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Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. 
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COMPARISON-BASED SORTING 

 Many sorting algorithms are comparison based. 
 They sort by making comparisons between pairs of objects 
 Examples: selection-sort, insertion-sort, heap-sort, merge-sort, 

quick-sort, ... 
 Let us therefore derive a lower bound on the running 

time of any algorithm that uses comparisons to sort n 
elements, x1, x2, …, xn. 

Sorting Lower Bound 
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COUNTING COMPARISONS 

 Let us just count comparisons then. 
 Each possible run of the algorithm corresponds to a 

root-to-leaf path in a decision tree 

Sorting Lower Bound 
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DECISION TREE HEIGHT 

 The height of the decision tree is a lower bound on the running time 
 Every input permutation must lead to a separate leaf output  
 If not, some input …4…5… would have same output ordering as 

…5…4…, which would be wrong 
 Since there are n!=1⋅2 ⋅ … ⋅n leaves, the height is at least log (n!) 

Sorting Lower Bound 
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THE LOWER BOUND 

 Any comparison-based sorting algorithms takes at least log 
(n!) time 

 Therefore, any such algorithm takes time at least 
 
 
 
 
 

 That is, any comparison-based sorting algorithm must run 
in Ω(n log n) lower bound on its running time. 
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LINEAR TIME SORTING 

 We showed that the lower bound of sorting with  
comparison is  Ω (nlog n) time.  

 Can we do better?  Yes, with special assumptions 
about the input sequence to be sorted. 

 We will consider the problem of sorting a sequence of 
entries, each a key-value pair, where the keys have a 
restricted type 
 Bucket-Sort 
 Radix-Sort 

Bucket-Sort and Radix-Sort 
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BUCKET-SORT 

 Let be S be a sequence of n (key, element) entries with integer keys in the 
range [0, N-1], for some integer N≥2, 

 Bucket-sort uses the keys as indices into an auxiliary array B of size N 
(buckets) 
Phase 1: Empty sequence S by moving each entry (k, o) into its bucket B[k] 
Phase 2: For i = 0, …, N - 1, move the entries of bucket B[i] to the end of  sequence 

S 
 Analysis: 

 Phase 1 takes O(n) time 
 Phase 2 takes O(n + N) time 

 Bucket-sort takes O(n + N) time  

Bucket-Sort and Radix-Sort 
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BUCKET-SORT ALGORITHM 

 

Bucket-Sort and Radix-Sort 
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Algorithm bucketSort(S): 
Input: Sequence S of entries with integer keys in the range [0, N − 1]  
Output: Sequence S sorted in nondecreasing order of the keys 
 
let B be an array of N sequences, each of which is initially empty  
for each entry e in S do 
  k = the key of e 
  remove e from S 
  insert e at the end of bucket (sequence) B[k]  
for i = 0 to N−1 do 
  for each entry e in B[i] do 
      remove e from B[i] 

      insert e at the end of S 
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EXAMPLE 

 Key range [0, 9] 

Bucket-Sort and Radix-Sort 
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7, d 1, c 3, a 7, g 3, b 7, e 

1, c 3, a 3, b 7, d 7, g 7, e 

Phase 1 

Phase 2 
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PROPERTIES AND EXTENSIONS 

 Key-type Property 
 The keys are used as indices 

into an array and cannot be 
arbitrary objects 

 No external comparator 
 Stable Sort Property 

 The relative order of any two 
items with the same key is 
preserved after the execution 
of the algorithm 
 

 Extensions 
 Integer keys in the range [a, 

b] 
 Put entry (k, o) into bucket 

B[k − a]  
 String keys from a set D of 

possible strings, where D has 
constant size (e.g., names of 
the 50 U.S. states) 
 Sort D and compute the rank 

r(k) of each string k of D in 
the sorted sequence  

 Put entry (k, o) into bucket  
B[r(k)] 

Bucket-Sort and Radix-Sort 
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LEXICOGRAPHIC ORDER 

 A d-tuple is a sequence of d keys (k1, k2, …, kd), where key 
ki is said to be the i-th dimension of the tuple 

 Example: 
 The Cartesian coordinates of a point in space are a 3-tuple 

 The lexicographic order of two d-tuples is recursively 
defined as follows 

(x1, x2, …, xd) < (y1, y2, …, yd) 
⇔ 

x1 < y1  ∨  x1 = y1 ∧ (x2, …, xd) < (y2, …, yd) 
 I.e., the tuples are compared by the first dimension, then 

by the second dimension, etc. 

Bucket-Sort and Radix-Sort 
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STABLE SORTING 

 When sorting key-value pairs, an important issue is how 
equal keys are handled. Let S = ((k0,v0), . . . , (kn-1,vn-1)) be 
a sequence of such entries.  

 We say that a sorting algorithm is stable if, for any two 
entries (ki,vi) and (kj ,vj) of S such that ki = kj and (ki,vi) 
precedes (kj ,vj) in S before sorting (that is, i < j), entry (ki,vi) 
also precedes entry (kj ,vj) after sorting.  

 Stability is important for a sorting algorithm because 
applications may want to preserve the initial order of 
elements with the same key. 

 Bucket-sort guarantees stability as long as we ensure that 
all sequences act as queues 

Bucket-Sort and Radix-Sort 
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LEXICOGRAPHIC-SORT 

 Let Ci be the comparator that 
compares two tuples by their 
i-th dimension 

 Let stableSort(S, C) be a stable 
sorting algorithm that uses 
comparator C 

 Lexicographic-sort sorts a 
sequence of d-tuples in 
lexicographic order by 
executing d times algorithm 
stableSort, one per dimension 

 Lexicographic-sort runs in 
O(dT(n)) time, where T(n) is 
the running time of stableSort  

Bucket-Sort and Radix-Sort 
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Algorithm lexicographicSort(S) 
 Input sequence S of  d-tuples 
 Output sequence S sorted in 
  lexicographic order 
 
 for i ← d downto 1 

 stableSort(S, Ci) 

Example: 
(7,4,6) (5,1,5) (2,4,6) (2, 1, 4) (3, 2, 4) 

(2, 1, 4) (3, 2, 4) (5,1,5) (7,4,6) (2,4,6) 

(2, 1, 4) (5,1,5) (3, 2, 4) (7,4,6) (2,4,6) 

(2, 1, 4) (2,4,6) (3, 2, 4) (5,1,5) (7,4,6) 
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RADIX-SORT 
 Radix-sort is a specialization of 

lexicographic-sort that uses 
bucket-sort as the stable sorting 
algorithm in each dimension 

 Radix-sort is applicable to tuples 
where the keys in each dimension 
i are integers in the range [0, N − 
1] 

 Radix-sort runs in time O(d(n+N)) 
where the d is the dimension of 
keys, n is the number of data, and 
keys range is [0…N-1]   

Bucket-Sort and Radix-Sort 
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Algorithm radixSort(S, N) 
 Input sequence S of  d-tuples such 
  that (0, …, 0) ≤ (x1, …, xd) and 
  (x1, …, xd) ≤ (N − 1, …, N − 1) 
  for each tuple (x1, …, xd) in S  
 Output sequence S sorted in 
  lexicographic order 
 for i ← d downto 1 

 bucketSort(S, N) 
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RADIX-SORT FOR BINARY NUMBERS 
 Consider a sequence of n b-bit 

integers  
 x = xb − 1 … x1x0 

 We represent each element as a 
b-tuple of integers in the range 
[0, 1] and apply radix-sort with N 
= 2 

 This application of the radix-sort 
algorithm runs in O(bn) time  

 For example, we can sort a 
sequence of 32-bit integers in 
linear time 

Bucket-Sort and Radix-Sort 
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Algorithm binaryRadixSort(S) 
 Input sequence S of b-bit 
  integers  
 Output sequence S sorted 
 replace each element x 
  of S with the item (0, x) 
 for i ← 0 to b − 1 
  replace the key k of  
   each item (k, x) of S 
  with bit xi of x 
  bucketSort(S, 2) 
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EXAMPLE 

 Sorting a sequence of 4-bit integers 

Bucket-Sort and Radix-Sort 
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Quick-Sort 
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SUMMARY OF SORTING ALGORITHMS 
Algorithm Time Notes 

selection-sort O(n2)  in-place 
 slow (good for small inputs) 

insertion-sort O(n2)  in-place 
 slow (good for small inputs) 

quick-sort 
O(n log n) 
expected 

 in-place, randomized 
 fastest (good for large inputs) 

heap-sort O(n log n)  in-place 
 fast (good for large inputs) 

merge-sort O(n log n)  sequential data access 
 fast  (good for huge inputs) 

bucket-sort O(n+N)  integer keys of range [0 … N]  

radix-sort O(d(n+N))  d diinteger keys of range [0 … N]  



© 2014 Goodrich, Tamassia, Goldwasser 

Selection 
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SELECTION PROBLEM 

Presentation for use with the textbook Data Structures and Algorithms 
in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwass
er, Wiley, 2014 
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Selection 
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THE SELECTION PROBLEM 

 Given an integer k and n elements x1, x2, …, xn, taken 
from a total order, find the k-th smallest element in this 
set. 

 Of course, we can sort the set in O(n log n) time and 
then index the k-th element. 
 
 

 Can we solve the selection problem faster? 

7  4  9  6  2  →  2  4  6  7  9 k=3 
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Selection 
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PRUNE-AND-SEARCH 

 Quick-select is a randomized 
selection algorithm based on the 
prune-and-search paradigm: 
 Prune: pick a random element x 

(called pivot) and partition S into  
 L: elements less than x 
 E: elements equal x 
 G: elements greater than x 

 Search: depending on k, either 
answer is in E, or we need to 
recur in either L or G 

x 

x 

L G E 
k < |L| 

|L| < k < |L|+|E| 
(done) 

k > |L|+|E| 
k’ = k - |L| - |E| 
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Selection 
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PARTITION 

 We partition an input 
sequence as in the quick-select 
algorithm: 
 We remove, in turn, each 

element y from S and  
 We insert y into L, E or G, 

depending on the result of the 
comparison with the pivot x 

 Each insertion and removal is 
at the beginning or at the end 
of a sequence, and hence 
takes O(1) time 

 Thus, the partition step of 
quick-select takes O(n) time 

Algorithm partition(S, p) 
 Input sequence S, position p of pivot  
 Output subsequences L, E, G of the  
  elements of S less than, equal to, 
  or greater than the pivot, resp. 
 L, E, G ← empty sequences 

x ← S.remove(p)  
while ¬S.isEmpty() 
 y ← S.remove(S.first()) 
 if y < x 
  L.addLast(y) 
 else if y = x 
   E.addLast(y) 
 else { y > x } 
  G.addLast(y) 
return L, E, G 
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Selection 
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QUICK-SELECT VISUALIZATION 

 An execution of quick-select can be visualized by a 
recursion path 
 Each node represents a recursive call of quick-select, and 

stores k and the remaining sequence 

k=5, S=(7  4  9  3  2  6  5  1  8) 

5 

k=2, S=(7  4  9  6  5  8) 

k=2, S=(7  4   6  5) 

k=1, S=(7  6  5) 
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Selection 
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EXPECTED RUNNING TIME 

 Consider a recursive call of quick-select on a sequence of size s 
 Good call: the sizes of L and G are each less than 3s/4 
 Bad call: one of L and G has size greater than 3s/4 

 
 
 
 
 

 A call is good with probability 1/2 
 1/2 of the possible pivots cause good calls: 

7  9  7  1  →  1 

7  2  9  4 3  7  6  1 9 

2  4  3  1  7 2 9 4 3 7 6 1 

7  2  9  4 3  7  6  1 

Good call Bad call 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Good pivots Bad pivots Bad pivots 
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Selection 
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EXPECTED RUNNING TIME, PART 2 
 Probabilistic Fact #1: The expected number of coin tosses required in ord

er to get one head is two 
 Probabilistic Fact #2: Expectation is a linear function: 

 E(X + Y ) = E(X ) + E(Y ) 
 E(cX ) = cE(X ) 

 Let T(n) denote the expected running time of quick-select. 
 By Fact #2, 

 T(n) < T(3n/4) + bn*(expected # of calls before a good call) 
 By Fact #1, 

 T(n) < T(3n/4) + 2bn 
 That is, T(n) is a geometric series: 

 T(n) < 2bn + 2b(3/4)n + 2b(3/4)2n + 2b(3/4)3n + … 
 So T(n) is O(n). 
 We can solve the selection problem in O(n) expected time. 
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