
© 2014 Goodrich, Tamassia, Goldwasser

SORTING LOWER BOUND &
BUCKET-SORT AND RADIX-SORT

Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T.
Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014

Bucket-Sort and Radix-Sort

1

0 1 2 3 4 5 6 7 8 9
B

1, c 7, d 7, g 3, b 3, a 7, e

∅ ∅ ∅ ∅ ∅ ∅ ∅

© 2014 Goodrich, Tamassia, Goldwasser

COMPARISON-BASED SORTING

 Many sorting algorithms are comparison based.
 They sort by making comparisons between pairs of objects
 Examples: selection-sort, insertion-sort, heap-sort, merge-sort,

quick-sort, ...
 Let us therefore derive a lower bound on the running

time of any algorithm that uses comparisons to sort n
elements, x1, x2, …, xn.

Sorting Lower Bound

2

Is xi < xj?

yes

no

© 2014 Goodrich, Tamassia, Goldwasser

COUNTING COMPARISONS

 Let us just count comparisons then.
 Each possible run of the algorithm corresponds to a

root-to-leaf path in a decision tree

Sorting Lower Bound

3

xi < xj ?

xa < xb ?

xm < xo ? xp < xq ?xe < xf ? xk < xl ?

xc < xd ?

© 2014 Goodrich, Tamassia, Goldwasser

DECISION TREE HEIGHT

 The height of the decision tree is a lower bound on the running time
 Every input permutation must lead to a separate leaf output
 If not, some input …4…5… would have same output ordering as

…5…4…, which would be wrong
 Since there are n!=1⋅2 ⋅ … ⋅n leaves, the height is at least log (n!)

Sorting Lower Bound

4

minimum height (time)

log (n!)

xi < xj ?

xa < xb ?

xm < xo ? xp < xq ?xe < xf ? xk < xl ?

xc < xd ?

n!

© 2014 Goodrich, Tamassia, Goldwasser

THE LOWER BOUND

 Any comparison-based sorting algorithms takes at least log
(n!) time

 Therefore, any such algorithm takes time at least

 That is, any comparison-based sorting algorithm must run
in Ω(n log n) lower bound on its running time.

Sorting Lower Bound

5

).2/(log)2/(
2

log)!(log
2

nnnn
n

=

≥

© 2014 Goodrich, Tamassia, Goldwasser

LINEAR TIME SORTING

 We showed that the lower bound of sorting with
comparison is Ω (nlog n) time.

 Can we do better? Yes, with special assumptions
about the input sequence to be sorted.

 We will consider the problem of sorting a sequence of
entries, each a key-value pair, where the keys have a
restricted type
 Bucket-Sort
 Radix-Sort

Bucket-Sort and Radix-Sort

6

© 2014 Goodrich, Tamassia, Goldwasser

BUCKET-SORT

 Let be S be a sequence of n (key, element) entries with integer keys in the
range [0, N-1], for some integer N≥2,

 Bucket-sort uses the keys as indices into an auxiliary array B of size N
(buckets)
Phase 1: Empty sequence S by moving each entry (k, o) into its bucket B[k]
Phase 2: For i = 0, …, N - 1, move the entries of bucket B[i] to the end of sequence

S
 Analysis:

 Phase 1 takes O(n) time
 Phase 2 takes O(n + N) time

 Bucket-sort takes O(n + N) time

Bucket-Sort and Radix-Sort

7

© 2014 Goodrich, Tamassia, Goldwasser

BUCKET-SORT ALGORITHM

Bucket-Sort and Radix-Sort

8

Algorithm bucketSort(S):
Input: Sequence S of entries with integer keys in the range [0, N − 1]
Output: Sequence S sorted in nondecreasing order of the keys

let B be an array of N sequences, each of which is initially empty
for each entry e in S do
 k = the key of e
 remove e from S
 insert e at the end of bucket (sequence) B[k]
for i = 0 to N−1 do
 for each entry e in B[i] do
 remove e from B[i]

 insert e at the end of S

© 2014 Goodrich, Tamassia, Goldwasser

EXAMPLE

 Key range [0, 9]

Bucket-Sort and Radix-Sort

9

7, d 1, c 3, a 7, g 3, b 7, e

1, c 3, a 3, b 7, d 7, g 7, e

Phase 1

Phase 2
0 1 2 3 4 5 6 7 8 9

B

1, c 7, d 7, g 3, b 3, a 7, e

∅ ∅ ∅ ∅ ∅ ∅ ∅

© 2014 Goodrich, Tamassia, Goldwasser

PROPERTIES AND EXTENSIONS

 Key-type Property
 The keys are used as indices

into an array and cannot be
arbitrary objects

 No external comparator
 Stable Sort Property

 The relative order of any two
items with the same key is
preserved after the execution
of the algorithm

 Extensions
 Integer keys in the range [a,

b]
 Put entry (k, o) into bucket

B[k − a]
 String keys from a set D of

possible strings, where D has
constant size (e.g., names of
the 50 U.S. states)
 Sort D and compute the rank

r(k) of each string k of D in
the sorted sequence

 Put entry (k, o) into bucket
B[r(k)]

Bucket-Sort and Radix-Sort

10

© 2014 Goodrich, Tamassia, Goldwasser

LEXICOGRAPHIC ORDER

 A d-tuple is a sequence of d keys (k1, k2, …, kd), where key
ki is said to be the i-th dimension of the tuple

 Example:
 The Cartesian coordinates of a point in space are a 3-tuple

 The lexicographic order of two d-tuples is recursively
defined as follows

(x1, x2, …, xd) < (y1, y2, …, yd)
⇔

x1 < y1 ∨ x1 = y1 ∧ (x2, …, xd) < (y2, …, yd)
 I.e., the tuples are compared by the first dimension, then

by the second dimension, etc.

Bucket-Sort and Radix-Sort

11

© 2014 Goodrich, Tamassia, Goldwasser

STABLE SORTING

 When sorting key-value pairs, an important issue is how
equal keys are handled. Let S = ((k0,v0), . . . , (kn-1,vn-1)) be
a sequence of such entries.

 We say that a sorting algorithm is stable if, for any two
entries (ki,vi) and (kj ,vj) of S such that ki = kj and (ki,vi)
precedes (kj ,vj) in S before sorting (that is, i < j), entry (ki,vi)
also precedes entry (kj ,vj) after sorting.

 Stability is important for a sorting algorithm because
applications may want to preserve the initial order of
elements with the same key.

 Bucket-sort guarantees stability as long as we ensure that
all sequences act as queues

Bucket-Sort and Radix-Sort

12

© 2014 Goodrich, Tamassia, Goldwasser

LEXICOGRAPHIC-SORT

 Let Ci be the comparator that
compares two tuples by their
i-th dimension

 Let stableSort(S, C) be a stable
sorting algorithm that uses
comparator C

 Lexicographic-sort sorts a
sequence of d-tuples in
lexicographic order by
executing d times algorithm
stableSort, one per dimension

 Lexicographic-sort runs in
O(dT(n)) time, where T(n) is
the running time of stableSort

Bucket-Sort and Radix-Sort

13

Algorithm lexicographicSort(S)
 Input sequence S of d-tuples
 Output sequence S sorted in
 lexicographic order

 for i ← d downto 1

 stableSort(S, Ci)

Example:
(7,4,6) (5,1,5) (2,4,6) (2, 1, 4) (3, 2, 4)

(2, 1, 4) (3, 2, 4) (5,1,5) (7,4,6) (2,4,6)

(2, 1, 4) (5,1,5) (3, 2, 4) (7,4,6) (2,4,6)

(2, 1, 4) (2,4,6) (3, 2, 4) (5,1,5) (7,4,6)

© 2014 Goodrich, Tamassia, Goldwasser

RADIX-SORT
 Radix-sort is a specialization of

lexicographic-sort that uses
bucket-sort as the stable sorting
algorithm in each dimension

 Radix-sort is applicable to tuples
where the keys in each dimension
i are integers in the range [0, N −
1]

 Radix-sort runs in time O(d(n+N))
where the d is the dimension of
keys, n is the number of data, and
keys range is [0…N-1]

Bucket-Sort and Radix-Sort

14

Algorithm radixSort(S, N)
 Input sequence S of d-tuples such
 that (0, …, 0) ≤ (x1, …, xd) and
 (x1, …, xd) ≤ (N − 1, …, N − 1)
 for each tuple (x1, …, xd) in S
 Output sequence S sorted in
 lexicographic order
 for i ← d downto 1

 bucketSort(S, N)

© 2014 Goodrich, Tamassia, Goldwasser

RADIX-SORT FOR BINARY NUMBERS
 Consider a sequence of n b-bit

integers
 x = xb − 1 … x1x0

 We represent each element as a
b-tuple of integers in the range
[0, 1] and apply radix-sort with N
= 2

 This application of the radix-sort
algorithm runs in O(bn) time

 For example, we can sort a
sequence of 32-bit integers in
linear time

Bucket-Sort and Radix-Sort

15

Algorithm binaryRadixSort(S)
 Input sequence S of b-bit
 integers
 Output sequence S sorted
 replace each element x
 of S with the item (0, x)
 for i ← 0 to b − 1
 replace the key k of
 each item (k, x) of S
 with bit xi of x
 bucketSort(S, 2)

© 2014 Goodrich, Tamassia, Goldwasser

EXAMPLE

 Sorting a sequence of 4-bit integers

Bucket-Sort and Radix-Sort

16

1001

0010

1101

0001

1110

0010

1110

1001

1101

0001

1001

1101

0001

0010

1110

1001

0001

0010

1101

1110

0001

0010

1001

1101

1110

© 2014 Goodrich, Tamassia, Goldwasser

Quick-Sort

17

SUMMARY OF SORTING ALGORITHMS
Algorithm Time Notes

selection-sort O(n2) in-place
 slow (good for small inputs)

insertion-sort O(n2) in-place
 slow (good for small inputs)

quick-sort
O(n log n)
expected

 in-place, randomized
 fastest (good for large inputs)

heap-sort O(n log n) in-place
 fast (good for large inputs)

merge-sort O(n log n) sequential data access
 fast (good for huge inputs)

bucket-sort O(n+N) integer keys of range [0 … N]

radix-sort O(d(n+N)) d diinteger keys of range [0 … N]

© 2014 Goodrich, Tamassia, Goldwasser

Selection

18

SELECTION PROBLEM

Presentation for use with the textbook Data Structures and Algorithms
in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwass
er, Wiley, 2014

© 2014 Goodrich, Tamassia, Goldwasser

Selection

19

THE SELECTION PROBLEM

 Given an integer k and n elements x1, x2, …, xn, taken
from a total order, find the k-th smallest element in this
set.

 Of course, we can sort the set in O(n log n) time and
then index the k-th element.

 Can we solve the selection problem faster?

7 4 9 6 2 → 2 4 6 7 9 k=3

© 2014 Goodrich, Tamassia, Goldwasser

Selection

20

PRUNE-AND-SEARCH

 Quick-select is a randomized
selection algorithm based on the
prune-and-search paradigm:
 Prune: pick a random element x

(called pivot) and partition S into
 L: elements less than x
 E: elements equal x
 G: elements greater than x

 Search: depending on k, either
answer is in E, or we need to
recur in either L or G

x

x

L G E
k < |L|

|L| < k < |L|+|E|
(done)

k > |L|+|E|
k’ = k - |L| - |E|

© 2014 Goodrich, Tamassia, Goldwasser

Selection

21

PARTITION

 We partition an input
sequence as in the quick-select
algorithm:
 We remove, in turn, each

element y from S and
 We insert y into L, E or G,

depending on the result of the
comparison with the pivot x

 Each insertion and removal is
at the beginning or at the end
of a sequence, and hence
takes O(1) time

 Thus, the partition step of
quick-select takes O(n) time

Algorithm partition(S, p)
 Input sequence S, position p of pivot
 Output subsequences L, E, G of the
 elements of S less than, equal to,
 or greater than the pivot, resp.
 L, E, G ← empty sequences

x ← S.remove(p)
while ¬S.isEmpty()
 y ← S.remove(S.first())
 if y < x
 L.addLast(y)
 else if y = x
 E.addLast(y)
 else { y > x }
 G.addLast(y)
return L, E, G

© 2014 Goodrich, Tamassia, Goldwasser

Selection

22

QUICK-SELECT VISUALIZATION

 An execution of quick-select can be visualized by a
recursion path
 Each node represents a recursive call of quick-select, and

stores k and the remaining sequence

k=5, S=(7 4 9 3 2 6 5 1 8)

5

k=2, S=(7 4 9 6 5 8)

k=2, S=(7 4 6 5)

k=1, S=(7 6 5)

© 2014 Goodrich, Tamassia, Goldwasser

Selection

23

EXPECTED RUNNING TIME

 Consider a recursive call of quick-select on a sequence of size s
 Good call: the sizes of L and G are each less than 3s/4
 Bad call: one of L and G has size greater than 3s/4

 A call is good with probability 1/2
 1/2 of the possible pivots cause good calls:

7 9 7 1 → 1

7 2 9 4 3 7 6 1 9

2 4 3 1 7 2 9 4 3 7 6 1

7 2 9 4 3 7 6 1

Good call Bad call

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Good pivots Bad pivots Bad pivots

© 2014 Goodrich, Tamassia, Goldwasser

Selection

24

EXPECTED RUNNING TIME, PART 2
 Probabilistic Fact #1: The expected number of coin tosses required in ord

er to get one head is two
 Probabilistic Fact #2: Expectation is a linear function:

 E(X + Y) = E(X) + E(Y)
 E(cX) = cE(X)

 Let T(n) denote the expected running time of quick-select.
 By Fact #2,

 T(n) < T(3n/4) + bn*(expected # of calls before a good call)
 By Fact #1,

 T(n) < T(3n/4) + 2bn
 That is, T(n) is a geometric series:

 T(n) < 2bn + 2b(3/4)n + 2b(3/4)2n + 2b(3/4)3n + …
 So T(n) is O(n).
 We can solve the selection problem in O(n) expected time.

	Sorting LoweR Bound & �Bucket-Sort and Radix-Sort
	Comparison-Based Sorting
	Counting Comparisons
	Decision Tree Height
	The Lower Bound
	Linear time Sorting
	Bucket-Sort
	Bucket-Sort algorithm
	Example
	Properties and Extensions
	Lexicographic Order
	Stable Sorting
	Lexicographic-Sort
	Radix-Sort
	Radix-Sort for Binary Numbers
	Example
	Summary of Sorting Algorithms
	Selection Problem
	The Selection Problem
	Prune-and-Search
	Partition
	Quick-Select Visualization
	Expected Running Time
	Expected Running Time, Part 2

