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SORTING WITH DIVIDE AND CONQUER SCHEME 

Sorting 
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Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edit
ion, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014 



© 2014 Goodrich, Tamassia, Goldwasser 

TYPES OF SORTING 

 Sorting algorithms we have seen so far:  
 insertion-sort 
 selection-sort 
 heap-sort 

 Divide-and-conquer based sorting 
 merge-sort  
 quick-sort 

  Linear time Sorting 
 bucket-sort 
 radix-sort 

Divide-and-Conquer 

2 



Merge Sort 

3 

MERGE SORT 

7  2  9  4  →  2  4  7  9 

7  2  →  2  7 9  4  →  4  9 

7 → 7 2 → 2 9 → 9 4 → 4 
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Merge Sort 
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MERGE-SORT 

 Merge-sort on an input 
sequence S with n elements 
consists of three steps: 
 Divide: If S has zero or one element, 

return S. Otherwise partition S into 
two sequences S1 and S2 of about 
n/2 elements each 

 Conquer: recursively sort S1 and S2 

 Combine: merge sorted S1 and 
sorted S2 into a unique sorted 
sequence 

Algorithm mergeSort(S) 
 Input sequence S with n    
  elements  
 Output sequence S sorted 

 according to C 
if S.size() > 1 
 (S1, S2) ← partition(S, n/2)  
 mergeSort(S1) 
 mergeSort(S2) 
 S ← merge(S1, S2) 
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Merge Sort 
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DIVIDE-AND-CONQUER 

 Divide-and conquer is a general 
algorithm design paradigm: 
 Divide: divide the input data S in 

two disjoint subsets S1 and S2 
 Conquer: solve the subproblems 

associated with S1 and S2 
 Combine: combine the solutions 

for S1 and S2 into a solution for S 
 The base case for the recursion are 

subproblems of size 0 or 1 

 Merge-sort is a sorting 
algorithm based on the divide-
and-conquer paradigm  

 Like heap-sort 
 It has O(n log n) running 

time 
 Unlike heap-sort 

 It does not use an auxiliary 
priority queue 

 It accesses data in a 
sequential manner (suitable 
to sort data on a disk) 
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Merge Sort 
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MERGING TWO SORTED SEQUENCES 

 The conquer step of 
merge-sort consists of 
merging two sorted 
sequences A and B into a 
sorted sequence S 
containing the union of the 
elements of A and B 

 Merging two sorted 
sequences, each with n/2 
elements and implemented 
by means of a doubly 
linked list, takes O(n) time 

Algorithm merge(A, B) 
 Input sequences A and B with 
   n/2 elements each  
 Output sorted sequence of A ∪ B 

 

S ← empty sequence 
while ¬A.isEmpty()  ∧ ¬B.isEmpty() 
 if A.first().element() < B.first().element() 
  S.addLast(A.remove(A.first())) 
 else 
  S.addLast(B.remove(B.first())) 
while ¬A.isEmpty() 
 S.addLast(A.remove(A.first())) 
while ¬B.isEmpty() 
 S.addLast(B.remove(B.first())) 
return S 



© 2014 Goodrich, Tamassia, Goldwasser 

Merge Sort 
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MERGE-SORT TREE 
 An execution of merge-sort is depicted by a binary tree 

T, called the merge-sort tree  
 Each node represents a recursive call of merge-sort and stores 

 unsorted sequence before the execution and its partition 
 sorted sequence at the end of the execution 

 the root is the initial call  
 the leaves are calls on subsequences of size 0 or 1 

7  2  9  4  →  2  4  7  9 

7  2  →  2  7 9  4  →  4  9 

7 → 7 2 → 2 9 → 9 4 → 4 
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EXAMPLE MERGE-SORT TREE T 
Divide-and-Conquer 

8 

input sequences processed at each node of T output sequences generated at each node of T. 
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Merge Sort 
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EXECUTION EXAMPLE 

 Partition 

7  2  9  4  →  2  4  7  9 3  8  6  1  →  1  3  8  6 

7  2  →  2  7 9  4  →  4  9 3  8  →  3  8 6  1  →  1  6 

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1 

7  2  9  4  3  8  6  1  →  1  2  3  4  6  7  8  9 
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Merge Sort 
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EXECUTION EXAMPLE (CONT.) 

 Recursive call, partition 

 7  2  9  4 →  2  4  7  9 3  8  6  1  →  1  3  8  6 

7  2  →  2  7 9  4  →  4  9 3  8  →  3  8 6  1  →  1  6 

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1 

7  2  9  4  3  8  6  1  →  1  2  3  4  6  7  8  9 
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Merge Sort 
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EXECUTION EXAMPLE (CONT.) 

 Recursive call, partition 

 7  2  9  4 →  2  4  7  9 3  8  6  1  →  1  3  8  6 

7  2 → 2  7 9  4  →  4  9 3  8  →  3  8 6  1  →  1  6 

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1 

7  2  9  4  3  8  6  1  →  1  2  3  4  6  7  8  9 
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Merge Sort 
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EXECUTION EXAMPLE (CONT.) 

 Recursive call, base case 

 7  2  9  4 →  2  4  7  9 3  8  6  1  →  1  3  8  6 

7  2 → 2  7 9  4  →  4  9 3  8  →  3  8 6  1  →  1  6 

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1 

7  2  9  4  3  8  6  1  →  1  2  3  4  6  7  8  9 
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Merge Sort 
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EXECUTION EXAMPLE (CONT.) 

 Recursive call, base case 

 7  2  9  4 →  2  4  7  9 3  8  6  1  →  1  3  8  6 

7  2 → 2  7 9  4  →  4  9 3  8  →  3  8 6  1  →  1  6 

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1 

7  2  9  4  3  8  6  1  →  1  2  3  4  6  7  8  9 
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Merge Sort 
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EXECUTION EXAMPLE (CONT.) 

 Merge 

 7  2  9  4 →  2  4  7  9 3  8  6  1  →  1  3  8  6 

7  2 → 2  7 9  4  →  4  9 3  8  →  3  8 6  1  →  1  6 

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1 

7  2  9  4  3  8  6  1  →  1  2  3  4  6  7  8  9 
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Merge Sort 
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EXECUTION EXAMPLE (CONT.) 

 Recursive call, …, base case, merge 

 7  2  9  4 →  2  4  7  9 3  8  6  1  →  1  3  8  6 

7  2 → 2  7 9  4  →  4  9 3  8  →  3  8 6  1  →  1  6 

7 → 7 2 → 2 3 → 3 8 → 8 6 → 6 1 → 1 

7  2  9  4  3  8  6  1  →  1  2  3  4  6  7  8  9 

9 → 9 4 → 4 
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Merge Sort 
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EXECUTION EXAMPLE (CONT.) 

 Merge 

 7  2  9  4 →  2  4  7  9 3  8  6  1  →  1  3  8  6 

7  2 → 2  7 9  4  →  4  9 3  8  →  3  8 6  1  →  1  6 

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1 

7  2  9  4  3  8  6  1  →  1  2  3  4  6  7  8  9 
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Merge Sort 
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EXECUTION EXAMPLE (CONT.) 

 Recursive call, …, merge, merge 

 7  2  9  4 →  2  4  7  9 3  8  6  1  →  1  3  6  8 

7  2 → 2  7 9  4  →  4  9 3  8  →  3  8 6  1  →  1  6 

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1 

7  2  9  4  3  8  6  1  →  1  2  3  4  6  7  8  9 
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Merge Sort 
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EXECUTION EXAMPLE (CONT.) 

 Merge 

 7  2  9  4 →  2  4  7  9 3  8  6  1  →  1  3  6  8 

7  2 → 2  7 9  4  →  4  9 3  8  →  3  8 6  1  →  1  6 

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1 

7  2  9  4  3  8  6  1  →  1  2  3  4  6  7  8  9 
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ARRAY-BASED IMPLEMENTATION OF MERGE-SORT 1 
Merge Sort 

19 
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ARRAY-BASED IMPLEMENTATION OF MERGE-SORT 2 
Divide-and-Conquer 

20 

A step in the merge of two sorted arrays for which S2[ j] < S1[i]. 

indices i &j  
represents the 

number of 
elements of S1 & 

S2 that have 
been copied to S 
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Merge Sort 
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ANALYSIS OF MERGE-SORT 

 The height h of the merge-
sort tree is O(log n)  
 at each recursive call we divide 

in half the sequence,  
 The overall work done at the 

nodes of depth i is O(n)  
 we partition and merge 2i 

sequences of size n/2i  
 we make 2i+1 recursive calls 

 Thus, the total running time 
of merge-sort is O(nlog n) 
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EXTRA1. LINKED LIST IMPLEMENTATIONS OF MERGE-SORT 1 
Divide-and-Conquer 

22 
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LINKED LIST IMPLEMENTATIONS OF MERGE-SORT 2 

 Using basic queue as its container type 

Divide-and-Conquer 

23 
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EXAMPLE MERGE IN LINKED-LIST IMPLEMENTATION  
Divide-and-Conquer 

24 
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EXAMPLE MERGE IN LINKED-LIST IMPLEMENTATION 2 
Divide-and-Conquer 

25 
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EXTRA2. A BOTTOM-UP (NONRECURSIVE) MERGE-SORT 

 nonrecursive version of array-based merge-sort, which 
runs in O(nlogn) 

 The main idea is to perform merge-sort bottom-up, 
performing the merges level by level going up the 
merge-sort tree. 

Divide-and-Conquer 

26 
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A BOTTOM-UP (NONRECURSIVE) MERGE-SORT 

 

Divide-and-Conquer 

27 
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A BOTTOM-UP (NONRECURSIVE) MERGE-SORT 
Divide-and-Conquer 

28 
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QUICK-SORT 

7  4  9  6  2  →  2  4  6  7  9 

4  2  →  2  4 7  9  →  7  9 

2 → 2 9 → 9 
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Quick-Sort 
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QUICK-SORT 

 Quick-sort is a randomized 
sorting algorithm based on the 
divide-and-conquer paradigm: 
 Divide: pick a random element x 

(called pivot) and partition S into  
 L elements less than x 
 E elements equal x 
 G elements greater than x 

 Conquer: Recursively sort L and G 
 Combine: join L, E and G 
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Quick-Sort 
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PARTITION 

 We partition an input sequence as 
follows: 
 We remove, in turn, each element 

y from S and  
 We insert y into L, E or G, 

depending on the result of the 
comparison with the pivot x 

 Each insertion and removal is at 
the beginning or at the end of a 
sequence, and hence takes O(1) 
time 

 Thus, the partition step of quick-
sort takes O(n) time 

Algorithm partition(S, p) 
 Input sequence S, position p of pivot  
 Output subsequences L, E, G of the  
  elements of S less than, equal to, 
  or greater than the pivot, resp. 
 L, E, G ← empty sequences 

x ← S.remove(p)  
while ¬S.isEmpty() 
 y ← S.remove(S.first()) 
 if y < x 
  L.addLast(y) 
 else if y = x 
   E.addLast(y) 
 else { y > x } 
  G.addLast(y) 
return L, E, G 
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Quick-Sort 
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QUICK-SORT TREE 
 An execution of quick-sort is depicted by a binary tree called quick-

sort tree. 
 Each node represents a recursive call of quick-sort and stores 

 Unsorted sequence before the execution and its pivot 
 Sorted sequence at the end of the execution 

 The root is the initial call  
 The leaves are calls on subsequences of size 0 or 1 
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Quick-Sort 
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EXECUTION EXAMPLE 

 Pivot selection 

7  2  9  4  →  2  4  7  9 

2 → 2 

7  2  9  4 3  7  6  1  →  1  2  3  4  6  7  8  9 

3  8  6  1  →  1  3  8  6 

3 → 3 8 → 8 9  4  →  4  9 

9 → 9 4 → 4 
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Quick-Sort 
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EXECUTION EXAMPLE (CONT.) 

 Partition, recursive call, pivot selection 

 2  4  3  1 →  2  4  7  9 

9  4  →  4  9 

9 → 9 4 → 4 

7  2  9  4  3  7  6  1 →  1  2  3  4  6  7  8  9 

3  8  6  1  →  1  3  8  6 

3 → 3 8 → 8 2 → 2 
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Quick-Sort 
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EXECUTION EXAMPLE (CONT.) 

 Partition, recursive call, base case 

  2  4  3  1 →→  2  4  7   

1 → 1 9  4  →  4  9 

9 → 9 4 → 4 

7  2  9  4 3  7  6  1 → →  1  2  3  4  6  7  8  9 

3  8  6  1  →  1  3  8  6 

3 → 3 8 → 8 
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Quick-Sort 
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EXECUTION EXAMPLE (CONT.) 

 Recursive call, …, base case, join 

3  8  6  1  →  1  3  8  6 

7  2  9  4 3  7  6  1 →  1  2  3  4  6  7  8  9 

2  4  3  1  →  1  2  3  4 

1 → 1 4  3  →  3  4 

4 → 4 
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Quick-Sort 
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EXECUTION EXAMPLE (CONT.) 

 Recursive call, pivot selection 

7  9  7  1  →  1  3  8  6 

8 8 

7  2  9  4 3  7  6  1 →  1  2  3  4  6  7  8  9 

2  4  3  1  →  1  2  3  4 

1 → 1 4  3  →  3  4 

4 → 4 

9 9 
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Quick-Sort 

38 

EXECUTION EXAMPLE (CONT.) 

 Partition, …, recursive call, base case 

7  9  7  1  →  1  3  8  6 

7  2  9  4 3  7  6  1 →  1  2  3  4  6  7  8  9 

2  4  3  1  →  1  2  3  4 

1 → 1 4  3  →  3  4 

4 → 4 

9 → 9 
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Quick-Sort 

39 

EXECUTION EXAMPLE (CONT.) 

 Join, join 

7  9  7   →  17  7  9 

7  2  9  4  3  7  6  1  → 1  2  3  4  6  7  7  9 

2  4  3  1  →  1  2  3  4 

1 → 1 4  3  →  3  4 

4 → 4 

9 → 9 
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Quick-Sort 
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WORST-CASE RUNNING TIME 
 The worst case for quick-sort occurs when the pivot is the unique minim

um or maximum element 
 One of L and G has size n − 1 and the other has size 0 
 The running time is proportional to the sum 

n + (n − 1) + … + 2 + 1 
 Thus, the worst-case running time of quick-sort is O(n2) 

depth time 

0 n 

1 n − 1 

… … 

n − 1 1 
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Quick-Sort 
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EXPECTED RUNNING TIME 

 Consider a recursive call of quick-sort on a sequence of size s 
 Good call: the sizes of L and G are each less than 3s/4 
 Bad call: one of L and G has size greater than 3s/4 

 
 

 
 
 A call is good with probability 1/2 

 1/2 of the possible pivots cause good calls: 

7  9  7  1  →  1 

7  2  9  4 3  7  6  1 9 

2  4  3  1  7 2 9 4 3 7 6 1 

7  2  9  4 3  7  6  1 

Good call Bad call 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Good pivots Bad pivots Bad pivots 



© 2014 Goodrich, Tamassia, Goldwasser 

LINKED 
QUEUE 
BASED  
 
IMPLEM
ENTATIO
N 

Quick-Sort 

42 
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EXPECTED RUNNING TIME, PART 2 
 Probabilistic Fact: The expected number of coin tosses required in order 

to get k heads is 2k 
 For a node of depth i, we expect 

 i/2 ancestors are good calls 
 The size of the input sequence for the current call is at most (3/4)i/2n 

s(r)

s(a) s(b)

s(c) s(d) s(f)s(e)

time per levelexpected height

O(log n)

O(n)

O(n)

O(n)

total expected time: O(n log n)

 Therefore, we have 
 For a node of depth 2log4/3n, the 

expected input size is one 
 The expected height of the quick-sort 

tree is O(log n) 

 The amount or work done at the 
nodes of the same depth is O(n) 

 Thus, the expected running time 
of quick-sort is O(n log n) 
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Quick-Sort 
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IN-PLACE QUICK-SORT 

 Quick-sort can be implemented to 
run in-place 

 In the partition step, we use 
replace operations to rearrange 
the elements of the input 
sequence such that 
 the elements less than the pivot 

have rank less than h 
 the elements equal to the pivot 

have rank between h and k 
 the elements greater than the 

pivot have rank greater than k 
 The recursive calls consider 

 elements with rank less than h 
 elements with rank greater than 

k 

Algorithm inPlaceQuickSort(S, l, r) 
 Input sequence S, ranks l and r 
 Output sequence S with the 
  elements of rank between l and r 
  rearranged in increasing order 
  if l ≥ r 

  return 
i ← a random integer between l and r  
x ← S.elemAtRank(i)  
(h, k) ← inPlacePartition(x) 
inPlaceQuickSort(S, l, h − 1) 
inPlaceQuickSort(S, k + 1, r) 
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Quick-Sort 
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IN-PLACE PARTITIONING 
 Perform the partition using two indices to split S into L and E 

U G (a similar method can split E U G into E and G). 
 
 

 
 Repeat until j and k cross: 

 Scan j to the right until finding an element > x. 
 Scan k to the left until finding an element < x. 
 Swap elements at indices j and k 

3  2  5  1  0  7  3  5  9  2  7  9  8  9  7  6  9 

j k 
(pivot = 6) 

3  2  5  1  0  7  3  5  9  2  7  9  8  9  7  6  9 

j k 
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JAVA IMP
LEMENTA
TION 

Quick-Sort 

46 
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Divide-and-Conquer 
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Divide step of in-place quick-sort, using 
index l as shorthand for identifier left, 
and index r as shorthand for identifier 
right.  
• Index l scans the sequence from left 

to right, and  
• index r scans the sequence from 

right to left.  
• A swap is performed when l is at an 

element as large as the pivot and r 
is at an element as small as the 
pivot.  

• A final swap with the pivot, in part 
(f ), completes the divide step. 
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SUMMARY OF SORTING ALGORITHMS 

Algorithm Time Notes 

selection-sort O(n2)  in-place 
 slow (good for small inputs) 

insertion-sort O(n2)  in-place 
 slow (good for small inputs) 

quick-sort 
O(n log n) 
expected 

 in-place, randomized 
 fastest (good for large inputs) 

heap-sort O(n log n)  in-place 
 fast (good for large inputs) 

merge-sort O(n log n)  sequential data access 
 fast  (good for huge inputs) 
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