SORTING LOWER BOUND \& BUCKET-SORT AND RADIX-SORT

Presentation for use with the textbook Data Structures and Algorithms in Java, $6^{\text {th }}$ edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014

COMPARISON-BASED SORTING

* Many sorting algorithms are comparison based.
+ They sort by making comparisons between pairs of objects
+ Examples: selection-sort, insertion-sort, heap-sort, merge-sort, quick-sort, ...
Let us therefore derive a lower bound on the running time of any algorithm that uses comparisons to sort n elements, $x_{1}, x_{2}, \ldots, x_{n}$.

COUNTING COMPARISONS

* Let us just count comparisons then.
* Each possible run of the algorithm corresponds to a root-to-leaf path in a decision tree

Sorting Lower Bound

DECISION TREE HEIGHT

* The height of the decision tree is a lower bound on the running time
* Every input permutation must lead to a separate leaf output
* If not, some input ..4... 5 ... would have same output ordering as ..5...4..., which would be wrong
* Since there are $n!=1 \cdot 2$. ... n leaves, the height is at least $\log (n!)$

THE LOWER BOUND

* Any comparison-based sorting algorithms takes at least log (n!) time
* Therefore, any such algorithm takes time at least

$$
\log (n!) \geq \log \left(\frac{n}{2}\right)^{\frac{n}{2}}=(n / 2) \log (n / 2)
$$

* That is, any comparison-based sorting algorithm must run in $\Omega(\mathrm{n} \log \mathrm{n})$ lower bound on its running time.

LINEAR TIME SORTING

We showed that the lower bound of sorting with comparison is $\Omega(n \log n)$ time.

* Can we do better? Yes, with special assumptions about the input sequence to be sorted.
\times We will consider the problem of sorting a sequence of entries, each a key-value pair, where the keys have a restricted type
+ Bucket-Sort
+ Radix-Sort

Bucket-Sort and Radix-Sort

BUCKET-SORT

* Let be S be a sequence of n (key, element) entries with integer keys in the range [0, $N-1$], for some integer $\mathrm{N} \geq 2$,
* Bucket-sort uses the keys as indices into an auxiliary array B of size N (buckets)
Phase 1: Empty sequence S by moving each entry (k, o) into its bucket $B[k]$
Phase 2: For $i=0, \ldots, N-1$, move the entries of bucket $B[i]$ to the end of sequence S
* Analysis:
+ Phase 1 takes $O(n)$ time
+ Phase 2 takes $O(n+M$ time
Bucket-sort takes $O(n+M$ time

BUCKET-SORT ALGORITHM

Algorithm bucketSort(S):

Input: Sequence S of entries with integer keys in the range [0, $\mathrm{N}-1$]
Output: Sequence S sorted in nondecreasing order of the keys
let B be an array of N sequences, each of which is initially empty
for each entry e in S do
$k=$ the key of e
remove e from S
insert e at the end of bucket (sequence) $\mathrm{B}[k]$
for $i=0$ to $\mathrm{N}-1$ do
for each entry e in $\mathrm{B}[7]$ do
remove e from $B[/]$
insert e at the end of S

Bucket-Sort and Radix-Sort

EXAMPLE

* Key range [0, 9]

PROPERTIES AND EXTENSIONS

* Key-type Property
+ The keys are used as indices into an array and cannot be arbitrary objects
+ No external comparator
* Stable Sort Property

The relative order of any two items with the same key is preserved after the execution of the algorithm

Extensions

+ Integer keys in the range [a, b]

Put entry ($\mathbf{k}, \boldsymbol{o}$) into bucket $B[\boldsymbol{k}-\boldsymbol{a}]$
String keys from a set \boldsymbol{D} of possible strings, where \boldsymbol{D} has constant size (e.g., names of the 50 U.S. states)

Sort \boldsymbol{D} and compute the rank $r(k)$ of each string k of D in the sorted sequence Put entry ($\boldsymbol{k}, \boldsymbol{o}$) into bucket $B[r(k)]$

LEXICOGRAPHIC ORDER

* A \boldsymbol{d}-tuple is a sequence of \boldsymbol{d} keys $\left(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}, \ldots, \boldsymbol{k}_{d}\right)$, where key k_{i} is said to be the i-th dimension of the tuple
- Example:
+ The Cartesian coordinates of a point in space are a 3-tuple * The lexicographic order of two d-tuples is recursively defined as follows

$$
\begin{aligned}
\left(x_{1}, x_{2}, \ldots, x_{d}\right) & <\left(y_{1}, y_{2}, \ldots, y_{d}\right) \\
x_{1}<y_{1} \vee x_{1}=y_{1} \wedge & \left(x_{2}, \ldots, x_{d}\right)<\left(y_{2}, \ldots, y_{d}\right)
\end{aligned}
$$

I.e., the tuples are compared by the first dimension, then by the second dimension, etc.

STABLE SORTING

When sorting key-value pairs, an important issue is how equal keys are handled. Let $S=\left(\left(k_{0}, v_{0}\right), \ldots,\left(k_{n-1}, v_{n-1}\right)\right)$ be a sequence of such entries.

* We say that a sorting algorithm is stable if, for any two entries ($k_{\mathrm{i}}, v_{\mathrm{i}}$) and ($k_{\mathrm{j}}, v_{\mathrm{j}}$) of S such that $k_{\mathrm{i}}=k_{\mathrm{j}}$ and ($k_{\mathrm{i}}, v_{\mathrm{i}}$) precedes $\left(k_{\mathrm{j}}, v_{\mathrm{j}}\right)$ in S before sorting (that is, $\left.i<j\right)$, entry $\left(k_{\mathrm{i}}, v_{\mathrm{i}}\right)$ also precedes entry ($k_{\mathrm{j}}, v_{\mathrm{j}}$) after sorting.
* Stability is important for a sorting algorithm because applications may want to preserve the initial order of elements with the same key.
* Bucket-sort guarantees stability as long as we ensure that all sequences act as queues

LEXICOGRAPHIC-SORT

Let C_{i} be the comparator that compares two tuples by their i-th dimension
Let stableSort(S, C) be a stable sorting algorithm that uses comparator C
Lexicographic-sort sorts a sequence of d-tuples in lexicographic order by executing d times algorithm stableSort, one per dimension

* Lexicographic-sort runs in $\boldsymbol{O}(\boldsymbol{d T}(n)$) time, where $\boldsymbol{T}(n)$ is the running time of stableSort
© 2014 Goodrich, Tamassia, Goldwasser

Algorithm lexicographicSort(S)
Input sequence S of d-tuples
Output sequence S sorted in lexicographic order
for $i \leftarrow d$ downto 1
stableSort(S, C C_{i})

Example:

$(7,4,6)(5,1,5)(2,4,6)(2,1,4)(3,2,4)$
$(2,1,4)(3,2,4)(5,1,5)(7,4,6)(2,4,6)$
$(2,1,4)(5,1,5)(3,2,4)(7,4,6)(2,4,6)$
$(2,1,4)(2,4,6)(3,2,4)(5,1,5)(7,4,6)$

RADIX-SORT

* Radix-sort is a specialization of lexicographic-sort that uses bucket-sort as the stable sorting algorithm in each dimension
* Radix-sort is applicable to tuples where the keys in each dimension i are integers in the range [$0, N-$ 1]
* Radix-sort runs in time $\boldsymbol{O}(\boldsymbol{d}(n+N))$

Algorithm radixSort(S, N)

Input sequence S of \boldsymbol{d}-tuples such that $(0, \ldots, 0) \leq\left(x_{1}, \ldots, x_{d}\right)$ and $\left(x_{1}, \ldots, x_{d}\right) \leq(N-1, \ldots, N-1)$ for each tuple $\left(x_{1}, \ldots, x_{d}\right)$ in S
Output sequence S sorted in
lexicographic order
for $i \leftarrow d$ downto 1
bucketSort(S, N) where the d is the dimension of keys, n is the number of data, and keys range is [0...N-1]

Bucket-Sort and Radix-Sort

RADIX-SORT FOR BINARY NUMBERS

* Consider a sequence of $\boldsymbol{n} \boldsymbol{b}$-bit integers

$$
\boldsymbol{x}=\boldsymbol{x}_{\boldsymbol{b}-1} \cdots \boldsymbol{x}_{1} \boldsymbol{x}_{0}
$$

We represent each element as a b-tuple of integers in the range [0,1] and apply radix-sort with N $=2$

* This application of the radix-sort algorithm runs in $\boldsymbol{O}(\boldsymbol{b n})$ time
* For example, we can sort a sequence of 32 -bit integers in linear time

Bucket-Sort and Radix-Sort

EXAMPLE

* Sorting a sequence of 4-bit integers

SUMMARY OF SORTING ALGORITHMS

Algorithm	Time	Notes
selection-sort	$\boldsymbol{O}\left(n^{2}\right)$	- in-place - slow (good for small inputs)
insertion-sort	$\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$	- in-place - slow (good for small inputs)
quick-sort	$\boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n})$ expected	- in-place, randomized - fastest (good for large inputs)
heap-sort	$\boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n})$	- in-place - fast (good for large inputs)
merge-sort	$\boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n})$	- sequential data access - fast (good for huge inputs)
bucket-sort	$O(n+M)$	- integer keys of range [0 ...N]
radix-sort	$O(d n+M)$	- d diinteger keys of range [0 ...N]

Selection

SELECTION PROBLEM

Presentation for use with the textbook Data Structures and Algorithms in Java, $6^{\text {th }}$ edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwass er, Wiley, 2014

THE SELECTION PROBLEM

* Given an integer k and n elements $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$, taken from a total order, find the k-th smallest element in this set.
* Of course, we can sort the set in $O(n \log n)$ time and then index the k-th element.

$$
\mathrm{k}=3 \quad 749 \underline{6} \rightarrow 24679
$$

Can we solve the selection problem faster?

PRUNE-AND-SEARCH

* Quick-select is a randomized
selection algorithm based on the prune-and-search paradigm:

+ Prune: pick a random element x (called pivot) and partition S into
L : elements less than x
\boldsymbol{E} : elements equal \boldsymbol{x}
G : elements greater than x
+ Search: depending on k, either answer is in \boldsymbol{E}, or we need to recur in either \boldsymbol{L} or \boldsymbol{G}

$\boldsymbol{k} \leq|\boldsymbol{L}|$

$$
|\boldsymbol{L}|<\boldsymbol{k} \leq|\boldsymbol{L}|+|\boldsymbol{E}|
$$

(done)

PARTITION

We partition an input sequence as in the quick-select algorithm:

+ We remove, in turn, each element y from S and
+ We insert \boldsymbol{y} into L, E or G, depending on the result of the comparison with the pivot x
Each insertion and removal is at the beginning or at the end of a sequence, and hence takes \boldsymbol{O} (1) time
Thus, the partition step of quick-select takes $\mathbf{O}(\mathbf{n})$ time
© 2014 Goodrich, Tamassia, Goldwasser

Algorithm partition(S, p)
Input sequence \boldsymbol{S}, position \boldsymbol{p} of pivot Output subsequences $\boldsymbol{L}, \boldsymbol{E}, \boldsymbol{G}$ of the elements of \boldsymbol{S} less than, equal to, or greater than the pivot, resp.

$$
L, \boldsymbol{E}, \boldsymbol{G} \leftarrow \text { empty sequences }
$$

$$
x \leftarrow \text { S.remove }(p)
$$

while \neg S.isEmpty ()
$y \leftarrow$ S.remove(S.first())
if $y<x$
L.addLast(y)
else if $y=x$
E.addLast(y)
else $\{\boldsymbol{y}>\boldsymbol{x}\}$
G.addLast(y)
return L, E, G

QUICK-SELECT VISUALIZATION

* An execution of quick-select can be visualized by a recursion path
+ Each node represents a recursive call of quick-select, and stores k and the remaining sequence

EXPECTED RUNNING TIME

* Consider a recursive call of quick-select on a sequence of size s Good call: the sizes of L and G are each less than $3 s / 4$
+ Bad call: one of L and G has size greater than $3 s / 4$

Good call

Bad call

* A call is good with probability $1 / 2$

1/2 of the possible pivots cause good calls:

Selection

EXPECTED RUNNING TIME, PART 2

* Probabilistic Fact \#1: The expected number of coin tosses required in ord er to get one head is two
* Probabilistic Fact \#2: Expectation is a linear function:
$+E(X+Y)=E(X)+E(Y)$
$+E(c X)=c E(X)$
* Let $T(n)$ denote the expected running time of quick-select.
* By Fact \#2,
$+T(n) \leq T(3 n / 4)+b n *($ expected \# of calls before a good call)
By Fact \#1,

$$
+T(n) \leq T(3 n / 4)+2 b n
$$

* That is, $T(n)$ is a geometric series:
$+T(n) \leq 2 b n+2 b(3 / 4) n+2 b(3 / 4)^{2} n+2 b(3 / 4)^{3} n+\ldots$
* So $T(n)$ is $O(n)$.
* We can solve the selection problem in $\mathrm{O}(\mathrm{n})$ expected time.

