph of G 
 

Connected graph 

Non connected graph with two 
connected components 
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Depth-First Search 
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TREES AND FORESTS 

 A (free) tree is an 
undirected graph T such 
that 
 T is connected 
 T has no cycles 
This definition of tree is 

different from the one of a 
rooted tree 

 A forest is an undirected 
graph without cycles 

 The connected 
components of a forest 
are trees 
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Depth-First Search 
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SPANNING TREES AND FORESTS 

 A spanning tree of a 
connected graph is a 
spanning subgraph that is a 
tree 

 A spanning tree is not unique 
unless the graph is a tree 

 A spanning forest of a graph 
is a spanning subgraph that 
is a forest 

Graph 

Spanning tree 
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PROPERTIES 

Notation 
   n number of vertices 
   m number of edges 
deg(v) degree of vertex v 
 
 
 
 
 

Let G be an undirected graph  
 If G is connected, then m ≥ 

n−1. 
 If G is a tree, then m = n−1. 
 If G is a forest, then m ≤ n−1. 

Property 1: If G is a graph with m edges and 
vertex set V, then 

� 𝐝𝐝𝐝 𝒗
𝒗 𝐢𝐧 𝑽

= 𝟐𝟐 

Proof: each edge is counted twice 
Property 2: If G is a directed graph with m 

edges and vertex set V, then 

� 𝐢𝐢𝐝𝐝𝐝 𝒗
𝒗 𝐢𝐧 𝑽

= � 𝐨𝐨𝐨𝐝𝐝𝐝 𝒗
𝒗 𝐢𝐧 𝑽

= 𝒎 

 
Property 3: Let G be a simple graph with n 

vertices and m edges. If G is undirected, 
then 

  m ≤ n (n - 1)/2 

    Proof: each vertex has degree at most (n - 1) 
 

=> A simple graph with n vertices has O(n2) 
edges. 

Graphs 
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VERTICES AND EDGES 

 A graph is a collection of vertices and edges.  
 We model the abstraction as a combination of three 

data types: Vertex, Edge, and Graph.  
 A Vertex is a lightweight object that stores an 

arbitrary element provided by the user (e.g., an 
airport code) 
 We assume it supports a method, element(), to retrieve the 

stored element.  

 An Edge stores an associated object (e.g., a flight 
number, travel distance, cost), retrieved with the 
element( ) method.  

Graphs 
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GRAPH ADT 
Graphs 
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DATA STRUCTURES FOR GRAPHS 

 In an edge list, we maintain an unordered list of all edges.  
 This minimally suffices, but there is no efficient way to locate a particular 

edge (u,v), or the set of all edges incident to a vertex v. 
 In an adjacency list, we additionally maintain, for each vertex, a 

separate list containing those edges that are incident to the vertex.  
 This organization allows us to more efficiently find all edges incident to a 

given vertex. 
 An adjacency map is similar to an adjacency list, but the secondary 

container of all edges incident to a vertex is organized as a map, 
rather than as a list, with the adjacent vertex serving as a key.  
 This allows more efficient access to a specific edge (u,v), for example, in O(1) 

expected time with hashing. 
 An adjacency matrix provides worst-case O(1) access to a specific 

edge (u,v) by maintaining an n×n matrix, for a graph with n vertices.  
 Each slot is dedicated to storing a reference to the edge (u,v) for a particular 

pair of vertices u and v; if no such edge exists, the slot will store null. 

Graphs 
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DATA STRUCTURES FOR GRAPHS: EDGE LIST 
 All vertex objects are stored in an unordered list V, and 

all edge objects are stored in an unordered list E. 
 Components:  

 Vertex object 
 reference to element v, to support getElement() 
 reference to position in vertex sequence for efficiently 

removed 
 Edge object 

 reference to element e, to support getElement() 
 References to the origin vertex object & destination 

vertex object, to support endVertices(e) and opposite(v, 
e). 

 reference to position in edge sequence sequence for 
efficiently removed 

 Vertex sequence 
 sequence of vertex objects 

 Edge sequence 
 sequence of edge objects 

Graphs 

17 

space usage is O(n+m) 
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PERFORMANCE OF THE EDGE LIST STRUCTURE 

Graphs 
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space usage is O(n+m) 

Exhaustive 
inspection of 

all edges 
needed. 

when a vertex v is 
removed from the 
graph, all edges 

incident to v must 
also be removed 
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DATA STRUCTURES FOR GRAPHS: ADJACENCY LIST 
 Adds extra information to the edge list 

structure that supports direct access to 
the incident edges  
 For each vertex v, we maintain a 

collection I(v), called incidence 
collection of v 

 Components: 
 Incidence sequence for each vertex 

 sequence of references to edge objects of 
incident edges 

 Augmented edge objects 
 references to associated positions in 

incidence sequences of end vertices 

Graphs 
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PERFORMANCE OF THE ADJACENCY LIST STRUCTURE 

Graphs 
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adjacency list Iout(v) assuming that the primary collection V and E, 
and all secondary collections I(v) are 
implemented with doubly linked lists. 

using O(n+m) space 

based on use 
of I(v). 

search through 
either I(u) or 

I(v) 
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DATA STRUCTURES FOR GRAPHS: ADJACENCY MAP 

 use a hash-based map to 
implement I(v) for each vertex 
v. 

 let the opposite endpoint of 
each incident edge serve as a 
key in the map, with the edge 
structure serving as the value 

 getEdge(u, v) method can be 
implemented in expected O(1) 
time 

Graphs 

21 

maps 

values 
keys  

space usage is O(n+m) 



© 2014 Goodrich, Tamassia, Goldwasser 

DATA STRUCTURES FOR GRAPHS: ADJACENCY MATRIX 
 adjacency matrix A allows us to locate an edge 

between a given pair of vertices in worst-case 
O(1) time. 

 cell A[i][ j] holds a reference to the edge (u,v), 
if it exists, where u is the vertex with index i 
and v is the vertex with index j  

 Edge list structure 
 Augmented vertex objects 

 Integer key (index) associated with vertex 
 2D-array adjacency array 

 Reference to edge object for adjacent verti
ces 

 Null for non nonadjacent vertices 
 The “old fashioned” version just has 0 for no e

dge and 1 for edge 
 

Graphs 
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PERFORMANCE: SIMPLE GRAPH  

Graphs 
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adjacency matrix uses O(n2) space, while all other structures use 
O(n+m) space 
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JAVA IMPLEMENTATION OF ADJACENCY MAP 

 Positional lists to represent each of the primary lists V 
and E  

 use a hash-based map to represent the secondary 
incidence map I(v) for each vertex v in V 
 each vertex maintains two different map references: 

outgoing and incoming. 
 Directed graphs: initialized to two distinct map instances, 

representing Iout(v) and Iin(v), respectively.  
 Undirected graph: assign both outgoing and incoming as 

aliases to a single map instance. 

 For details of the code: please look at the book.  

Graphs 
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GRAPH TRAVERSAL 

 A traversal is a systematic procedure for exploring a 
graph by examining all of its vertices and edges. 

 A traversal is efficient if it visits all the vertices and 
edges in time proportional to their number, that is, in 
linear time. 

 We will look at two efficient graph traversal algorithms 
 depth-first search (DFS) 
 breadth-first search (BFS) 

Graphs 

26 
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Depth-First Search 
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DEPTH-FIRST SEARCH 

 A DFS traversal of a graph G  
 Visits all the vertices and 

edges of G 
 Determines whether G is 

connected 
 Computes the connected 

components of G 
 Computes a spanning forest 

of G 

 The DFS process naturally 
identifies what is known 
as the depth-first search 
tree rooted at a starting 
vertex s. 

 DFS on a graph with n 
vertices and m edges takes 
O(n + m ) time 

 DFS can be further 
extended to solve other 
graph problems 
 Find and report a path 

between two given vertices 
 Find a cycle in the graph 

 Depth-first search is to 
graphs what Euler tour is 
to binary trees 
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Depth-First Search 
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DFS ALGORITHM FROM A VERTEX 
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JAVA IMPLEMENTATION 

Depth-First Search 

29 



Example of a Depth-First Search 

0 visited 0 being visited 0 unvisited 

0 

1 
2 

3 4 5 6 

Data Structures Abstraction and Design Using Java, 2nd Edition 
by Elliot B. Koffman &  Paul A. T. Wolfgang, Wiley, 2010 



Example of a Depth-First Search 
(cont.) 

Mark 0 as being 
visited 

0 visited 0 being visited 0 unvisited 

0 

1 
2 

3 4 5 6 
Finish order: 

Discovery (Visit) order: 
0 



Example of a Depth-First Search 
(cont.) 

Choose an 
adjacent vertex 
that is not being 

visited 

0 visited 0 being visited 0 unvisited 

0 

1 
2 

3 4 5 6 
Finish order: 

Discovery (Visit) order: 
0 



Example of a Depth-First Search 
(cont.) 

Choose an 
adjacent vertex 
that is not being 

visited 

0 visited 0 being visited 0 unvisited 

0 

1 
2 

3 4 5 6 
Finish order: 

Discovery (Visit) order: 
0, 1 



Example of a Depth-First Search 
(cont.) 

(Recursively) choose 
an adjacent vertex 

that is not being 
visited 

0 visited 0 being visited 0 unvisited 

0 

1 
2 

3 4 5 6 
Finish order: 

Discovery (Visit) order: 
0, 1, 3 



Example of a Depth-First Search 
(cont.) 

(Recursively) choose 
an adjacent vertex 

that is not being 
visited 

0 visited 0 being visited 0 unvisited 

0 

1 
2 

3 4 5 6 
Finish order: 

Discovery (Visit) order: 
0, 1, 3 



Example of a Depth-First Search 
(cont.) 

0 visited 0 being visited 0 unvisited 

0 

1 
2 

3 4 5 6 

(Recursively) choose 
an adjacent vertex 

that is not being 
visited 

Finish order: 

Discovery (Visit) order: 
0, 1, 3, 4 



Example of a Depth-First Search 
(cont.) 

0 visited 0 being visited 0 unvisited 

0 

1 
2 

3 4 5 6 

There are no 
vertices adjacent to 

4 that are not 
being visited 

Finish order: 

Discovery (Visit) order: 
0, 1, 3, 4 



Example of a Depth-First Search 
(cont.) 

0 visited 0 being visited 0 unvisited 

0 

1 
2 

3 4 5 6 

Mark 4 as visited 

Finish order: 
4 

Discovery (Visit) order: 
0, 1, 3, 4 



Example of a Depth-First Search 
(cont.) 

0 visited 0 being visited 0 unvisited 

0 

1 
2 

3 4 5 6 

Return from the 
recursion to 3; all 
adjacent nodes to 
3 are being visited 

Finish order: 
4 



Example of a Depth-First Search 
(cont.) 

0 visited 0 being visited 0 unvisited 

0 

1 
2 

3 4 5 6 

Mark 3 as visited 

Finish order: 
4, 3 



Example of a Depth-First Search 
(cont.) 

0 visited 0 being visited 0 unvisited 

0 

1 
2 

3 4 5 6 

Return from the 
recursion to 1 

Finish order: 
4, 3 



Example of a Depth-First Search 
(cont.) 

0 visited 0 being visited 0 unvisited 

0 

1 
2 

3 4 5 6 

All vertices 
adjacent to 1 are 

being visited 

Finish order: 
4, 3 



Example of a Depth-First Search 
(cont.) 

0 visited 0 being visited 0 unvisited 

0 

1 
2 

3 4 5 6 

Mark 1 as visited 

Finish order: 
4, 3, 1 



Example of a Depth-First Search 
(cont.) 

0 visited 0 being visited 0 unvisited 

0 

1 
2 

3 4 5 6 

Return from the 
recursion to 0 

Finish order: 
4, 3, 1 



Example of a Depth-First Search 
(cont.) 

0 visited 0 being visited 0 unvisited 

0 

1 
2 

3 4 5 6 

2 is adjacent to 1 
and is not being 

visited 

Finish order: 
4, 3, 1 



Example of a Depth-First Search 
(cont.) 

0 visited 0 being visited 0 unvisited 

0 

1 
2 

3 4 5 6 

2 is adjacent to 1 
and is not being 

visited 

Finish order: 
4, 3, 1 

Discovery (Visit) order: 
0, 1, 3, 4, 2 



Example of a Depth-First Search 
(cont.) 

0 visited 0 being visited 0 unvisited 

0 

1 
2 

3 4 5 6 

5 is adjacent to 2 
and is not being 

visited 

Finish order: 
4, 3, 1 

Discovery (Visit) order: 
0, 1, 3, 4, 2 



Example of a Depth-First Search 
(cont.) 

0 visited 0 being visited 0 unvisited 

0 

1 
2 

3 4 5 6 

5 is adjacent to 2 
and is not being 

visited 

Finish order: 
4, 3, 1 

Discovery (Visit) order: 
0, 1, 3, 4, 2, 5 



Example of a Depth-First Search 
(cont.) 

0 visited 0 being visited 0 unvisited 

0 

1 
2 

3 4 5 6 

6 is adjacent to 5 
and is not being 

visited 

Finish order: 
4, 3, 1 

Discovery (Visit) order: 
0, 1, 3, 4, 2, 5 



Example of a Depth-First Search 
(cont.) 

0 visited 0 being visited 0 unvisited 

0 

1 
2 

3 4 5 6 

6 is adjacent to 5 
and is not being 

visited 

Finish order: 
4, 3, 1 

Discovery (Visit) order: 
0, 1, 3, 4, 2, 5, 6 



Example of a Depth-First Search 
(cont.) 

0 visited 0 being visited 0 unvisited 

0 

1 
2 

3 4 5 6 

There are no 
vertices adjacent to 
6 not being visited; 
mark 6 as visited 

Finish order: 
4, 3, 1 

Discovery (Visit) order: 
0, 1, 3, 4, 2, 5, 6 



Example of a Depth-First Search 
(cont.) 

0 visited 0 being visited 0 unvisited 

0 

1 
2 

3 4 5 6 

There are no 
vertices adjacent to 
6 not being visited; 
mark 6 as visited 

Finish order: 
4, 3, 1, 6 

Discovery (Visit) order: 
0, 1, 3, 4, 2, 5, 6 



Example of a Depth-First Search 
(cont.) 

0 visited 0 being visited 0 unvisited 

0 

1 
2 

3 4 5 6 

Return from the 
recursion to 5 

Finish order: 
4, 3, 1, 6 



Example of a Depth-First Search 
(cont.) 

0 visited 0 being visited 0 unvisited 

0 

1 
2 

3 4 5 6 

Mark 5 as visited 

Finish order: 
4, 3, 1, 6 



Example of a Depth-First Search 
(cont.) 

0 visited 0 being visited 0 unvisited 

0 

1 
2 

3 4 5 6 

Mark 5 as visited 

Finish order: 
4, 3, 1, 6, 5 



Example of a Depth-First Search 
(cont.) 

0 visited 0 being visited 0 unvisited 

0 

1 
2 

3 4 5 6 

Return from the 
recursion to 2 

Finish order: 
4, 3, 1, 6, 5 



Example of a Depth-First Search 
(cont.) 

0 visited 0 being visited 0 unvisited 

0 

1 
2 

3 4 5 6 

Mark 2 as visited 

Finish order: 
4, 3, 1, 6, 5 



Example of a Depth-First Search 
(cont.) 

0 visited 0 being visited 0 unvisited 

0 

1 
2 

3 4 5 6 

Mark 2 as visited 

Finish order: 
4, 3, 1, 6, 5, 2 



Example of a Depth-First Search 
(cont.) 

0 visited 0 being visited 0 unvisited 

0 

1 
2 

3 4 5 6 

Return from the 
recursion to 0 

Finish order: 
4, 3, 1, 6, 5, 2 



Example of a Depth-First Search 
(cont.) 

0 visited 0 being visited 0 unvisited 

0 

1 
2 

3 4 5 6 

There are no nodes 
adjacent to 0 not 

being visited 

Finish order: 
4, 3, 1, 6, 5, 2 



Example of a Depth-First Search 
(cont.) 

0 visited 0 being visited 0 unvisited 

0 

1 
2 

3 4 5 6 

Mark 0 as visited 

Finish order: 
4, 3, 1, 6, 5, 2, 0 

Discovery (Visit) order: 
0, 1, 3, 4, 2, 5, 6, 0 
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Depth-First Search 

62 

PROPERTIES OF DFS 

Property 1 
 DFS(G, v) visits all the v

ertices and edges in the 
connected component o
f v 

Property 2 
 The discovery edges lab

eled by DFS(G, v) form 
a spanning tree of the c
onnected component of 
v 

D B 

A 

C 

E 
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Depth-First Search 

63 

ANALYSIS OF DFS 

 Setting/getting a vertex/edge label takes O(1) time 
 Each vertex is labeled twice  

 once as UNEXPLORED 
 once as VISITED (Finished) 

 Each edge is labeled twice 
 once as UNEXPLORED 
 once as DISCOVERY or BACK 

 Method incidentEdges is called once for each vertex 
 DFS runs in O(n + m) time provided the graph is 

represented by the adjacency list structure 
 Recall that Σv deg(v) = 2m 



Breadth-First Search 

64 

GRAPH TRAVERSALS:  
BREADTH-FIRST SEARCH 

C B 

A 

E 

D 

L0 

L1 

F 
L2 
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Breadth-First Search 

65 

BREADTH-FIRST SEARCH 

 A BFS traversal of a 
graph G  
 Visits all the vertices and 

edges of G 
 Determines whether G is 

connected 
 Computes the connected 

components of G 
 Computes a spanning 

forest of G 

 BFS on a graph with n 
vertices and m edges 
takes O(n + m ) time 

 BFS can be further 
extended to solve other 
graph problems 
 Find and report a path 

with the minimum 
number of edges 
between two given 
vertices  

 Find a simple cycle, if 
there is one 
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Breadth-First Search 

66 

BFS ALGORITHM 

 The algorithm uses a mechanism 
for setting and getting “labels” of 
vertices and edges 

Algorithm BFS(G, s) 
 L0 ← new empty sequence 

L0.addLast(s) 
setLabel(s, VISITED) 
i ← 0  
while  ¬Li.isEmpty() 
 Li +1 ← new empty sequence  
 for all  v ∈ Li.elements()  
  for all  e ∈ G.incidentEdges(v)  
   if  getLabel(e) = UNEXPLORED 
    w ← opposite(v,e) 
    if  getLabel(w) = UNEXPLORED 
     setLabel(e, DISCOVERY) 
     setLabel(w, VISITED) 
     Li +1.addLast(w) 
    else 
     setLabel(e, CROSS) 
 i ← i +1 

Algorithm BFS(G) 
 Input graph G 
 Output labeling of the edges  
  and partition of the  
  vertices  of G  

for all  u ∈ G.vertices() 
 setLabel(u, UNEXPLORED) 
for all  e ∈ G.edges() 
 setLabel(e, UNEXPLORED) 
for all  v ∈ G.vertices() 
 if  getLabel(v) = UNEXPLORED 
  BFS(G, v) 
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Example of a Breadth-First Search 

0 

2 

3 1 

9 8 

4 

7 

6 

5 

0 visited 0 identified 0 unvisited 

Data Structures Abstraction and Design Using Java, 2nd Edition 
by Elliot B. Koffman &  Paul A. T. Wolfgang, Wiley, 2010 



Example of a Breadth-First Search 
(cont.) 

0 

2 

3 1 

9 8 

4 

7 

6 

5 

Identify the start 
node 

0 visited 0 identified 0 unvisited 



Example of a Breadth-First Search 
(cont.) 

0 

2 

3 1 

9 8 

4 

7 

6 

5 

While visiting it, we 
can identify its 
adjacent nodes 

0 visited 0 identified 0 unvisited 



Example of a Breadth-First Search 
(cont.) 

0 

2 

3 1 

9 8 

4 

7 

6 

5 We identify its 
adjacent nodes 

and add them to a 
queue of identified 

nodes 

Visit sequence: 
0 

0 visited 0 identified 0 unvisited 



Example of a Breadth-First Search 
(cont.) 

0 

2 

3 1 

9 8 

4 

7 

6 

5 

Visit sequence: 
0 

Queue: 
1, 3 

0 visited 0 identified 0 unvisited 

We identify its 
adjacent nodes 

and add them to a 
queue of identified 

nodes 



Example of a Breadth-First Search 
(cont.) 

0 

2 

3 1 

9 8 

4 

7 

6 

5 

Visit sequence: 
0 

Queue: 
1, 3 

0 visited 0 identified 0 unvisited 

We color the node 
as visited 



Example of a Breadth-First Search 
(cont.) 

0 

2 

3 1 

9 8 

4 

7 

6 

5 

Visit sequence: 
0 

Queue: 
1, 3 

The queue 
determines which 
nodes to visit next 

0 visited 0 identified 0 unvisited 



Example of a Breadth-First Search 
(cont.) 

0 

2 

3 1 

9 8 

4 

7 

6 

5 

Visit the first node 
in the queue, 1 

Visit sequence: 
0 

Queue: 
1, 3 

0 visited 0 identified 0 unvisited 



Example of a Breadth-First Search 
(cont.) 

0 

2 

3 1 

9 8 

4 

7 

6 

5 

Visit sequence: 
0, 1 

Queue: 
3 

Visit the first node 
in the queue, 1 

0 visited 0 identified 0 unvisited 



Example of a Breadth-First Search 
(cont.) 

Select all its 
adjacent nodes that 

have not been 
visited or identified 

Visit sequence: 
0, 1 

Queue: 
3 

0 visited 0 identified 0 unvisited 

0 

2 

3 1 

9 8 

4 

7 

6 

5 



Example of a Breadth-First Search 
(cont.) 

Select all its 
adjacent nodes that 

have not been 
visited or identified 

Visit sequence: 
0, 1 

Queue: 
3, 2, 4, 6, 7 

0 visited 0 identified 0 unvisited 

0 

2 

3 1 

9 8 

4 

7 

6 

5 



Example of a Breadth-First Search 
(cont.) 

Now that we are 
done with 1, we 
color it as visited 

Visit sequence: 
0, 1 

Queue: 
3, 2, 4, 6, 7 

0 visited 0 identified 0 unvisited 

0 

2 

3 1 

9 8 

4 

7 

6 

5 



Example of a Breadth-First Search 
(cont.) 

and then visit the 
next node in the 
queue, 3 (which 
was identified in 
the first selection) 

Visit sequence: 
0, 1 

Queue: 
3, 2, 4, 6, 7 

0 visited 0 identified 0 unvisited 

0 

2 

3 1 

9 8 

4 

7 

6 

5 



Example of a Breadth-First Search 
(cont.) 

Visit sequence: 
0, 1, 3 

Queue: 
2, 4, 6, 7 

0 visited 0 identified 0 unvisited 

and then visit the 
next node in the 
queue, 3 (which 
was identified in 
the first selection) 

0 

2 

3 1 

9 8 

4 

7 

6 

5 



Example of a Breadth-First Search 
(cont.) 

3 has two adjacent 
vertices.  0 has 
already been 

visited and 2 has 
already been 

identified.  We are 
done with 3 

Visit sequence: 
0, 1, 3 

Queue: 
2, 4, 6, 7 

0 visited 0 identified 0 unvisited 

0 

2 

3 1 

9 8 

4 

7 

6 

5 



Example of a Breadth-First Search 
(cont.) 

The next node in 
the queue is 2 

Visit sequence: 
0, 1, 3 

Queue: 
2, 4, 6, 7 

0 visited 0 identified 0 unvisited 

0 

2 

3 1 

9 8 

4 

7 

6 

5 



Example of a Breadth-First Search 
(cont.) 

The next node in 
the queue is 2 

Visit sequence: 
0, 1, 3, 2 

Queue: 
4, 6, 7 

0 visited 0 identified 0 unvisited 

0 

2 

3 1 

9 8 

4 

7 

6 

5 



Example of a Breadth-First Search 
(cont.) 

8 and 9 are the 
only adjacent 
vertices not 

already visited or 
identified 

Visit sequence: 
0, 1, 3, 2 

Queue: 
4, 6, 7, 8, 9 

0 visited 0 identified 0 unvisited 

0 

2 

3 1 

9 8 

4 

7 

6 

5 



Example of a Breadth-First Search 
(cont.) 

4 is next 

Visit sequence: 
0, 1, 3, 2, 4 

Queue: 
6, 7, 8, 9 

0 visited 0 identified 0 unvisited 

0 

2 

3 1 

9 8 

4 

7 

6 

5 



Example of a Breadth-First Search 
(cont.) 

5 is the only vertex 
not already visited 

or identified 

Visit sequence: 
0, 1, 3, 2, 4 

Queue: 
6, 7, 8, 9, 5 

0 visited 0 identified 0 unvisited 

0 

2 

3 1 

9 8 

4 

7 

6 

5 



Example of a Breadth-First Search 
(cont.) 

6 has no vertices 
not already visited 

or identified 

Visit sequence: 
0, 1, 3, 2, 4, 6 

Queue: 
7, 8, 9, 5 

0 visited 0 identified 0 unvisited 

0 

2 

3 1 

9 8 

4 

7 

6 

5 



Example of a Breadth-First Search 
(cont.) 

6 has no vertices 
not already visited 

or identified 

Visit sequence: 
0, 1, 3, 2, 4, 6 

Queue: 
7, 8, 9, 5 

0 visited 0 identified 0 unvisited 

0 

2 

3 1 

9 8 

4 

7 

6 

5 



Example of a Breadth-First Search 
(cont.) 

7 has no vertices 
not already visited 

or identified 

Visit sequence: 
0, 1, 3, 2, 4, 6, 7 

Queue: 
8, 9, 5 

0 visited 0 identified 0 unvisited 

0 

2 

3 1 

9 8 

4 

7 

6 

5 



Example of a Breadth-First Search 
(cont.) 

7 has no vertices 
not already visited 

or identified 

Visit sequence: 
0, 1, 3, 2, 4, 6, 7 

Queue: 
8, 9, 5 

0 visited 0 identified 0 unvisited 

0 

2 

3 1 

9 8 

4 

7 

6 

5 



Example of a Breadth-First Search 
(cont.) 

We go back to the 
vertices of 2 and 

visit them 

Visit sequence: 
0, 1, 3, 2, 4, 6, 7 

Queue: 
8, 9, 5 

0 visited 0 identified 0 unvisited 

0 

2 

3 1 

9 8 

4 

7 

6 

5 



Example of a Breadth-First Search 
(cont.) 

8 has no vertices 
not already visited 

or identified 

Visit sequence: 
0, 1, 3, 2, 4, 6, 7, 8 

Queue: 
9, 5 

0 visited 0 identified 0 unvisited 

0 

2 

3 1 

9 8 

4 

7 

6 

5 



Example of a Breadth-First Search 
(cont.) 

9 has no vertices 
not already visited 

or identified 

Visit sequence: 
0, 1, 3, 2, 4, 6, 7, 8, 9 

Queue: 
5 

0 visited 0 identified 0 unvisited 

0 

2 

3 1 

9 8 

4 

7 

6 

5 



Example of a Breadth-First Search 
(cont.) 

Finally we visit 5 

Visit sequence: 
0, 1, 3, 2, 4, 6, 7, 8, 9 

Queue: 
5 

0 visited 0 identified 0 unvisited 

0 

2 

3 1 

9 8 

4 

7 

6 

5 



Example of a Breadth-First Search 
(cont.) 

which has no 
vertices not 

already visited or 
identified 

Visit sequence: 
0, 1, 3, 2, 4, 6, 7, 8, 9, 5 

Queue: 
empty 

0 visited 0 identified 0 unvisited 

0 

2 

3 1 

9 8 

4 

7 

6 

5 



Example of a Breadth-First Search 
(cont.) 

The queue is 
empty; all vertices 
have been visited 

Visit sequence: 
0, 1, 3, 2, 4, 6, 7, 8, 9, 5 

Queue: 
empty 

0 visited 0 identified 0 unvisited 

0 

2 

3 1 

9 8 

4 

7 

6 

5 
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PROPERTIES 

Notation 
Gs: connected component of s 

Property 1 
 BFS(G, s) visits all the vertices and 

edges of Gs  
Property 2 
 The discovery edges labeled by BF

S(G, s) form a spanning tree Ts of Gs 

Property 3 
 For each vertex v in Li 

 The path of  Ts from s to v has i edg
es  

 Every path from s to v in Gs has at l
east i edges 

C B 

A 

E 

D 

L0 

L1 

F 
L2 

C B 

A 

E 

D 

F 
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ANALYSIS 

 Setting/getting a vertex/edge label takes O(1) time 
 Each vertex is labeled twice  

 once as UNEXPLORED 
 once as VISITED 

 Each edge is labeled twice 
 once as UNEXPLORED 
 once as DISCOVERY or CROSS 

 Each vertex is inserted once into a sequence Li  
 Method incidentEdges is called once for each vertex 
 BFS runs in O(n + m) time provided the graph is repre

sented by the adjacency list structure 
 Recall that Σv deg(v) = 2m 
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APPLICATIONS 

 Using the template method pattern, we can 
specialize the BFS traversal of a graph G to solve 
the following problems in O(n + m) time 
 Compute the connected components of G 
 Compute a spanning forest of G 
 Find a simple cycle in G, or report that G is a forest 
 Given two vertices of G, find a path in G between 

them with the minimum number of edges, or report 
that no such path exists 
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