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TYPES OF SORTING

Sorting algorithms we have seen so far:
Insertion-sort
selection-sort
heap-sort

Divide-and-conquer based sorting
merge-sort
quick-sort

Linear time Sorting
bucket-sort
radix-sort

© 2014 Goodrich, Tamassia, Goldwasser



Merge Sort

MERGE SORT
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Merge Sort

MERGE-SORT
Merge-sort on an input Algorithm mergeSort(S)
sequence Swith nelements Input sequence S with n
consists of three steps: elements
Divide: If S has zero or one element, Output sequence S sorted
return S. Otherwise partition Sinto according to C
two sequences S, and S, of about if S.size() > 1

n/2 elements each

S S artition(S, n/2
Conquer. recursively sort S; and S, (51, S) <= P ( )

. mergeSort(S,)
Combine: merge sorted S, and SOr(S
sorted S, into a unique sorted mergesort(S,)
sequence S <« merge(S;, S,)
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Merge Sort

DIVIDE-AND-CONQUER

Divide-and conquer is a general
algorithm design paradigm:

Divide: divide the input data Sin
two disjoint subsets S; and S,

Conquer. solve the subproblems
associated with S, and S,

Combine: combine the solutions
for §; and S, into a solution for S

The base case for the recursion are
subproblems of size O or 1
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Merge-sort is a sorting
algorithm based on the divide-
and-conquer paradigm

Like heap-sort

It has O(nlog n) running
time
Unlike heap-sort

It does not use an auxiliary
priority gueue

It accesses data in a
sequential manner (suitable
to sort data on a disk)




Merge Sort

MERGING TWO SORTED SEQUENCES

The conquer step of
merge-sort consists of
merging two sorted
sequences Aand B into a
sorted sequence S
containing the union of the
elements of Aand B

Merging two sorted
sequences, each with n/2
elements and implemented
by means of a doubly
linked list, takes O(n) time
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Algorithm merge(A, B)

Input sequences A and B with
n/2 elements each

Output sorted sequence of AU B

S « empty sequence

while —A.IsEmpty() A =B.isEmpty()
If A.first().element() < B.first().element()
S.addLast(A.remove(A.first()))
else
S.addLast(B.remove(B.first()))

while —A.IsEmpty()
S.addLast(A.remove(A.first()))

while —B.isEmpty()
S.addLast(B.remove(B.first()))

return S




Merge Sort

MERGE-SORT TREE

An execution of merge-sort is depicted by a binary tree
T, called the merge-sort tree
Each node represents a recursive call of merge-sort and stores
unsorted sequence before the execution and its partition
sorted sequence at the end of the execution

the root is the initial call
the leaves are calls on subsequences of size O or 1

[72|94—>2479]

[7|2—;27] [9|4_—>49]
[>T 2> 2 9—>9 4 -4
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EXAMPLE MERGE-SORT TREE T

input sequences processed at each node of 7  output sequences generated at each node of 7.
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Merge Sort

EXECUTION EXAMPLE

Partition

729413861 ]
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Merge Sort

EXECUTION EXAMPLE (CONT.,)

Recursive call, partition
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Merge Sort

EXECUTION EXAMPLE (CONT.,)

Recursive call, partition
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Merge Sort

EXECUTION EXAMPLE (CONT.,)

Recursive call, base case
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Merge Sort

EXECUTION EXAMPLE (CONT.,)

Recursive call, base case
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Merge Sort

EXECUTION EXAMPLE (CONT.,)

Merge

(72194 ]

T

[71252 7] ! |
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Merge Sort

EXECUTION EXAMPLE (CONT.,)

Recursive call, ..., base case, merge

(72194 ]
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Merge Sort

EXECUTION EXAMPLE (CONT.,)

Merge

(7294|3861 ]
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Merge Sort

EXECUTION EXAMPLE (CONT.,)

Recursive call, ..., merge, merge
(7294|3861 ]
(7219452479 (3861136 8]
/\ //\\
712527 (945 409] 38538 (61516
17 252 959 4-54 33 8->8 6>6 1->1

© 2014 Goodrich, Tamassia, Goldwasser 17



Merge Sort

EXECUTION EXAMPLE (CONT.,)

Merge

[7204]3861 5>123467809]

=1

(7219452479 (3861 > 136 8]
712527 (945 409] 38538 (61516
T>7 252 959 454 33 8->8 6>6 1-51
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ARRAY-BASED IMPLEMENTATION OF MERGE-SORT 1

I /*x Merge-sort contents of array S. x/

2 public static <K> void mergeSort(K[ ] S, Comparator<K> comp) {

3 int n = S.length;

4 if (n < 2) return; // array is trivially sorted
5 // divide

6 int mid = n/2;

7 K[] S1 = Arrays.copyOfRange(S, 0, mid); // copy of first half

8 K[] S2 = Arrays.copyOfRange(S, mid, n); // copy of second half

9 // conquer (with recursion)
10 mergeSort(S1, comp); // sort copy of first half
11 mergeSort(S2, comp); // sort copy of second half
12 // merge results
13 merge(S1, S2, S, comp); // merge sorted halves back into original
4 }
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ARRAY-BASED IMPLEMENTATION OF MERGE-SORT 2

1
4
3
6

]

g
10

+% Merge contents of arrays 51 and 52 into properly sized array 5.
public static <K= void merge(K[ ] 51, K[ ] 52, K[ ] 5, Comparator<K=> comp) {

inti=10j=0
while (i + j < S.length) {
if (j == S2.length || (i < S1.length && comp.compare(S1[i], 52[j]) < 0))
S[i+]] = S1[i++];

else

S[i+]] = S2[j++];

copy ith element of 51 and increment |

copy jth element of 52 and increment |

indices 7 &
represents the
number of
elements of S1 &
S2 that have
been copied to S

A step in the merge of two sorted arrays for which S2[ /] < S1[/].

AY
8.

S

01 2 3 4 5 & D1 2 3 4 5 6
2158 [1112)14 (15 Sp {258 [ |12[(14(15

01 2 3 4 5 & 1 2 3 4 5 &

9 10(18{19)22(25 Sz | 3|9 10018 [19]22]25

D 1 2 3 445 6 7 & 9 1011 12 13 01 2 3 4 5 &6 7 & 9 10 11 12 13
213|5(8]|9 S|12|3(5]|8([9]10
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Merge Sort

ANALYSIS OF MERGE-SORT

The height h of the merge-
sort tree is O(log n) Height Time per level

at each recursive call we divic —+ | |7 O(n)
in half the sequence,

The overall work done atthe | (o} [ .2 ) oo o)
nodes of depth 1is O(n)

we partition and merge 2! O(logn)
sequences of size n/2" | A(n/A] (w4 (n/4) /Al - O(n)

we make 2! recursive calls

Thus, the total running time
of merge-sort is O(nlog n) .

Total time: O(nlogn)

© 2014 Goodrich, Tamassia, Goldwasser 21



EXTRAL, LINKED LIST IMPLEMENTATIONS OF MERGE-SORT 1

16 /** Merge-sort contents of queue. %/

17 public static <K= void mergeSort(Queue<K= 5, Comparator<K= comp) {

18 int n = S.size( );

19 if (n < 2) return; [/ queue is trivially sorted

20 /| divide

21 Queue<K=> 51 = new LinkedQueue<=(); // (or any queue implementation)
22 Queue<K= 52 = new LinkedQueue<=();

23 while (51.size() < n/2)

24 51.enqueue(S.dequeue( )); // move the first n/2 elements to 51

25 while (15.isEmpty( })

26 52 enqueue(S.dequeue( )); // move remaining elements to 52

27 /| conguer (with recursion)

28 mergeSort(S1, comp); [/ sort first half

29 mergeSort(S2, comp); /[ sort second half

30 // merge results

31 merge(S1, 52, S, comp); /[ merge sorted halves back into original
32}
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LINKED LIST IMPLEMENTATIONS OF MERGE-SORT 2

Using basic queue as its container type

/#% Merge contents of sorted queues 51 and 52 into empty queue 5. %/

1

2 public static <K= void merge(Queue<K= 51, Queue<K>= 52, Queue<K= 5,

3 Comparator< K= comp) {
4 while (!S1.isEmpty( ) && 'S2.isEmpty()) {

5 if (comp.compare(51.first(), 52 first()) < 0)

6 5.enqueue(51.dequeue( )); /[ take next element from 51

7 else

8 5.enqueue(52. dequeue( )); /[ take next element from 52

9 )

I while (!S1.isEmpty( ))

11 S.enqueue(S1.dequeue( )); // move any elements that remain in 51
12 while (1S2.isEmpty( ))

13 S.enqueue(S2.dequeue( )); // move any elements that remain in 52
14

15 }
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EXTRA2, A BOTTOM-UP (NONRECURSIVE) MERGE-SORT

nonrecursive version of array-based merge-sort, which
runs in O(nlogn)

The main idea is to perform merge-sort bottom-up,
performing the merges level by level going up the
merge-sort tree.

© 2014 Goodrich, Tamassia, Goldwasser



A BOTTOM-UP (NONRECURSIVE) MERGE-SORT

18 public static <K= void mergeSortBottomUp(K] | orig, Comparator<K=> comp) {

17 /#% Merge-sort contents of data array. #/
19 int n = orig_length;

20 K[ ] src = orig;

21 K[ ] dest = (K[ ]) new Object[n];

22 K[ ] temp;

23 for (int i=1;i < n;i*=2) |

24 for (int j=0; j < n; j += 2#i)

25 merge(src, dest, comp, J, i);

26 temp = src; src = dest; dest = temp;
27 1

28 if (orig = src)

29 System.arraycopy(src, 0, orig, 0, n);
30 )

© 2014 Goodrich, Tamassia, Goldwasser

/[ alias for the original

!/ make a new temporary array

/[ reference used only for swapping

/[ each iteration sorts all runs of length i
! / each pass merges two runs of length i

/[ reverse roles of the arrays

// additional copy to get result to original



A BOTTOM-UP (NONRECURSIVE) MERGE-SORT

{// boundary for run 1
// boundary for run 2

// index into output

/| take next from run 1

/| take next from run 2

!/ copy rest of run 1
copy rest of run 2

1 /#* Merges in[start..start+inc—1] and in|start+inc..start+2#inc—1] into out. #/
2 public static <K= void merge(K[ | in, K[ ] out, Comparator<K:> comp,

3 int EtEI’T int inc) {

4 int endl = Math.min(start + inc, in.length);

5 int end2 = Math.min(start + 2 % inc, in.length);

6 int x=start; [/ index into run 1
7 int y=start+inc; // index into run 2
8 int z=start;

g while (x < endl && vy < end2)

10 if (comp.compare(in[x], in[y]) < 0)

11 out[z++] = in[x++];

12 else

13 out[z++] = iny++];

14 if (x < endl) System.arraycopy(in, x, out, z, endl — x}; _

15 else if (y < end2) System.arraycopy(in, v, out, z, end2 — v); //

16 1}
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Quick-Sort
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Quick-Sort

QUICK-SORT

Quick-sort is a randomized

sorting algorithm based on the

divide-and-conquer paradigm:
Divide. pick a random element x
(called pivot) and partition Sinto

L elements less than x
E elements equal x
G elements greater than x

Conquer: Recursively sort Land G
Combine:join L, Eand G

© 2014 Goodrich, Tamassia, Goldwasser

1. Split using pivot x

(ken

|
2. Recur

2. Recur

3. Concatenate

30



Quick-Sort

PARTITION

We partition an input sequence as
follows:

We remove, In turn, each element
y from S and

We inserty into L, E or G,
depending on the result of the
comparison with the pivot x

Each insertion and removal is at
the beginning or at the end of a
sequence, and hence takes O(1)
time

Thus, the partition step of quick-
sort takes O(n) time

© 2014 Goodrich, Tamassia, Goldwasser

Algorithm partition(S, p)
Input sequence S, position p of pivot

Output subsequences L, E, G of the
elements of S less than, equal to,
or greater than the pivot, resp.

L, E, G « empty sequences
X <~ S.remove(p)
while =S.isEmpty()
y «— S.remove(S.first())
ify <x
L.addLast(y)
else if y = x
E.addLast(y)
else{y>x}
G.addLast(y)
return L, E, G 31




Quick-Sort

QUICK-SORT TREE

An execution of quick-sort is depicted by a binary tree called quick-
sort tree.
Each node represents a recursive call of quick-sort and stores
Unsorted sequence before the execution and its pivot
Sorted sequence at the end of the execution

The root is the initial call
The leaves are calls on subsequences of size O or 1

[ &5 24 63 45 17 31 O (@ j.'
e @
S ;/
C@ © »
slolNe[0
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Quick-Sort

EXECUTION EXAMPLE

Pivot selection

[ 72943761

© 2014 Goodrich, Tamassia, Goldwasser
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Quick-Sort

EXECUTION EXAMPLE (CONT.,)

Partition, recursive call, pivot selection

© 2014 Goodrich, Tamassia, Goldwasser
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Quick-Sort

EXECUTION EXAMPLE (CONT.,)

Partition, recursive call, base case

© 2014 Goodrich, Tamassia, Goldwasser
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Quick-Sort

EXECUTION EXAMPLE (CONT.,)

Recursive call, ..., base case, join

[ 72943761 ]

T

(24315123 4] i |

/M

151 (43 > 3 4]
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Quick-Sort

EXECUTION EXAMPLE (CONT.,)

Recursive call, pivot selection

[ 72943761

e —

(24315123 4] (797
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Quick-Sort

EXECUTION EXAMPLE (CONT.,)

Partition, ..., recursive call, base case
[ 72943761 ]
/\
(24315123 4) (797 \]
PN NN
151 (43 > 3 4] . 99
4 >4
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Quick-Sort

EXECUTION EXAMPLE (CONT.,)

Join, join

72943761 512346779 |

(24315123 4] (797 > 779 |
151 [4§—>§4] 959
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Quick-Sort
WORST-CASE RUNNING TIME

The worst case for quick-sort occurs when the pivot is the unique minim
um or maximum element

One of L and G has size n — 1 and the other has size 0

The running time is proportional to the sum
n+(n-1)+...+2+1

Thus, the worst-case running time of quick-sort is O(n?)

depth time

© 2014 Goodrich, Tamassia, Goldwasser 40



Quick-Sort

EXPECTED RUNNING TIME

Consider a recursive call of quick-sort on a sequence of size s

Good call: the sizes of L and G are each less than 3s/4
Bad call: one of L and G has size greater than 3s/4

( 72943761 ] ( 72943761 )
= > = =N
(2431 ) (797 ) (7294376 |
Good call Bad call

A call is good with probability 1/2

1/2 of the possible pivots cause good calls:

1234567891011 12 13141516
——\ ~ ) S—

Bad pivots Good pivots Bad pivots
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/*% Quick-sort contents of a queue. */

public static <K> void quickSort(Queue<K> S, Comparator<K> comp) {

int n = S.size();
if (n < 2) return;
// divide
K pivot = S first();
Queue<K> L = new LinkedQueue<=>();
Queue<K> E = new LinkedQueue<>();
Queue<K> G = new LinkedQueue<>();
while (!S.isEmpty()) {
K element = S.dequeue();
int ¢ = comp.compare(element, pivot);
if (c < 0)
L.enqueue(element);
else if (c == 0)
E.enqueue(element);
else
G.enqueue(element);
}

// conquer

quickSort(L, comp);

quickSort(G, comp);

// concatenate results

while (IL.isEmpty())
S.enqueue(L.dequeue());

while (!E.isEmpty())
S.enqueue(E.dequeue());

while (IG.isEmpty())
S.enqueue(G.dequeue());

/

!

/

!

/

/

/

queue is trivially sorted

using first as arbitrary pivot

divide original into L, E, and G

element is less than pivot
element is equal to pivot

element is greater than pivot

sort elements less than pivot
sort elements greater than pivot



Quick-Sort

EXPECTED RUNNING TIME, PART 2

Probabilistic Fact: The expected number of coin tosses required in order
to get k heads is 2k

For a node of depth i, we expect
I/2 ancestors are good calls
The size of the input sequence for the current call is at most (3/4)"?n

Therefore, we have expected height time per level

For a node of depth 2log4/3n, the 1
expected input size is one

The expected height of the quick-sort
tree is O(log n)
The amount or work done at the
nodes of the same depth is O(n)

Thus, the expected running time
of quick-sort is O(n log n)

O(log n)

total expected time: O(n log n)
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Quick-Sort

IN-PLACE QUICK-SORT

Quick-sort can be implemented to | Algorithm inPlaceQuickSort(S, I, r)

run in-place Input sequence S, ranks I and r

In the partition step, we use _
replace operations to rearrange Output sequence S with the

the e|ements Of the input 6|ementS Of I‘ank between I and r
sequence such that rearranged in increasing order
the elements less than the pivot ifl>r
have rank less than h
: return
the elements equal to the pivot _ _
have rank between h and k | < a random integer between |l and r
the elements greater than the X < S.elemAtRank(i)

pivot have rank greater than k : .
The recursive calls consider (h, k) < InPlacePartition(x)

elements with rank less than h ?nPIaceQu?CkSort(S, l,h-1)
elements with rank greater than InPlaceQuickSort(S, k + 1, 1)

k

© 2014 Goodrich, Tamassia, Goldwasser 44



Quick-Sort
IN-PLACE PARTITIONING

Perform the partition using two indices to split Sinto L and E
U G (a similar method can split E U G into E and Q).

] K
(325107359279897609 | (pivot=6)

Repeat until j and k cross:
Scan j to the right until finding an element > x.
Scan k to the left until finding an element < x.
Swap elements at indices j and k

i K .

| |
([ 32510/7/359/2[79897609 |

v
© 2014 Goodrich, Tamassia, Goldwasser
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1 /*% Sort the subarray S[a..b] inclusive. %/
2 private static <K> void quickSortInPlace(K[ | S, Comparator<K> comp,
3 int a, int b) {
4 if (2 >= b) return; /|/ subarray is trivially sorted
JAVA IMP 5 int left = a;
6 int right = b—1;
LEMENTA 7 K pivot = S[b];
TION 8 K temp; // temp object used for swapping
1 +<12 9 while (left <= right) {
10 // scan until reaching value equal or larger than pivot (or right marker)
11 while (left <= right && comp.compare(S[left], pivot) < 0) left++;
12 // scan until reaching value equal or smaller than pivot (or left marker)
13 while (left <= right && comp.compare(S[right], pivot) > 0) right——;
14 if (left <= right) { // indices did not strictly cross
15 // so swap values and shrink range
16 temp = S[left]; S[left] = S[right]; S[right] = temp;
17 left+-+; right——:;
18 }
19 }
20 // put pivot into its final place (currently marked by left index)
21 temp = S|left]; S[left] = S[b]; S[b] = temp;
22 // make recursive calls
23 quickSortIinPlace(S, comp, a, left — 1);
24 quickSortIinPlace(S, comp, left + 1, b);
25 )

© 2014 Goodrich, Tamassia, Goldwasser
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(31 24 17 45 6 8 9% 50 )
(f)
(31 24 17 45 50 8 9 & )

Divide step of in-place quick-sort, using
index /as shorthand for identifier left,
and index r as shorthand for identifier
right.

Index /scans the sequence from left
to right, and

index r scans the sequence from
right to left.

A swap is performed when /is at an
element as large as the pivot and r
Is at an element as small as the
pivot.

A final swap with the pivot, in part
(f ), completes the divide step.



Quick-Sort

SUMMARY OF S0

RTING ALGORITHMS

s 1 T A

Algorithm Time Notes
S 5 = in-place
selection-sort O(n ) = slow (good for small inputs)
. . = in-pl
insertion-sort O(n?) 1place

= slow (good for small inputs)

© 2014 Goodrich, Tamassia, Goldwasser
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