
© 2014 Goodrich, Tamassia, Goldwasser

SORTING WITH DIVIDE AND CONQUER SCHEME

Sorting

1

Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edit
ion, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014

© 2014 Goodrich, Tamassia, Goldwasser

TYPES OF SORTING

 Sorting algorithms we have seen so far:
 insertion-sort
 selection-sort
 heap-sort

 Divide-and-conquer based sorting
 merge-sort
 quick-sort

 Linear time Sorting
 bucket-sort
 radix-sort

Divide-and-Conquer

2

Merge Sort

3

MERGE SORT

7 2 9 4 → 2 4 7 9

7 2 → 2 7 9 4 → 4 9

7 → 7 2 → 2 9 → 9 4 → 4

© 2014 Goodrich, Tamassia, Goldwasser

Merge Sort

4

MERGE-SORT

 Merge-sort on an input
sequence S with n elements
consists of three steps:
 Divide: If S has zero or one element,

return S. Otherwise partition S into
two sequences S1 and S2 of about
n/2 elements each

 Conquer: recursively sort S1 and S2

 Combine: merge sorted S1 and
sorted S2 into a unique sorted
sequence

Algorithm mergeSort(S)
 Input sequence S with n
 elements
 Output sequence S sorted

 according to C
if S.size() > 1
 (S1, S2) ← partition(S, n/2)
 mergeSort(S1)
 mergeSort(S2)
 S ← merge(S1, S2)

© 2014 Goodrich, Tamassia, Goldwasser

Merge Sort

5

DIVIDE-AND-CONQUER

 Divide-and conquer is a general
algorithm design paradigm:
 Divide: divide the input data S in

two disjoint subsets S1 and S2
 Conquer: solve the subproblems

associated with S1 and S2
 Combine: combine the solutions

for S1 and S2 into a solution for S
 The base case for the recursion are

subproblems of size 0 or 1

 Merge-sort is a sorting
algorithm based on the divide-
and-conquer paradigm

 Like heap-sort
 It has O(n log n) running

time
 Unlike heap-sort

 It does not use an auxiliary
priority queue

 It accesses data in a
sequential manner (suitable
to sort data on a disk)

© 2014 Goodrich, Tamassia, Goldwasser

Merge Sort

6

MERGING TWO SORTED SEQUENCES

 The conquer step of
merge-sort consists of
merging two sorted
sequences A and B into a
sorted sequence S
containing the union of the
elements of A and B

 Merging two sorted
sequences, each with n/2
elements and implemented
by means of a doubly
linked list, takes O(n) time

Algorithm merge(A, B)
 Input sequences A and B with
 n/2 elements each
 Output sorted sequence of A ∪ B

S ← empty sequence
while ¬A.isEmpty() ∧ ¬B.isEmpty()
 if A.first().element() < B.first().element()
 S.addLast(A.remove(A.first()))
 else
 S.addLast(B.remove(B.first()))
while ¬A.isEmpty()
 S.addLast(A.remove(A.first()))
while ¬B.isEmpty()
 S.addLast(B.remove(B.first()))
return S

© 2014 Goodrich, Tamassia, Goldwasser

Merge Sort

7

MERGE-SORT TREE
 An execution of merge-sort is depicted by a binary tree

T, called the merge-sort tree
 Each node represents a recursive call of merge-sort and stores

 unsorted sequence before the execution and its partition
 sorted sequence at the end of the execution

 the root is the initial call
 the leaves are calls on subsequences of size 0 or 1

7 2 9 4 → 2 4 7 9

7 2 → 2 7 9 4 → 4 9

7 → 7 2 → 2 9 → 9 4 → 4

© 2014 Goodrich, Tamassia, Goldwasser

EXAMPLE MERGE-SORT TREE T
Divide-and-Conquer

8

input sequences processed at each node of T output sequences generated at each node of T.

© 2014 Goodrich, Tamassia, Goldwasser

Merge Sort

9

EXECUTION EXAMPLE

 Partition

7 2 9 4 → 2 4 7 9 3 8 6 1 → 1 3 8 6

7 2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4 3 8 6 1 → 1 2 3 4 6 7 8 9

© 2014 Goodrich, Tamassia, Goldwasser

Merge Sort

10

EXECUTION EXAMPLE (CONT.)

 Recursive call, partition

 7 2 9 4 → 2 4 7 9 3 8 6 1 → 1 3 8 6

7 2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4 3 8 6 1 → 1 2 3 4 6 7 8 9

© 2014 Goodrich, Tamassia, Goldwasser

Merge Sort

11

EXECUTION EXAMPLE (CONT.)

 Recursive call, partition

 7 2 9 4 → 2 4 7 9 3 8 6 1 → 1 3 8 6

7 2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4 3 8 6 1 → 1 2 3 4 6 7 8 9

© 2014 Goodrich, Tamassia, Goldwasser

Merge Sort

12

EXECUTION EXAMPLE (CONT.)

 Recursive call, base case

 7 2 9 4 → 2 4 7 9 3 8 6 1 → 1 3 8 6

7 2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4 3 8 6 1 → 1 2 3 4 6 7 8 9

© 2014 Goodrich, Tamassia, Goldwasser

Merge Sort

13

EXECUTION EXAMPLE (CONT.)

 Recursive call, base case

 7 2 9 4 → 2 4 7 9 3 8 6 1 → 1 3 8 6

7 2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4 3 8 6 1 → 1 2 3 4 6 7 8 9

© 2014 Goodrich, Tamassia, Goldwasser

Merge Sort

14

EXECUTION EXAMPLE (CONT.)

 Merge

 7 2 9 4 → 2 4 7 9 3 8 6 1 → 1 3 8 6

7 2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4 3 8 6 1 → 1 2 3 4 6 7 8 9

© 2014 Goodrich, Tamassia, Goldwasser

Merge Sort

15

EXECUTION EXAMPLE (CONT.)

 Recursive call, …, base case, merge

 7 2 9 4 → 2 4 7 9 3 8 6 1 → 1 3 8 6

7 2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4 3 8 6 1 → 1 2 3 4 6 7 8 9

9 → 9 4 → 4

© 2014 Goodrich, Tamassia, Goldwasser

Merge Sort

16

EXECUTION EXAMPLE (CONT.)

 Merge

 7 2 9 4 → 2 4 7 9 3 8 6 1 → 1 3 8 6

7 2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4 3 8 6 1 → 1 2 3 4 6 7 8 9

© 2014 Goodrich, Tamassia, Goldwasser

Merge Sort

17

EXECUTION EXAMPLE (CONT.)

 Recursive call, …, merge, merge

 7 2 9 4 → 2 4 7 9 3 8 6 1 → 1 3 6 8

7 2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4 3 8 6 1 → 1 2 3 4 6 7 8 9

© 2014 Goodrich, Tamassia, Goldwasser

Merge Sort

18

EXECUTION EXAMPLE (CONT.)

 Merge

 7 2 9 4 → 2 4 7 9 3 8 6 1 → 1 3 6 8

7 2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4 3 8 6 1 → 1 2 3 4 6 7 8 9

© 2014 Goodrich, Tamassia, Goldwasser

ARRAY-BASED IMPLEMENTATION OF MERGE-SORT 1
Merge Sort

19

© 2014 Goodrich, Tamassia, Goldwasser

ARRAY-BASED IMPLEMENTATION OF MERGE-SORT 2
Divide-and-Conquer

20

A step in the merge of two sorted arrays for which S2[j] < S1[i].

indices i &j
represents the

number of
elements of S1 &

S2 that have
been copied to S

© 2014 Goodrich, Tamassia, Goldwasser

Merge Sort

21

ANALYSIS OF MERGE-SORT

 The height h of the merge-
sort tree is O(log n)
 at each recursive call we divide

in half the sequence,
 The overall work done at the

nodes of depth i is O(n)
 we partition and merge 2i

sequences of size n/2i
 we make 2i+1 recursive calls

 Thus, the total running time
of merge-sort is O(nlog n)

© 2014 Goodrich, Tamassia, Goldwasser

EXTRA1. LINKED LIST IMPLEMENTATIONS OF MERGE-SORT 1
Divide-and-Conquer

22

© 2014 Goodrich, Tamassia, Goldwasser

LINKED LIST IMPLEMENTATIONS OF MERGE-SORT 2

 Using basic queue as its container type

Divide-and-Conquer

23

© 2014 Goodrich, Tamassia, Goldwasser

EXAMPLE MERGE IN LINKED-LIST IMPLEMENTATION
Divide-and-Conquer

24

© 2014 Goodrich, Tamassia, Goldwasser

EXAMPLE MERGE IN LINKED-LIST IMPLEMENTATION 2
Divide-and-Conquer

25

© 2014 Goodrich, Tamassia, Goldwasser

EXTRA2. A BOTTOM-UP (NONRECURSIVE) MERGE-SORT

 nonrecursive version of array-based merge-sort, which
runs in O(nlogn)

 The main idea is to perform merge-sort bottom-up,
performing the merges level by level going up the
merge-sort tree.

Divide-and-Conquer

26

© 2014 Goodrich, Tamassia, Goldwasser

A BOTTOM-UP (NONRECURSIVE) MERGE-SORT

Divide-and-Conquer

27

© 2014 Goodrich, Tamassia, Goldwasser

A BOTTOM-UP (NONRECURSIVE) MERGE-SORT
Divide-and-Conquer

28

Quick-Sort

29

QUICK-SORT

7 4 9 6 2 → 2 4 6 7 9

4 2 → 2 4 7 9 → 7 9

2 → 2 9 → 9

© 2014 Goodrich, Tamassia, Goldwasser

Quick-Sort

30

QUICK-SORT

 Quick-sort is a randomized
sorting algorithm based on the
divide-and-conquer paradigm:
 Divide: pick a random element x

(called pivot) and partition S into
 L elements less than x
 E elements equal x
 G elements greater than x

 Conquer: Recursively sort L and G
 Combine: join L, E and G

© 2014 Goodrich, Tamassia, Goldwasser

Quick-Sort

31

PARTITION

 We partition an input sequence as
follows:
 We remove, in turn, each element

y from S and
 We insert y into L, E or G,

depending on the result of the
comparison with the pivot x

 Each insertion and removal is at
the beginning or at the end of a
sequence, and hence takes O(1)
time

 Thus, the partition step of quick-
sort takes O(n) time

Algorithm partition(S, p)
 Input sequence S, position p of pivot
 Output subsequences L, E, G of the
 elements of S less than, equal to,
 or greater than the pivot, resp.
 L, E, G ← empty sequences

x ← S.remove(p)
while ¬S.isEmpty()
 y ← S.remove(S.first())
 if y < x
 L.addLast(y)
 else if y = x
 E.addLast(y)
 else { y > x }
 G.addLast(y)
return L, E, G

© 2014 Goodrich, Tamassia, Goldwasser

Quick-Sort

32

QUICK-SORT TREE
 An execution of quick-sort is depicted by a binary tree called quick-

sort tree.
 Each node represents a recursive call of quick-sort and stores

 Unsorted sequence before the execution and its pivot
 Sorted sequence at the end of the execution

 The root is the initial call
 The leaves are calls on subsequences of size 0 or 1

© 2014 Goodrich, Tamassia, Goldwasser

Quick-Sort

33

EXECUTION EXAMPLE

 Pivot selection

7 2 9 4 → 2 4 7 9

2 → 2

7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 8 9

3 8 6 1 → 1 3 8 6

3 → 3 8 → 8 9 4 → 4 9

9 → 9 4 → 4

© 2014 Goodrich, Tamassia, Goldwasser

Quick-Sort

34

EXECUTION EXAMPLE (CONT.)

 Partition, recursive call, pivot selection

 2 4 3 1 → 2 4 7 9

9 4 → 4 9

9 → 9 4 → 4

7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 8 9

3 8 6 1 → 1 3 8 6

3 → 3 8 → 8 2 → 2

© 2014 Goodrich, Tamassia, Goldwasser

Quick-Sort

35

EXECUTION EXAMPLE (CONT.)

 Partition, recursive call, base case

 2 4 3 1 →→ 2 4 7

1 → 1 9 4 → 4 9

9 → 9 4 → 4

7 2 9 4 3 7 6 1 → → 1 2 3 4 6 7 8 9

3 8 6 1 → 1 3 8 6

3 → 3 8 → 8

© 2014 Goodrich, Tamassia, Goldwasser

Quick-Sort

36

EXECUTION EXAMPLE (CONT.)

 Recursive call, …, base case, join

3 8 6 1 → 1 3 8 6

7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 8 9

2 4 3 1 → 1 2 3 4

1 → 1 4 3 → 3 4

4 → 4

© 2014 Goodrich, Tamassia, Goldwasser

Quick-Sort

37

EXECUTION EXAMPLE (CONT.)

 Recursive call, pivot selection

7 9 7 1 → 1 3 8 6

8 8

7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 8 9

2 4 3 1 → 1 2 3 4

1 → 1 4 3 → 3 4

4 → 4

9 9

© 2014 Goodrich, Tamassia, Goldwasser

Quick-Sort

38

EXECUTION EXAMPLE (CONT.)

 Partition, …, recursive call, base case

7 9 7 1 → 1 3 8 6

7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 8 9

2 4 3 1 → 1 2 3 4

1 → 1 4 3 → 3 4

4 → 4

9 → 9

© 2014 Goodrich, Tamassia, Goldwasser

Quick-Sort

39

EXECUTION EXAMPLE (CONT.)

 Join, join

7 9 7 → 17 7 9

7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 7 9

2 4 3 1 → 1 2 3 4

1 → 1 4 3 → 3 4

4 → 4

9 → 9

© 2014 Goodrich, Tamassia, Goldwasser

Quick-Sort

40

WORST-CASE RUNNING TIME
 The worst case for quick-sort occurs when the pivot is the unique minim

um or maximum element
 One of L and G has size n − 1 and the other has size 0
 The running time is proportional to the sum

n + (n − 1) + … + 2 + 1
 Thus, the worst-case running time of quick-sort is O(n2)

depth time

0 n

1 n − 1

… …

n − 1 1

© 2014 Goodrich, Tamassia, Goldwasser

Quick-Sort

41

EXPECTED RUNNING TIME

 Consider a recursive call of quick-sort on a sequence of size s
 Good call: the sizes of L and G are each less than 3s/4
 Bad call: one of L and G has size greater than 3s/4

 A call is good with probability 1/2

 1/2 of the possible pivots cause good calls:

7 9 7 1 → 1

7 2 9 4 3 7 6 1 9

2 4 3 1 7 2 9 4 3 7 6 1

7 2 9 4 3 7 6 1

Good call Bad call

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Good pivots Bad pivots Bad pivots

© 2014 Goodrich, Tamassia, Goldwasser

LINKED
QUEUE
BASED

IMPLEM
ENTATIO
N

Quick-Sort

42

© 2014 Goodrich, Tamassia, Goldwasser

Quick-Sort

43

EXPECTED RUNNING TIME, PART 2
 Probabilistic Fact: The expected number of coin tosses required in order

to get k heads is 2k
 For a node of depth i, we expect

 i/2 ancestors are good calls
 The size of the input sequence for the current call is at most (3/4)i/2n

s(r)

s(a) s(b)

s(c) s(d) s(f)s(e)

time per levelexpected height

O(log n)

O(n)

O(n)

O(n)

total expected time: O(n log n)

 Therefore, we have
 For a node of depth 2log4/3n, the

expected input size is one
 The expected height of the quick-sort

tree is O(log n)

 The amount or work done at the
nodes of the same depth is O(n)

 Thus, the expected running time
of quick-sort is O(n log n)

© 2014 Goodrich, Tamassia, Goldwasser

Quick-Sort

44

IN-PLACE QUICK-SORT

 Quick-sort can be implemented to
run in-place

 In the partition step, we use
replace operations to rearrange
the elements of the input
sequence such that
 the elements less than the pivot

have rank less than h
 the elements equal to the pivot

have rank between h and k
 the elements greater than the

pivot have rank greater than k
 The recursive calls consider

 elements with rank less than h
 elements with rank greater than

k

Algorithm inPlaceQuickSort(S, l, r)
 Input sequence S, ranks l and r
 Output sequence S with the
 elements of rank between l and r
 rearranged in increasing order
 if l ≥ r

 return
i ← a random integer between l and r
x ← S.elemAtRank(i)
(h, k) ← inPlacePartition(x)
inPlaceQuickSort(S, l, h − 1)
inPlaceQuickSort(S, k + 1, r)

© 2014 Goodrich, Tamassia, Goldwasser

Quick-Sort

45

IN-PLACE PARTITIONING
 Perform the partition using two indices to split S into L and E

U G (a similar method can split E U G into E and G).

 Repeat until j and k cross:

 Scan j to the right until finding an element > x.
 Scan k to the left until finding an element < x.
 Swap elements at indices j and k

3 2 5 1 0 7 3 5 9 2 7 9 8 9 7 6 9

j k
(pivot = 6)

3 2 5 1 0 7 3 5 9 2 7 9 8 9 7 6 9

j k

© 2014 Goodrich, Tamassia, Goldwasser

JAVA IMP
LEMENTA
TION

Quick-Sort

46

© 2014 Goodrich, Tamassia, Goldwasser

Divide-and-Conquer

47

Divide step of in-place quick-sort, using
index l as shorthand for identifier left,
and index r as shorthand for identifier
right.
• Index l scans the sequence from left

to right, and
• index r scans the sequence from

right to left.
• A swap is performed when l is at an

element as large as the pivot and r
is at an element as small as the
pivot.

• A final swap with the pivot, in part
(f), completes the divide step.

© 2014 Goodrich, Tamassia, Goldwasser

Quick-Sort

48

SUMMARY OF SORTING ALGORITHMS

Algorithm Time Notes

selection-sort O(n2) in-place
 slow (good for small inputs)

insertion-sort O(n2) in-place
 slow (good for small inputs)

quick-sort
O(n log n)
expected

 in-place, randomized
 fastest (good for large inputs)

heap-sort O(n log n) in-place
 fast (good for large inputs)

merge-sort O(n log n) sequential data access
 fast (good for huge inputs)

	Sorting With Divide and Conquer Scheme
	Types of Sorting
	Merge Sort
	Merge-Sort
	Divide-and-Conquer
	Merging Two Sorted Sequences
	Merge-Sort Tree
	Example Merge-sort tree T
	Execution Example
	Execution Example (cont.)
	Execution Example (cont.)
	Execution Example (cont.)
	Execution Example (cont.)
	Execution Example (cont.)
	Execution Example (cont.)
	Execution Example (cont.)
	Execution Example (cont.)
	Execution Example (cont.)
	Array-Based Implementation of Merge-Sort 1
	Array-Based Implementation of Merge-Sort 2
	Analysis of Merge-Sort
	Extra1. Linked List Implementations of Merge-Sort 1
	Linked List Implementations of Merge-Sort 2
	Example Merge in Linked-list implementation
	Example Merge in Linked-list implementation 2
	Extra2. A Bottom-Up (Nonrecursive) Merge-Sort
	A Bottom-Up (Nonrecursive) Merge-Sort
	A Bottom-Up (Nonrecursive) Merge-Sort
	Quick-Sort
	Quick-Sort
	Partition
	Quick-Sort Tree
	Execution Example
	Execution Example (cont.)
	Execution Example (cont.)
	Execution Example (cont.)
	Execution Example (cont.)
	Execution Example (cont.)
	Execution Example (cont.)
	Worst-case Running Time
	Expected Running Time
	Linked�Queue based ��Implementation
	Expected Running Time, Part 2
	In-Place Quick-Sort
	In-Place Partitioning
	Java Implementation
	Slide Number 47
	Summary of Sorting Algorithms

