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GRAPHS (CH14) 

Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, 
R. Tamassia, and M. H. Goldwasser, Wiley, 2014 
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GRAPHS 
 A graph is a pair (V, E), where 

 V is a set of nodes, called vertices (aka nodes) 
 E is a collection of pairs of vertices, called edges (aka arcs) 
 Vertices and edges are positions and store elements 

 Example: 
 A vertex represents an airport and stores the three-letter airport 

code 
 An edge represents a flight route between two airports and stor

es the mileage of the route 
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EDGE TYPES 

 Directed edge 
 ordered pair of vertices (u,v) 
 first vertex u is the origin 
 second vertex v is the destination 
 e.g., a flight 

 Undirected edge 
 unordered pair of vertices (u,v) 
 e.g., a flight route 

 Directed graph 
 all the edges are directed 
 e.g., route network 

 Undirected graph 
 all the edges are undirected 
 e.g., flight network 

 Mixed graph : graph that has 
both directed and undirected 
edges 

Graphs 
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APPLICATIONS 

 Electronic circuits 
 Printed circuit board 
 Integrated circuit 

 Transportation networks 
 Highway network 
 Flight network 

 Computer networks 
 Local area network 
 Internet 
 Web 

 Databases 
 Entity-relationship diagram 
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TERMINOLOGY 

 End vertices (or endpoints) of an 
edge 
 U and V are the endpoints of a 

 Edges incident on a vertex 
 a, d, and b are incident on V 

 Adjacent vertices 
 U and V are adjacent 

 Degree of a vertex 
 deg(X)= 5;  X has degree 5  

 Parallel edges (multiple edges)  
 h and i are parallel edges 
 Edges are collections (not sets) 

 Self-loop 
 j is a self-loop 

 outgoing edges of a vertex:  
 directed edges whose origin is 

that vertex.  
 incoming edges of a vertex: 

 directed edges whose 
destination is that vertex.  

 in-degree  & out-degree of a vertex v  
 the number of the incoming and 

outgoing edges of v,  
 Denoted indeg(v) and outdeg(v) 
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TERMINOLOGY (CONT.) 

 Path 
 sequence of alternating 

vertices and edges  
 begins with a vertex 
 ends with a vertex 
 each edge is preceded and 

followed by its endpoints 
 Simple path 

 path such that all its vertices 
and edges are distinct 

 Examples 
 P1=(V,b,X,h,Z) is a simple path 
 P2=(U,c,W,e,X,g,Y,f,W,d,V) is a 

path that is not simple 

 Graphs are said to be simple if they 
do not have parallel edges or self-
loops 

 Most graphs are simple; we will 
assume that a graph is simple 
unless otherwise specified 

Graphs 
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TERMINOLOGY (CONT.) 

 Cycle 
 circular sequence of alternating 

vertices and edges  
 each edge is preceded and 

followed by its endpoints 
 Simple cycle 

 cycle such that all its vertices 
and edges are distinct, except 
for the first and the last 

 Examples 
 C1=(V,b,X,g,Y,f,W,c,U,a,↵) is a 

simple cycle 
 C2=(U,c,W,e,X,g,Y,f,W,d,V,a,↵) is 

a cycle that is not simple 

Graphs 
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TERMINOLOGY (CONT.) 

 Given vertices u and v of a 
(directed) graph G,  

 u reaches v, and that v is 
reachable from u, if G has 
a (directed) path from u to 
v.  

 reachability :  
 undirected graph 

reachability is symmetric, 
that is to say, u reaches v if 
an only if v reaches u. 

 directed graph reachability is 
asymmetric, it is possible 
that u reaches v but v does 
not reach u, 

Graphs 
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Depth-First Search 

9 

SUBGRAPHS 

 A subgraph S of a graph G 
is a graph such that  
 The vertices of S are a subset 

of the vertices of G 
 The edges of S are a subset 

of the edges of G 

 A spanning subgraph of G is 
a subgraph that contains all 
the vertices of G 

Subgraph 

Spanning subgraph 
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Depth-First Search 
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CONNECTIVITY 

 A graph is connected if, 
for any two vertices, there 
is a path between them.  

 A directed graph G is 
strongly connected if for 
any two vertices u and v 
of G, u reaches v and v 
reaches u. 

 A connected component 
of a graph G is a 
maximal connected 
subgraph of G 
 

Connected graph 

Non connected graph with two 
connected components 
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Depth-First Search 
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TREES AND FORESTS 

 A (free) tree is an 
undirected graph T such 
that 
 T is connected 
 T has no cycles 
This definition of tree is 

different from the one of a 
rooted tree 

 A forest is an undirected 
graph without cycles 

 The connected 
components of a forest 
are trees 

Tree 

Forest 
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Depth-First Search 

12 

SPANNING TREES AND FORESTS 

 A spanning tree of a 
connected graph is a 
spanning subgraph that is a 
tree 

 A spanning tree is not unique 
unless the graph is a tree 

 A spanning forest of a graph 
is a spanning subgraph that 
is a forest 

Graph 

Spanning tree 
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PROPERTIES 

Notation 
   n number of vertices 
   m number of edges 
deg(v) degree of vertex v 
 
 
 
 
 

Let G be an undirected graph  
 If G is connected, then m ≥ 

n−1. 
 If G is a tree, then m = n−1. 
 If G is a forest, then m ≤ n−1. 

Property 1: If G is a graph with m edges and 
vertex set V, then 

� 𝐝𝐝𝐝 𝒗
𝒗 𝐢𝐧 𝑽

= 𝟐𝟐 

Proof: each edge is counted twice 
Property 2: If G is a directed graph with m 

edges and vertex set V, then 

� 𝐢𝐧𝐝𝐝𝐝 𝒗
𝒗 𝐢𝐧 𝑽

= � 𝐨𝐨𝐨𝐝𝐝𝐝 𝒗
𝒗 𝐢𝐧 𝑽

= 𝟐 

 
Property 3: Let G be a simple graph with n 

vertices and m edges. If G is undirected, 
then 

  m ≤ n (n - 1)/2 

    Proof: each vertex has degree at most (n - 1) 
 

=> A simple graph with n vertices has O(n2) 
edges. 

Graphs 
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Example 
 n = 4 
 m = 6 
 deg(v) = 3 



© 2014 Goodrich, Tamassia, Goldwasser 

VERTICES AND EDGES 

 A graph is a collection of vertices and edges.  
 We model the abstraction as a combination of three 

data types: Vertex, Edge, and Graph.  
 A Vertex is a lightweight object that stores an 

arbitrary element provided by the user (e.g., an 
airport code) 
 We assume it supports a method, element(), to retrieve the 

stored element.  

 An Edge stores an associated object (e.g., a flight 
number, travel distance, cost), retrieved with the 
element( ) method.  

Graphs 
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GRAPH ADT 
Graphs 
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DATA STRUCTURES FOR GRAPHS 

 In an edge list, we maintain an unordered list of all edges.  
 This minimally suffices, but there is no efficient way to locate a particular 

edge (u,v), or the set of all edges incident to a vertex v. 
 In an adjacency list, we additionally maintain, for each vertex, a 

separate list containing those edges that are incident to the vertex.  
 This organization allows us to more efficiently find all edges incident to a 

given vertex. 
 An adjacency map is similar to an adjacency list, but the secondary 

container of all edges incident to a vertex is organized as a map, 
rather than as a list, with the adjacent vertex serving as a key.  
 This allows more efficient access to a specific edge (u,v), for example, in O(1) 

expected time with hashing. 
 An adjacency matrix provides worst-case O(1) access to a specific 

edge (u,v) by maintaining an n×n matrix, for a graph with n vertices.  
 Each slot is dedicated to storing a reference to the edge (u,v) for a particular 

pair of vertices u and v; if no such edge exists, the slot will store null. 

Graphs 
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DATA STRUCTURES FOR GRAPHS: EDGE LIST 
 All vertex objects are stored in an unordered list V, and 

all edge objects are stored in an unordered list E. 
 Components:  

 Vertex object 
 reference to element v, to support getElement() 
 reference to position in vertex sequence for efficiently 

removed 
 Edge object 

 reference to element e, to support getElement() 
 References to the origin vertex object & destination 

vertex object, to support endVertices(e) and opposite(v, 
e). 

 reference to position in edge sequence sequence for 
efficiently removed 

 Vertex sequence 
 sequence of vertex objects 

 Edge sequence 
 sequence of edge objects 

Graphs 
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space usage is O(n+m) 
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PERFORMANCE OF THE EDGE LIST STRUCTURE 

Graphs 

18 

space usage is O(n+m) 

Exhaustive 
inspection of 

all edges 
needed. 

when a vertex v is 
removed from the 
graph, all edges 

incident to v must 
also be removed 
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DATA STRUCTURES FOR GRAPHS: ADJACENCY LIST 
 Adds extra information to the edge list 

structure that supports direct access to 
the incident edges  
 For each vertex v, we maintain a 

collection I(v), called incidence 
collection of v 

 Components: 
 Incidence sequence for each vertex 

 sequence of references to edge objects of 
incident edges 

 Augmented edge objects 
 references to associated positions in 

incidence sequences of end vertices 

Graphs 
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adjacency list Iout(v) 

positional list to 
represent V 
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PERFORMANCE OF THE ADJACENCY LIST STRUCTURE 

Graphs 

20 

adjacency list Iout(v) assuming that the primary collection V and E, 
and all secondary collections I(v) are 
implemented with doubly linked lists. 

using O(n+m) space 

based on use 
of I(v). 

search through 
either I(u) or 

I(v) 
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DATA STRUCTURES FOR GRAPHS: ADJACENCY MAP 

 use a hash-based map to 
implement I(v) for each vertex 
v. 

 let the opposite endpoint of 
each incident edge serve as a 
key in the map, with the edge 
structure serving as the value 

 getEdge(u, v) method can be 
implemented in expected O(1) 
time 

Graphs 
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DATA STRUCTURES FOR GRAPHS: ADJACENCY MATRIX 
 adjacency matrix A allows us to locate an edge 

between a given pair of vertices in worst-case 
O(1) time. 

 cell A[i][ j] holds a reference to the edge (u,v), 
if it exists, where u is the vertex with index i 
and v is the vertex with index j  

 Edge list structure 
 Augmented vertex objects 

 Integer key (index) associated with vertex 
 2D-array adjacency array 

 Reference to edge object for adjacent verti
ces 

 Null for non nonadjacent vertices 
 The “old fashioned” version just has 0 for no e

dge and 1 for edge 
 

Graphs 
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O(n2) space usage 
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PERFORMANCE: SIMPLE GRAPH  

Graphs 
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adjacency matrix uses O(n2) space, while all other structures use 
O(n+m) space 
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JAVA IMPLEMENTATION OF ADJACENCY MAP 

 Positional lists to represent each of the primary lists V 
and E  

 use a hash-based map to represent the secondary 
incidence map I(v) for each vertex v in V 
 each vertex maintains two different map references: 

outgoing and incoming. 
 Directed graphs: initialized to two distinct map instances, 

representing Iout(v) and Iin(v), respectively.  
 Undirected graph: assign both outgoing and incoming as 

aliases to a single map instance. 

 For details of the code: please look at the book.  

Graphs 
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GRAPH TRAVERSAL 

 A traversal is a systematic procedure for exploring a 
graph by examining all of its vertices and edges. 

 A traversal is efficient if it visits all the vertices and 
edges in time proportional to their number, that is, in 
linear time. 

 We will look at two efficient graph traversal algorithms 
 depth-first search (DFS) 
 breadth-first search (BFS) 

Graphs 

26 
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Depth-First Search 
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DEPTH-FIRST SEARCH 

 A DFS traversal of a graph G  
 Visits all the vertices and 

edges of G 
 Determines whether G is 

connected 
 Computes the connected 

components of G 
 Computes a spanning forest 

of G 

 The DFS process naturally 
identifies what is known 
as the depth-first search 
tree rooted at a starting 
vertex s. 

 DFS on a graph with n 
vertices and m edges takes 
O(n + m ) time 

 DFS can be further 
extended to solve other 
graph problems 
 Find and report a path 

between two given vertices 
 Find a cycle in the graph 

 Depth-first search is to 
graphs what Euler tour is 
to binary trees 
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Depth-First Search 
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DFS ALGORITHM FROM A VERTEX 
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JAVA IMPLEMENTATION 

Depth-First Search 
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Example of a Depth-First Search 

0 visited 0 being visited 0 unvisited 

0 

1 
2 

3 4 5 6 

Data Structures Abstraction and Design Using Java, 2nd Edition 
by Elliot B. Koffman &  Paul A. T. Wolfgang, Wiley, 2010 



Example of a Depth-First Search 
(cont.) 

Mark 0 as being 
visited 

0 visited 0 being visited 0 unvisited 

0 

1 
2 

3 4 5 6 
Finish order: 

Discovery (Visit) order: 
0 



Example of a Depth-First Search 
(cont.) 

Choose an 
adjacent vertex 
that is not being 

visited 

0 visited 0 being visited 0 unvisited 

0 

1 
2 

3 4 5 6 
Finish order: 

Discovery (Visit) order: 
0 



Example of a Depth-First Search 
(cont.) 

Choose an 
adjacent vertex 
that is not being 

visited 

0 visited 0 being visited 0 unvisited 

0 

1 
2 

3 4 5 6 
Finish order: 

Discovery (Visit) order: 
0, 1 



Example of a Depth-First Search 
(cont.) 

(Recursively) choose 
an adjacent vertex 

that is not being 
visited 

0 visited 0 being visited 0 unvisited 

0 

1 
2 

3 4 5 6 
Finish order: 

Discovery (Visit) order: 
0, 1, 3 



Example of a Depth-First Search 
(cont.) 

(Recursively) choose 
an adjacent vertex 

that is not being 
visited 

0 visited 0 being visited 0 unvisited 

0 

1 
2 

3 4 5 6 
Finish order: 

Discovery (Visit) order: 
0, 1, 3 



Example of a Depth-First Search 
(cont.) 

0 visited 0 being visited 0 unvisited 

0 

1 
2 

3 4 5 6 

(Recursively) choose 
an adjacent vertex 

that is not being 
visited 

Finish order: 

Discovery (Visit) order: 
0, 1, 3, 4 



Example of a Depth-First Search 
(cont.) 

0 visited 0 being visited 0 unvisited 

0 

1 
2 

3 4 5 6 

There are no 
vertices adjacent to 

4 that are not 
being visited 

Finish order: 

Discovery (Visit) order: 
0, 1, 3, 4 



Example of a Depth-First Search 
(cont.) 

0 visited 0 being visited 0 unvisited 

0 

1 
2 

3 4 5 6 

Mark 4 as visited 

Finish order: 
4 

Discovery (Visit) order: 
0, 1, 3, 4 



Example of a Depth-First Search 
(cont.) 

0 visited 0 being visited 0 unvisited 

0 

1 
2 

3 4 5 6 

Return from the 
recursion to 3; all 
adjacent nodes to 
3 are being visited 

Finish order: 
4 



Example of a Depth-First Search 
(cont.) 

0 visited 0 being visited 0 unvisited 

0 

1 
2 

3 4 5 6 

Mark 3 as visited 

Finish order: 
4, 3 



Example of a Depth-First Search 
(cont.) 

0 visited 0 being visited 0 unvisited 

0 

1 
2 

3 4 5 6 

Return from the 
recursion to 1 

Finish order: 
4, 3 



Example of a Depth-First Search 
(cont.) 

0 visited 0 being visited 0 unvisited 

0 

1 
2 

3 4 5 6 

All vertices 
adjacent to 1 are 

being visited 

Finish order: 
4, 3 



Example of a Depth-First Search 
(cont.) 

0 visited 0 being visited 0 unvisited 

0 

1 
2 

3 4 5 6 

Mark 1 as visited 

Finish order: 
4, 3, 1 



Example of a Depth-First Search 
(cont.) 

0 visited 0 being visited 0 unvisited 

0 

1 
2 

3 4 5 6 

Return from the 
recursion to 0 

Finish order: 
4, 3, 1 



Example of a Depth-First Search 
(cont.) 

0 visited 0 being visited 0 unvisited 

0 

1 
2 

3 4 5 6 

2 is adjacent to 1 
and is not being 

visited 

Finish order: 
4, 3, 1 



Example of a Depth-First Search 
(cont.) 

0 visited 0 being visited 0 unvisited 

0 

1 
2 

3 4 5 6 

2 is adjacent to 1 
and is not being 

visited 

Finish order: 
4, 3, 1 

Discovery (Visit) order: 
0, 1, 3, 4, 2 



Example of a Depth-First Search 
(cont.) 

0 visited 0 being visited 0 unvisited 

0 

1 
2 

3 4 5 6 

5 is adjacent to 2 
and is not being 

visited 

Finish order: 
4, 3, 1 

Discovery (Visit) order: 
0, 1, 3, 4, 2 



Example of a Depth-First Search 
(cont.) 

0 visited 0 being visited 0 unvisited 

0 

1 
2 

3 4 5 6 

5 is adjacent to 2 
and is not being 

visited 

Finish order: 
4, 3, 1 

Discovery (Visit) order: 
0, 1, 3, 4, 2, 5 



Example of a Depth-First Search 
(cont.) 

0 visited 0 being visited 0 unvisited 

0 

1 
2 

3 4 5 6 

6 is adjacent to 5 
and is not being 

visited 

Finish order: 
4, 3, 1 

Discovery (Visit) order: 
0, 1, 3, 4, 2, 5 



Example of a Depth-First Search 
(cont.) 

0 visited 0 being visited 0 unvisited 

0 

1 
2 

3 4 5 6 

6 is adjacent to 5 
and is not being 

visited 

Finish order: 
4, 3, 1 

Discovery (Visit) order: 
0, 1, 3, 4, 2, 5, 6 



Example of a Depth-First Search 
(cont.) 

0 visited 0 being visited 0 unvisited 

0 

1 
2 

3 4 5 6 

There are no 
vertices adjacent to 
6 not being visited; 
mark 6 as visited 

Finish order: 
4, 3, 1 

Discovery (Visit) order: 
0, 1, 3, 4, 2, 5, 6 



Example of a Depth-First Search 
(cont.) 

0 visited 0 being visited 0 unvisited 

0 

1 
2 

3 4 5 6 

There are no 
vertices adjacent to 
6 not being visited; 
mark 6 as visited 

Finish order: 
4, 3, 1, 6 

Discovery (Visit) order: 
0, 1, 3, 4, 2, 5, 6 



Example of a Depth-First Search 
(cont.) 

0 visited 0 being visited 0 unvisited 

0 

1 
2 

3 4 5 6 

Return from the 
recursion to 5 

Finish order: 
4, 3, 1, 6 



Example of a Depth-First Search 
(cont.) 

0 visited 0 being visited 0 unvisited 

0 

1 
2 

3 4 5 6 

Mark 5 as visited 

Finish order: 
4, 3, 1, 6 



Example of a Depth-First Search 
(cont.) 

0 visited 0 being visited 0 unvisited 

0 

1 
2 

3 4 5 6 

Mark 5 as visited 

Finish order: 
4, 3, 1, 6, 5 



Example of a Depth-First Search 
(cont.) 

0 visited 0 being visited 0 unvisited 

0 

1 
2 

3 4 5 6 

Return from the 
recursion to 2 

Finish order: 
4, 3, 1, 6, 5 



Example of a Depth-First Search 
(cont.) 

0 visited 0 being visited 0 unvisited 

0 

1 
2 

3 4 5 6 

Mark 2 as visited 

Finish order: 
4, 3, 1, 6, 5 



Example of a Depth-First Search 
(cont.) 

0 visited 0 being visited 0 unvisited 

0 

1 
2 

3 4 5 6 

Mark 2 as visited 

Finish order: 
4, 3, 1, 6, 5, 2 



Example of a Depth-First Search 
(cont.) 

0 visited 0 being visited 0 unvisited 

0 

1 
2 

3 4 5 6 

Return from the 
recursion to 0 

Finish order: 
4, 3, 1, 6, 5, 2 



Example of a Depth-First Search 
(cont.) 

0 visited 0 being visited 0 unvisited 

0 

1 
2 

3 4 5 6 

There are no nodes 
adjacent to 0 not 

being visited 

Finish order: 
4, 3, 1, 6, 5, 2 



Example of a Depth-First Search 
(cont.) 

0 visited 0 being visited 0 unvisited 

0 

1 
2 

3 4 5 6 

Mark 0 as visited 

Finish order: 
4, 3, 1, 6, 5, 2, 0 

Discovery (Visit) order: 
0, 1, 3, 4, 2, 5, 6, 0 
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Depth-First Search 

62 

PROPERTIES OF DFS 

Property 1 
 DFS(G, v) visits all the v

ertices and edges in the 
connected component o
f v 

Property 2 
 The discovery edges lab

eled by DFS(G, v) form 
a spanning tree of the c
onnected component of 
v 

D B 

A 

C 

E 
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Depth-First Search 

63 

ANALYSIS OF DFS 

 Setting/getting a vertex/edge label takes O(1) time 
 Each vertex is labeled twice  

 once as UNEXPLORED 
 once as VISITED (Finished) 

 Each edge is labeled twice 
 once as UNEXPLORED 
 once as DISCOVERY or BACK 

 Method incidentEdges is called once for each vertex 
 DFS runs in O(n + m) time provided the graph is 

represented by the adjacency list structure 
 Recall that Σv deg(v) = 2m 



Breadth-First Search 

64 

GRAPH TRAVERSALS:  
BREADTH-FIRST SEARCH 

C B 

A 

E 

D 

L0 

L1 

F 
L2 
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Breadth-First Search 
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BREADTH-FIRST SEARCH 

 A BFS traversal of a 
graph G  
 Visits all the vertices and 

edges of G 
 Determines whether G is 

connected 
 Computes the connected 

components of G 
 Computes a spanning 

forest of G 

 BFS on a graph with n 
vertices and m edges 
takes O(n + m ) time 

 BFS can be further 
extended to solve other 
graph problems 
 Find and report a path 

with the minimum 
number of edges 
between two given 
vertices  

 Find a simple cycle, if 
there is one 
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Breadth-First Search 
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BFS ALGORITHM 

 The algorithm uses a mechanism 
for setting and getting “labels” of 
vertices and edges 

Algorithm BFS(G, s) 
 L0 ← new empty sequence 

L0.addLast(s) 
setLabel(s, VISITED) 
i ← 0  
while  ¬Li.isEmpty() 
 Li +1 ← new empty sequence  
 for all  v ∈ Li.elements()  
  for all  e ∈ G.incidentEdges(v)  
   if  getLabel(e) = UNEXPLORED 
    w ← opposite(v,e) 
    if  getLabel(w) = UNEXPLORED 
     setLabel(e, DISCOVERY) 
     setLabel(w, VISITED) 
     Li +1.addLast(w) 
    else 
     setLabel(e, CROSS) 
 i ← i +1 

Algorithm BFS(G) 
 Input graph G 
 Output labeling of the edges  
  and partition of the  
  vertices  of G  

for all  u ∈ G.vertices() 
 setLabel(u, UNEXPLORED) 
for all  e ∈ G.edges() 
 setLabel(e, UNEXPLORED) 
for all  v ∈ G.vertices() 
 if  getLabel(v) = UNEXPLORED 
  BFS(G, v) 
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JAVA IMPLEMENTATION 

Breadth-First Search 

67 



Example of a Breadth-First Search 

0 

2 

3 1 

9 8 

4 

7 

6 

5 

0 visited 0 identified 0 unvisited 

Data Structures Abstraction and Design Using Java, 2nd Edition 
by Elliot B. Koffman &  Paul A. T. Wolfgang, Wiley, 2010 



Example of a Breadth-First Search 
(cont.) 

0 

2 

3 1 

9 8 

4 

7 

6 

5 

Identify the start 
node 

0 visited 0 identified 0 unvisited 



Example of a Breadth-First Search 
(cont.) 

0 

2 

3 1 

9 8 

4 

7 

6 

5 

While visiting it, we 
can identify its 
adjacent nodes 

0 visited 0 identified 0 unvisited 



Example of a Breadth-First Search 
(cont.) 

0 

2 

3 1 

9 8 

4 

7 

6 

5 We identify its 
adjacent nodes 

and add them to a 
queue of identified 

nodes 

Visit sequence: 
0 

0 visited 0 identified 0 unvisited 



Example of a Breadth-First Search 
(cont.) 

0 

2 

3 1 

9 8 

4 

7 

6 

5 

Visit sequence: 
0 

Queue: 
1, 3 

0 visited 0 identified 0 unvisited 

We identify its 
adjacent nodes 

and add them to a 
queue of identified 

nodes 



Example of a Breadth-First Search 
(cont.) 

0 

2 

3 1 

9 8 

4 

7 

6 

5 

Visit sequence: 
0 

Queue: 
1, 3 

0 visited 0 identified 0 unvisited 

We color the node 
as visited 



Example of a Breadth-First Search 
(cont.) 

0 

2 

3 1 

9 8 

4 

7 

6 

5 

Visit sequence: 
0 

Queue: 
1, 3 

The queue 
determines which 
nodes to visit next 

0 visited 0 identified 0 unvisited 



Example of a Breadth-First Search 
(cont.) 

0 

2 

3 1 

9 8 

4 

7 

6 

5 

Visit the first node 
in the queue, 1 

Visit sequence: 
0 

Queue: 
1, 3 

0 visited 0 identified 0 unvisited 



Example of a Breadth-First Search 
(cont.) 

0 

2 

3 1 

9 8 

4 

7 

6 

5 

Visit sequence: 
0, 1 

Queue: 
3 

Visit the first node 
in the queue, 1 

0 visited 0 identified 0 unvisited 



Example of a Breadth-First Search 
(cont.) 

Select all its 
adjacent nodes that 

have not been 
visited or identified 

Visit sequence: 
0, 1 

Queue: 
3 

0 visited 0 identified 0 unvisited 

0 

2 

3 1 

9 8 

4 

7 

6 

5 



Example of a Breadth-First Search 
(cont.) 

Select all its 
adjacent nodes that 

have not been 
visited or identified 

Visit sequence: 
0, 1 

Queue: 
3, 2, 4, 6, 7 

0 visited 0 identified 0 unvisited 

0 

2 

3 1 

9 8 

4 

7 

6 

5 



Example of a Breadth-First Search 
(cont.) 

Now that we are 
done with 1, we 
color it as visited 

Visit sequence: 
0, 1 

Queue: 
3, 2, 4, 6, 7 

0 visited 0 identified 0 unvisited 

0 

2 

3 1 

9 8 

4 

7 

6 

5 



Example of a Breadth-First Search 
(cont.) 

and then visit the 
next node in the 
queue, 3 (which 
was identified in 
the first selection) 

Visit sequence: 
0, 1 

Queue: 
3, 2, 4, 6, 7 

0 visited 0 identified 0 unvisited 

0 

2 

3 1 

9 8 

4 

7 

6 

5 



Example of a Breadth-First Search 
(cont.) 

Visit sequence: 
0, 1, 3 

Queue: 
2, 4, 6, 7 

0 visited 0 identified 0 unvisited 

and then visit the 
next node in the 
queue, 3 (which 
was identified in 
the first selection) 

0 

2 

3 1 

9 8 

4 

7 

6 

5 



Example of a Breadth-First Search 
(cont.) 

3 has two adjacent 
vertices.  0 has 
already been 

visited and 2 has 
already been 

identified.  We are 
done with 3 

Visit sequence: 
0, 1, 3 

Queue: 
2, 4, 6, 7 

0 visited 0 identified 0 unvisited 

0 

2 

3 1 

9 8 

4 

7 

6 

5 



Example of a Breadth-First Search 
(cont.) 

The next node in 
the queue is 2 

Visit sequence: 
0, 1, 3 

Queue: 
2, 4, 6, 7 

0 visited 0 identified 0 unvisited 

0 

2 

3 1 

9 8 

4 

7 

6 

5 



Example of a Breadth-First Search 
(cont.) 

The next node in 
the queue is 2 

Visit sequence: 
0, 1, 3, 2 

Queue: 
4, 6, 7 

0 visited 0 identified 0 unvisited 

0 

2 

3 1 

9 8 

4 

7 

6 

5 



Example of a Breadth-First Search 
(cont.) 

8 and 9 are the 
only adjacent 
vertices not 

already visited or 
identified 

Visit sequence: 
0, 1, 3, 2 

Queue: 
4, 6, 7, 8, 9 

0 visited 0 identified 0 unvisited 

0 

2 

3 1 

9 8 

4 

7 

6 

5 



Example of a Breadth-First Search 
(cont.) 

4 is next 

Visit sequence: 
0, 1, 3, 2, 4 

Queue: 
6, 7, 8, 9 

0 visited 0 identified 0 unvisited 

0 

2 

3 1 

9 8 

4 

7 

6 

5 



Example of a Breadth-First Search 
(cont.) 

5 is the only vertex 
not already visited 

or identified 

Visit sequence: 
0, 1, 3, 2, 4 

Queue: 
6, 7, 8, 9, 5 

0 visited 0 identified 0 unvisited 

0 

2 

3 1 

9 8 

4 

7 

6 

5 



Example of a Breadth-First Search 
(cont.) 

6 has no vertices 
not already visited 

or identified 

Visit sequence: 
0, 1, 3, 2, 4, 6 

Queue: 
7, 8, 9, 5 

0 visited 0 identified 0 unvisited 

0 

2 

3 1 

9 8 

4 

7 

6 

5 



Example of a Breadth-First Search 
(cont.) 

6 has no vertices 
not already visited 

or identified 

Visit sequence: 
0, 1, 3, 2, 4, 6 

Queue: 
7, 8, 9, 5 

0 visited 0 identified 0 unvisited 

0 

2 

3 1 

9 8 

4 

7 

6 

5 



Example of a Breadth-First Search 
(cont.) 

7 has no vertices 
not already visited 

or identified 

Visit sequence: 
0, 1, 3, 2, 4, 6, 7 

Queue: 
8, 9, 5 

0 visited 0 identified 0 unvisited 

0 

2 

3 1 

9 8 

4 

7 

6 

5 



Example of a Breadth-First Search 
(cont.) 

7 has no vertices 
not already visited 

or identified 

Visit sequence: 
0, 1, 3, 2, 4, 6, 7 

Queue: 
8, 9, 5 

0 visited 0 identified 0 unvisited 

0 

2 

3 1 

9 8 

4 

7 

6 

5 



Example of a Breadth-First Search 
(cont.) 

We go back to the 
vertices of 2 and 

visit them 

Visit sequence: 
0, 1, 3, 2, 4, 6, 7 

Queue: 
8, 9, 5 

0 visited 0 identified 0 unvisited 

0 

2 

3 1 

9 8 

4 

7 

6 

5 



Example of a Breadth-First Search 
(cont.) 

8 has no vertices 
not already visited 

or identified 

Visit sequence: 
0, 1, 3, 2, 4, 6, 7, 8 

Queue: 
9, 5 

0 visited 0 identified 0 unvisited 

0 

2 

3 1 

9 8 

4 

7 

6 

5 



Example of a Breadth-First Search 
(cont.) 

9 has no vertices 
not already visited 

or identified 

Visit sequence: 
0, 1, 3, 2, 4, 6, 7, 8, 9 

Queue: 
5 

0 visited 0 identified 0 unvisited 

0 

2 

3 1 

9 8 

4 

7 

6 

5 



Example of a Breadth-First Search 
(cont.) 

Finally we visit 5 

Visit sequence: 
0, 1, 3, 2, 4, 6, 7, 8, 9 

Queue: 
5 

0 visited 0 identified 0 unvisited 

0 

2 

3 1 

9 8 

4 

7 

6 

5 



Example of a Breadth-First Search 
(cont.) 

which has no 
vertices not 

already visited or 
identified 

Visit sequence: 
0, 1, 3, 2, 4, 6, 7, 8, 9, 5 

Queue: 
empty 

0 visited 0 identified 0 unvisited 

0 

2 

3 1 

9 8 

4 

7 

6 

5 



Example of a Breadth-First Search 
(cont.) 

The queue is 
empty; all vertices 
have been visited 

Visit sequence: 
0, 1, 3, 2, 4, 6, 7, 8, 9, 5 

Queue: 
empty 

0 visited 0 identified 0 unvisited 

0 

2 

3 1 

9 8 

4 

7 

6 

5 



© 2014 Goodrich, Tamassia, Goldwasser 

Breadth-First Search 

98 

PROPERTIES 

Notation 
Gs: connected component of s 

Property 1 
 BFS(G, s) visits all the vertices and 

edges of Gs  
Property 2 
 The discovery edges labeled by BF

S(G, s) form a spanning tree Ts of Gs 

Property 3 
 For each vertex v in Li 

 The path of  Ts from s to v has i edg
es  

 Every path from s to v in Gs has at l
east i edges 

C B 

A 

E 

D 

L0 

L1 

F 
L2 

C B 

A 

E 

D 

F 
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ANALYSIS 

 Setting/getting a vertex/edge label takes O(1) time 
 Each vertex is labeled twice  

 once as UNEXPLORED 
 once as VISITED 

 Each edge is labeled twice 
 once as UNEXPLORED 
 once as DISCOVERY or CROSS 

 Each vertex is inserted once into a sequence Li  
 Method incidentEdges is called once for each vertex 
 BFS runs in O(n + m) time provided the graph is repre

sented by the adjacency list structure 
 Recall that Σv deg(v) = 2m 
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APPLICATIONS 

 Using the template method pattern, we can 
specialize the BFS traversal of a graph G to solve 
the following problems in O(n + m) time 
 Compute the connected components of G 
 Compute a spanning forest of G 
 Find a simple cycle in G, or report that G is a forest 
 Given two vertices of G, find a path in G between 

them with the minimum number of edges, or report 
that no such path exists 
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