
© 2014 Goodrich, Tamassia, Goldwasser

SORTING WITH DIVIDE AND CONQUER SCHEME

Sorting

1

Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edit
ion, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014

© 2014 Goodrich, Tamassia, Goldwasser

TYPES OF SORTING

 Sorting algorithms we have seen so far:
 insertion-sort
 selection-sort
 heap-sort

 Divide-and-conquer based sorting
 merge-sort
 quick-sort

 Linear time Sorting
 bucket-sort
 radix-sort

Divide-and-Conquer

2

Merge Sort

3

MERGE SORT

7 2  9 4 → 2 4 7 9

7  2 → 2 7 9  4 → 4 9

7 → 7 2 → 2 9 → 9 4 → 4

© 2014 Goodrich, Tamassia, Goldwasser

Merge Sort

4

MERGE-SORT

 Merge-sort on an input
sequence S with n elements
consists of three steps:
 Divide: If S has zero or one element,

return S. Otherwise partition S into
two sequences S1 and S2 of about
n/2 elements each

 Conquer: recursively sort S1 and S2

 Combine: merge sorted S1 and
sorted S2 into a unique sorted
sequence

Algorithm mergeSort(S)
 Input sequence S with n
 elements
 Output sequence S sorted

 according to C
if S.size() > 1
 (S1, S2) ← partition(S, n/2)
 mergeSort(S1)
 mergeSort(S2)
 S ← merge(S1, S2)

© 2014 Goodrich, Tamassia, Goldwasser

Merge Sort

5

DIVIDE-AND-CONQUER

 Divide-and conquer is a general
algorithm design paradigm:
 Divide: divide the input data S in

two disjoint subsets S1 and S2
 Conquer: solve the subproblems

associated with S1 and S2
 Combine: combine the solutions

for S1 and S2 into a solution for S
 The base case for the recursion are

subproblems of size 0 or 1

 Merge-sort is a sorting
algorithm based on the divide-
and-conquer paradigm

 Like heap-sort
 It has O(n log n) running

time
 Unlike heap-sort

 It does not use an auxiliary
priority queue

 It accesses data in a
sequential manner (suitable
to sort data on a disk)

© 2014 Goodrich, Tamassia, Goldwasser

Merge Sort

6

MERGING TWO SORTED SEQUENCES

 The conquer step of
merge-sort consists of
merging two sorted
sequences A and B into a
sorted sequence S
containing the union of the
elements of A and B

 Merging two sorted
sequences, each with n/2
elements and implemented
by means of a doubly
linked list, takes O(n) time

Algorithm merge(A, B)
 Input sequences A and B with
 n/2 elements each
 Output sorted sequence of A ∪ B

S ← empty sequence
while ¬A.isEmpty() ∧ ¬B.isEmpty()
 if A.first().element() < B.first().element()
 S.addLast(A.remove(A.first()))
 else
 S.addLast(B.remove(B.first()))
while ¬A.isEmpty()
 S.addLast(A.remove(A.first()))
while ¬B.isEmpty()
 S.addLast(B.remove(B.first()))
return S

© 2014 Goodrich, Tamassia, Goldwasser

Merge Sort

7

MERGE-SORT TREE
 An execution of merge-sort is depicted by a binary tree

T, called the merge-sort tree
 Each node represents a recursive call of merge-sort and stores

 unsorted sequence before the execution and its partition
 sorted sequence at the end of the execution

 the root is the initial call
 the leaves are calls on subsequences of size 0 or 1

7 2  9 4 → 2 4 7 9

7  2 → 2 7 9  4 → 4 9

7 → 7 2 → 2 9 → 9 4 → 4

© 2014 Goodrich, Tamassia, Goldwasser

EXAMPLE MERGE-SORT TREE T
Divide-and-Conquer

8

input sequences processed at each node of T output sequences generated at each node of T.

© 2014 Goodrich, Tamassia, Goldwasser

Merge Sort

9

EXECUTION EXAMPLE

 Partition

7 2 9 4 → 2 4 7 9 3 8 6 1 → 1 3 8 6

7 2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4  3 8 6 1 → 1 2 3 4 6 7 8 9

© 2014 Goodrich, Tamassia, Goldwasser

Merge Sort

10

EXECUTION EXAMPLE (CONT.)

 Recursive call, partition

 7 2  9 4 → 2 4 7 9 3 8 6 1 → 1 3 8 6

7 2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4  3 8 6 1 → 1 2 3 4 6 7 8 9

© 2014 Goodrich, Tamassia, Goldwasser

Merge Sort

11

EXECUTION EXAMPLE (CONT.)

 Recursive call, partition

 7 2  9 4 → 2 4 7 9 3 8 6 1 → 1 3 8 6

7  2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4  3 8 6 1 → 1 2 3 4 6 7 8 9

© 2014 Goodrich, Tamassia, Goldwasser

Merge Sort

12

EXECUTION EXAMPLE (CONT.)

 Recursive call, base case

 7 2  9 4 → 2 4 7 9 3 8 6 1 → 1 3 8 6

7  2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4  3 8 6 1 → 1 2 3 4 6 7 8 9

© 2014 Goodrich, Tamassia, Goldwasser

Merge Sort

13

EXECUTION EXAMPLE (CONT.)

 Recursive call, base case

 7 2  9 4 → 2 4 7 9 3 8 6 1 → 1 3 8 6

7  2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4  3 8 6 1 → 1 2 3 4 6 7 8 9

© 2014 Goodrich, Tamassia, Goldwasser

Merge Sort

14

EXECUTION EXAMPLE (CONT.)

 Merge

 7 2  9 4 → 2 4 7 9 3 8 6 1 → 1 3 8 6

7  2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4  3 8 6 1 → 1 2 3 4 6 7 8 9

© 2014 Goodrich, Tamassia, Goldwasser

Merge Sort

15

EXECUTION EXAMPLE (CONT.)

 Recursive call, …, base case, merge

 7 2  9 4 → 2 4 7 9 3 8 6 1 → 1 3 8 6

7  2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4  3 8 6 1 → 1 2 3 4 6 7 8 9

9 → 9 4 → 4

© 2014 Goodrich, Tamassia, Goldwasser

Merge Sort

16

EXECUTION EXAMPLE (CONT.)

 Merge

 7 2  9 4 → 2 4 7 9 3 8 6 1 → 1 3 8 6

7  2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4  3 8 6 1 → 1 2 3 4 6 7 8 9

© 2014 Goodrich, Tamassia, Goldwasser

Merge Sort

17

EXECUTION EXAMPLE (CONT.)

 Recursive call, …, merge, merge

 7 2  9 4 → 2 4 7 9 3 8 6 1 → 1 3 6 8

7  2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4  3 8 6 1 → 1 2 3 4 6 7 8 9

© 2014 Goodrich, Tamassia, Goldwasser

Merge Sort

18

EXECUTION EXAMPLE (CONT.)

 Merge

 7 2  9 4 → 2 4 7 9 3 8 6 1 → 1 3 6 8

7  2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4  3 8 6 1 → 1 2 3 4 6 7 8 9

© 2014 Goodrich, Tamassia, Goldwasser

ARRAY-BASED IMPLEMENTATION OF MERGE-SORT 1
Merge Sort

19

© 2014 Goodrich, Tamassia, Goldwasser

ARRAY-BASED IMPLEMENTATION OF MERGE-SORT 2
Divide-and-Conquer

20

A step in the merge of two sorted arrays for which S2[j] < S1[i].

indices i &j
represents the

number of
elements of S1 &

S2 that have
been copied to S

© 2014 Goodrich, Tamassia, Goldwasser

Merge Sort

21

ANALYSIS OF MERGE-SORT

 The height h of the merge-
sort tree is O(log n)
 at each recursive call we divide

in half the sequence,
 The overall work done at the

nodes of depth i is O(n)
 we partition and merge 2i

sequences of size n/2i
 we make 2i+1 recursive calls

 Thus, the total running time
of merge-sort is O(nlog n)

© 2014 Goodrich, Tamassia, Goldwasser

EXTRA1. LINKED LIST IMPLEMENTATIONS OF MERGE-SORT 1
Divide-and-Conquer

22

© 2014 Goodrich, Tamassia, Goldwasser

LINKED LIST IMPLEMENTATIONS OF MERGE-SORT 2

 Using basic queue as its container type

Divide-and-Conquer

23

© 2014 Goodrich, Tamassia, Goldwasser

EXAMPLE MERGE IN LINKED-LIST IMPLEMENTATION
Divide-and-Conquer

24

© 2014 Goodrich, Tamassia, Goldwasser

EXAMPLE MERGE IN LINKED-LIST IMPLEMENTATION 2
Divide-and-Conquer

25

© 2014 Goodrich, Tamassia, Goldwasser

EXTRA2. A BOTTOM-UP (NONRECURSIVE) MERGE-SORT

 nonrecursive version of array-based merge-sort, which
runs in O(nlogn)

 The main idea is to perform merge-sort bottom-up,
performing the merges level by level going up the
merge-sort tree.

Divide-and-Conquer

26

© 2014 Goodrich, Tamassia, Goldwasser

A BOTTOM-UP (NONRECURSIVE) MERGE-SORT

Divide-and-Conquer

27

© 2014 Goodrich, Tamassia, Goldwasser

A BOTTOM-UP (NONRECURSIVE) MERGE-SORT
Divide-and-Conquer

28

Quick-Sort

29

QUICK-SORT

7 4 9 6 2 → 2 4 6 7 9

4 2 → 2 4 7 9 → 7 9

2 → 2 9 → 9

© 2014 Goodrich, Tamassia, Goldwasser

Quick-Sort

30

QUICK-SORT

 Quick-sort is a randomized
sorting algorithm based on the
divide-and-conquer paradigm:
 Divide: pick a random element x

(called pivot) and partition S into
 L elements less than x
 E elements equal x
 G elements greater than x

 Conquer: Recursively sort L and G
 Combine: join L, E and G

© 2014 Goodrich, Tamassia, Goldwasser

Quick-Sort

31

PARTITION

 We partition an input sequence as
follows:
 We remove, in turn, each element

y from S and
 We insert y into L, E or G,

depending on the result of the
comparison with the pivot x

 Each insertion and removal is at
the beginning or at the end of a
sequence, and hence takes O(1)
time

 Thus, the partition step of quick-
sort takes O(n) time

Algorithm partition(S, p)
 Input sequence S, position p of pivot
 Output subsequences L, E, G of the
 elements of S less than, equal to,
 or greater than the pivot, resp.
 L, E, G ← empty sequences

x ← S.remove(p)
while ¬S.isEmpty()
 y ← S.remove(S.first())
 if y < x
 L.addLast(y)
 else if y = x
 E.addLast(y)
 else { y > x }
 G.addLast(y)
return L, E, G

© 2014 Goodrich, Tamassia, Goldwasser

Quick-Sort

32

QUICK-SORT TREE
 An execution of quick-sort is depicted by a binary tree called quick-

sort tree.
 Each node represents a recursive call of quick-sort and stores

 Unsorted sequence before the execution and its pivot
 Sorted sequence at the end of the execution

 The root is the initial call
 The leaves are calls on subsequences of size 0 or 1

© 2014 Goodrich, Tamassia, Goldwasser

Quick-Sort

33

EXECUTION EXAMPLE

 Pivot selection

7 2 9 4 → 2 4 7 9

2 → 2

7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 8 9

3 8 6 1 → 1 3 8 6

3 → 3 8 → 8 9 4 → 4 9

9 → 9 4 → 4

© 2014 Goodrich, Tamassia, Goldwasser

Quick-Sort

34

EXECUTION EXAMPLE (CONT.)

 Partition, recursive call, pivot selection

 2 4 3 1 → 2 4 7 9

9 4 → 4 9

9 → 9 4 → 4

7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 8 9

3 8 6 1 → 1 3 8 6

3 → 3 8 → 8 2 → 2

© 2014 Goodrich, Tamassia, Goldwasser

Quick-Sort

35

EXECUTION EXAMPLE (CONT.)

 Partition, recursive call, base case

 2 4 3 1 →→ 2 4 7

1 → 1 9 4 → 4 9

9 → 9 4 → 4

7 2 9 4 3 7 6 1 → → 1 2 3 4 6 7 8 9

3 8 6 1 → 1 3 8 6

3 → 3 8 → 8

© 2014 Goodrich, Tamassia, Goldwasser

Quick-Sort

36

EXECUTION EXAMPLE (CONT.)

 Recursive call, …, base case, join

3 8 6 1 → 1 3 8 6

7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 8 9

2 4 3 1 → 1 2 3 4

1 → 1 4 3 → 3 4

4 → 4

© 2014 Goodrich, Tamassia, Goldwasser

Quick-Sort

37

EXECUTION EXAMPLE (CONT.)

 Recursive call, pivot selection

7 9 7 1 → 1 3 8 6

8 8

7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 8 9

2 4 3 1 → 1 2 3 4

1 → 1 4 3 → 3 4

4 → 4

9 9

© 2014 Goodrich, Tamassia, Goldwasser

Quick-Sort

38

EXECUTION EXAMPLE (CONT.)

 Partition, …, recursive call, base case

7 9 7 1 → 1 3 8 6

7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 8 9

2 4 3 1 → 1 2 3 4

1 → 1 4 3 → 3 4

4 → 4

9 → 9

© 2014 Goodrich, Tamassia, Goldwasser

Quick-Sort

39

EXECUTION EXAMPLE (CONT.)

 Join, join

7 9 7 → 17 7 9

7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 7 9

2 4 3 1 → 1 2 3 4

1 → 1 4 3 → 3 4

4 → 4

9 → 9

© 2014 Goodrich, Tamassia, Goldwasser

Quick-Sort

40

WORST-CASE RUNNING TIME
 The worst case for quick-sort occurs when the pivot is the unique minim

um or maximum element
 One of L and G has size n − 1 and the other has size 0
 The running time is proportional to the sum

n + (n − 1) + … + 2 + 1
 Thus, the worst-case running time of quick-sort is O(n2)

depth time

0 n

1 n − 1

… …

n − 1 1

© 2014 Goodrich, Tamassia, Goldwasser

Quick-Sort

41

EXPECTED RUNNING TIME

 Consider a recursive call of quick-sort on a sequence of size s
 Good call: the sizes of L and G are each less than 3s/4
 Bad call: one of L and G has size greater than 3s/4

 A call is good with probability 1/2

 1/2 of the possible pivots cause good calls:

7 9 7 1 → 1

7 2 9 4 3 7 6 1 9

2 4 3 1 7 2 9 4 3 7 6 1

7 2 9 4 3 7 6 1

Good call Bad call

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Good pivots Bad pivots Bad pivots

© 2014 Goodrich, Tamassia, Goldwasser

LINKED
QUEUE
BASED

IMPLEM
ENTATIO
N

Quick-Sort

42

© 2014 Goodrich, Tamassia, Goldwasser

Quick-Sort

43

EXPECTED RUNNING TIME, PART 2
 Probabilistic Fact: The expected number of coin tosses required in order

to get k heads is 2k
 For a node of depth i, we expect

 i/2 ancestors are good calls
 The size of the input sequence for the current call is at most (3/4)i/2n

s(r)

s(a) s(b)

s(c) s(d) s(f)s(e)

time per levelexpected height

O(log n)

O(n)

O(n)

O(n)

total expected time: O(n log n)

 Therefore, we have
 For a node of depth 2log4/3n, the

expected input size is one
 The expected height of the quick-sort

tree is O(log n)

 The amount or work done at the
nodes of the same depth is O(n)

 Thus, the expected running time
of quick-sort is O(n log n)

© 2014 Goodrich, Tamassia, Goldwasser

Quick-Sort

44

IN-PLACE QUICK-SORT

 Quick-sort can be implemented to
run in-place

 In the partition step, we use
replace operations to rearrange
the elements of the input
sequence such that
 the elements less than the pivot

have rank less than h
 the elements equal to the pivot

have rank between h and k
 the elements greater than the

pivot have rank greater than k
 The recursive calls consider

 elements with rank less than h
 elements with rank greater than

k

Algorithm inPlaceQuickSort(S, l, r)
 Input sequence S, ranks l and r
 Output sequence S with the
 elements of rank between l and r
 rearranged in increasing order
 if l ≥ r

 return
i ← a random integer between l and r
x ← S.elemAtRank(i)
(h, k) ← inPlacePartition(x)
inPlaceQuickSort(S, l, h − 1)
inPlaceQuickSort(S, k + 1, r)

© 2014 Goodrich, Tamassia, Goldwasser

Quick-Sort

45

IN-PLACE PARTITIONING
 Perform the partition using two indices to split S into L and E

U G (a similar method can split E U G into E and G).

 Repeat until j and k cross:

 Scan j to the right until finding an element > x.
 Scan k to the left until finding an element < x.
 Swap elements at indices j and k

3 2 5 1 0 7 3 5 9 2 7 9 8 9 7 6 9

j k
(pivot = 6)

3 2 5 1 0 7 3 5 9 2 7 9 8 9 7 6 9

j k

© 2014 Goodrich, Tamassia, Goldwasser

JAVA IMP
LEMENTA
TION

Quick-Sort

46

© 2014 Goodrich, Tamassia, Goldwasser

Divide-and-Conquer

47

Divide step of in-place quick-sort, using
index l as shorthand for identifier left,
and index r as shorthand for identifier
right.
• Index l scans the sequence from left

to right, and
• index r scans the sequence from

right to left.
• A swap is performed when l is at an

element as large as the pivot and r
is at an element as small as the
pivot.

• A final swap with the pivot, in part
(f), completes the divide step.

© 2014 Goodrich, Tamassia, Goldwasser

Quick-Sort

48

SUMMARY OF SORTING ALGORITHMS

Algorithm Time Notes

selection-sort O(n2)  in-place
 slow (good for small inputs)

insertion-sort O(n2)  in-place
 slow (good for small inputs)

quick-sort
O(n log n)
expected

 in-place, randomized
 fastest (good for large inputs)

heap-sort O(n log n)  in-place
 fast (good for large inputs)

merge-sort O(n log n)  sequential data access
 fast (good for huge inputs)

	Sorting With Divide and Conquer Scheme
	Types of Sorting
	Merge Sort
	Merge-Sort
	Divide-and-Conquer
	Merging Two Sorted Sequences
	Merge-Sort Tree
	Example Merge-sort tree T
	Execution Example
	Execution Example (cont.)
	Execution Example (cont.)
	Execution Example (cont.)
	Execution Example (cont.)
	Execution Example (cont.)
	Execution Example (cont.)
	Execution Example (cont.)
	Execution Example (cont.)
	Execution Example (cont.)
	Array-Based Implementation of Merge-Sort 1
	Array-Based Implementation of Merge-Sort 2
	Analysis of Merge-Sort
	Extra1. Linked List Implementations of Merge-Sort 1
	Linked List Implementations of Merge-Sort 2
	Example Merge in Linked-list implementation
	Example Merge in Linked-list implementation 2
	Extra2. A Bottom-Up (Nonrecursive) Merge-Sort
	A Bottom-Up (Nonrecursive) Merge-Sort
	A Bottom-Up (Nonrecursive) Merge-Sort
	Quick-Sort
	Quick-Sort
	Partition
	Quick-Sort Tree
	Execution Example
	Execution Example (cont.)
	Execution Example (cont.)
	Execution Example (cont.)
	Execution Example (cont.)
	Execution Example (cont.)
	Execution Example (cont.)
	Worst-case Running Time
	Expected Running Time
	Linked�Queue based ��Implementation
	Expected Running Time, Part 2
	In-Place Quick-Sort
	In-Place Partitioning
	Java Implementation
	Slide Number 47
	Summary of Sorting Algorithms

