

SORTING LOWER BOUND & BUCKET-SORT AND RADIX-SORT

Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014

© 2014 Goodrich, Tamassia, Goldwasser

COMPARISON-BASED SORTING

- * Many sorting algorithms are comparison based.
 - + They sort by making comparisons between pairs of objects
 - + Examples: selection-sort, insertion-sort, heap-sort, merge-sort, quick-sort, ...
- Let us therefore derive a lower bound on the running time of any algorithm that uses comparisons to sort n elements, x₁, x₂, ..., x_n.

Sorting Lower Bound

COUNTING COMPARISONS

- * Let us just count comparisons then.
- * Each possible run of the algorithm corresponds to a root-to-leaf path in a decision tree

Sorting Lower Bound

DECISION TREE HEIGHT

- * The height of the decision tree is a lower bound on the running time
- * Every input permutation must lead to a separate leaf output
- * If not, some input ...4...5... would have same output ordering as ...5...4..., which would be wrong
- * Since there are $n!=1.2 \cdot ... \cdot n$ leaves, the height is at least log (n!)

Sorting Lower Bound

THE LOWER BOUND

- Any comparison-based sorting algorithms takes at least log (n!) time
- * Therefore, any such algorithm takes time at least

$$\log (n!) \ge \log \left(\frac{n}{2}\right)^{\frac{n}{2}} = (n/2)\log(n/2).$$

× That is, any comparison-based sorting algorithm must run in $\Omega(n \log n)$ lower bound on its running time.

LINEAR TIME SORTING

- We showed that the lower bound of sorting with comparison is Ω (*n*log *n*) time.
- Can we do better? Yes, with special assumptions about the input sequence to be sorted.
- We will consider the problem of sorting a sequence of entries, each a key-value pair, where the keys have a restricted type
 - + Bucket-Sort
 - + Radix-Sort

© 2014 Goodrich, Tamassia, Goldwasser

BUCKET-SORT

- Let be S be a sequence of n (key, element) entries with <u>integer keys</u> in the range [0, №1], for some integer N≥2,
- Bucket-sort uses the keys as indices into an auxiliary array B of size N (buckets)

Phase 1: Empty sequence S by moving each entry (k, o) into its bucket B[k]
Phase 2: For i = 0, ..., N-1, move the entries of bucket B[i] to the end of sequence S

- × Analysis:
 - + Phase 1 takes *O*(*n*) time
 - + Phase 2 takes O(n + M) time

Bucket-sort takes <u>O(n + M) time</u>

BUCKET-SORT ALGORITHM

```
Algorithm bucketSort(S):
Input: Sequence S of entries with integer keys in the range [0, N - 1]
Output: Sequence S sorted in nondecreasing order of the keys
let B be an array of N sequences, each of which is initially empty
for each entry e in S do
 k = the key of e
 remove e from S
 insert e at the end of bucket (sequence) B[k]
for i = 0 to N-1 do
 for each entry e in B[i] do
    remove e from B[i]
    insert e at the end of S
```

EXAMPLE

^{© 2014} Goodrich, Tamassia, Goldwasser

PROPERTIES AND EXTENSIONS

- × Key-type Property
 - + The keys are used as indices into an array and cannot be arbitrary objects
 - + No external comparator
- × Stable Sort Property
 - + The relative order of any two items with the same key is preserved after the execution of the algorithm

× Extensions

- + Integer keys in the range [a, b]
 - × Put entry (k, o) into bucket B[k-a]
- + String keys from a set *D* of possible strings, where *D* has constant size (e.g., names of the 50 U.S. states)
 - Sort *D* and compute the rank *r*(*k*) of each string *k* of *D* in the sorted sequence
 - × Put entry (k, o) into bucket B[r(k)]

LEXICOGRAPHIC ORDER

- × A *d*-tuple is a sequence of *d* keys $(k_1, k_2, ..., k_d)$, where key k_i is said to be the *i*-th dimension of the tuple
- × Example:
 - + The Cartesian coordinates of a point in space are a 3-tuple
- The lexicographic order of two *d*-tuples is recursively defined as follows

 $(\boldsymbol{x}_1, \boldsymbol{x}_2, \dots, \boldsymbol{x}_d) < (\boldsymbol{y}_1, \boldsymbol{y}_2, \dots, \boldsymbol{y}_d)$ \Leftrightarrow

 $x_1 < y_1 \lor x_1 = y_1 \land (x_2, ..., x_d) < (y_2, ..., y_d)$

I.e., the tuples are compared by the first dimension, then by the second dimension, etc.

STABLE SORTING

- * When sorting key-value pairs, an important issue is how equal keys are handled. Let $S = ((k_0, v_0), \dots, (k_{n-1}, v_{n-1}))$ be a sequence of such entries.
- * We say that a sorting algorithm is *stable* if, for any two entries (k_i, v_i) and (k_j, v_j) of S such that $k_i = k_j$ and (k_i, v_i) precedes (k_j, v_j) in S before sorting (that is, i < j), entry (k_i, v_i) also precedes entry (k_j, v_j) after sorting.
- Stability is important for a sorting algorithm because applications may want to preserve the initial order of elements with the same key.
- Bucket-sort guarantees stability as long as we ensure that all sequences act as <u>queues</u>

LEXICOGRAPHIC-SORT

- Let C_i be the comparator that compares two tuples by their *i*-th dimension
- Let *stableSort(S, C)* be a stable sorting algorithm that uses comparator C
- Lexicographic-sort sorts a sequence of *d*-tuples in lexicographic order by executing *d* times algorithm *stableSort*, one per dimension
- * Lexicographic-sort runs in O(dT(n)) time, where T(n) is the running time of *stableSort*

© 2014 Goodrich, Tamassia, Goldwasser

Algorithm *lexicographicSort*(*S*)

Input sequence *S* of *d*-tuples Output sequence *S* sorted in lexicographic order

for $i \leftarrow d$ downto 1 stableSort(S, C_i)

Example:

(7,4,6) (5,1,5) (2,4,6) (2, 1, 4) (3, 2, 4)

(2, 1, 4) (3, 2, 4) (5, 1, 5) (7, 4, 6) (2, 4, 6)

(2, 1, 4) (5,1,5) (3, 2, 4) (7,4,6) (2,4,6)

(2, 1, 4) (2,4,6) (3, 2, 4) (5,1,5) (7,4,6)

RADIX-SORT

- Radix-sort is a specialization of lexicographic-sort that uses bucket-sort as the stable sorting algorithm in each dimension
- Radix-sort is applicable to tuples where the keys in each dimension *i* are integers in the range [0, N – 1]
- Radix-sort runs in time O(d(n+N)) where the d is the dimension of keys, n is the number of data, and keys range is [0...N-1]

Algorithm *radixSort*(*S*, *N*)

Input sequence S of d-tuples such that $(0, ..., 0) \le (x_1, ..., x_d)$ and $(x_1, ..., x_d) \le (N - 1, ..., N - 1)$ for each tuple $(x_1, ..., x_d)$ in S Output sequence S sorted in lexicographic order for $i \leftarrow d$ downto 1

bucketSort(S, N)

RADIX-SORT FOR BINARY NUMBERS

Consider a sequence of *n b*-bit integers

 $\boldsymbol{x} = \boldsymbol{x}_{\boldsymbol{b}-1} \dots \boldsymbol{x}_1 \boldsymbol{x}_0$

- We represent each element as a *b*-tuple of integers in the range [0, 1] and apply radix-sort with *N* = 2
- This application of the radix-sort algorithm runs in O(bn) time
- For example, we can sort a sequence of 32-bit integers in linear time

Algorithm *binaryRadixSort(S)*

Input sequence *S* of *b*-bit integers Output sequence S sorted replace each element *x* of S with the item (0, x)for $i \leftarrow 0$ to b - 1replace the key k of each item (k, x) of S with bit x_i of x*bucketSort*(*S*, 2)

Sorting a sequence of 4-bit integers

Quick-Sort

SUMMARY OF SORTING ALGORITHMS

Algorithm	Time	Notes
selection-sort	$O(n^2)$	in-placeslow (good for small inputs)
insertion-sort	$O(n^2)$	in-placeslow (good for small inputs)
quick-sort	O(n log n) expected	 in-place, randomized fastest (good for large inputs)
heap-sort	$O(n \log n)$	in-placefast (good for large inputs)
merge-sort	$O(n \log n)$	sequential data accessfast (good for huge inputs)
bucket-sort	0(n+N)	integer keys of range [0 N]
radix-sort	<i>O</i> (<i>d</i> (<i>n</i> + <i>N</i>))	d diinteger keys of range [0 N]

SELECTION PROBLEM

Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwass er, Wiley, 2014

© 2014 Goodrich, Tamassia, Goldwasser

THE SELECTION PROBLEM

- Given an integer k and n elements x₁, x₂, ..., x_n, taken from a total order, find the k-th smallest element in this set.
- Of course, we can sort the set in O(n log n) time and then index the k-th element.

$$k=3 \quad \boxed{7 \quad 4 \quad 9 \quad \underline{6} \quad 2 \quad \rightarrow \quad 2 \quad 4 \quad \underline{6} \quad 7 \quad 9}$$

Can we solve the selection problem faster?

PRUNE-AND-SEARCH

- Quick-select is a randomized selection algorithm based on the prune-and-search paradigm:
 - Prune: pick a random element x
 (called pivot) and partition S into
 - \times L: elements less than x
 - \times **E**: elements equal **x**
 - G: elements greater than x
 - + Search: depending on k, either answer is in *E*, or we need to recur in either *L* or *G*

 $k > |\breve{L}| + |E|$ k' = k - |L| - |E| $k \leq |L|$ |L| < k < |L| + |E|(done)

PARTITION

- We partition an input sequence as in the quick-select algorithm:
 - + We remove, in turn, each element *y* from *S* and
 - + We insert *y* into *L*, *E* or *G*, depending on the result of the comparison with the pivot *x*
- Each insertion and removal is at the beginning or at the end of a sequence, and hence takes O(1) time
- * Thus, the partition step of quick-select takes O(n) time

© 2014 Goodrich, Tamassia, Goldwasser

```
Algorithm partition(S, p)
   Input sequence S, position p of pivot
   Output subsequences L, E, G of the
        elements of S less than, equal to,
       or greater than the pivot, resp.
   L, E, G \leftarrow empty sequences
   x \leftarrow S.remove(p)
   while ¬S.isEmpty()
       y \leftarrow S.remove(S.first())
       if y < x
           L.addLast(y)
       else if y = x
            E.addLast(y)
       else { y > x }
            G.addLast(y)
   return L, E, G
```

21

OUICK-SELECT VISUALIZATION

- An execution of quick-select can be visualized by a recursion path
 - + Each node represents a recursive call of quick-select, and stores k and the remaining sequence

EXPECTED RUNNING TIME

* Consider a recursive call of quick-select on a sequence of size s

- Good call: the sizes of *L* and *G* are each less than 3s/4
- + Bad call: one of L and G has size greater than 3s/4

A call is good with probability 1/2
 + 1/2 of the possible pivots cause good calls:

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
 Bad pivots Good pivots Bad pivots

EXPECTED RUNNING TIME, PART 2

- Probabilistic Fact #1: The expected number of coin tosses required in ord er to get one head is two
- * Probabilistic Fact #2: Expectation is a linear function:
 - + E(X+Y) = E(X) + E(Y)
 - + E(cX) = cE(X)
- * Let T(n) denote the expected running time of quick-select.
- × By Fact #2,
 - + $T(n) \le T(3n/4) + bn^*$ (expected # of calls before a good call)
- × By Fact #1,
 - $+ T(n) \le T(3n/4) + 2bn$
- * That is, T(n) is a geometric series:
 - + $T(n) \le 2bn + 2b(3/4)n + 2b(3/4)^2n + 2b(3/4)^3n + \dots$
- × So T(n) is O(n).
- * We can solve the selection problem in O(n) expected time.