

SORTING WITH DIVIDE AND CONQUER SCHEME

Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edit ion, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014

2014 Goodrich, Tamassia, Goldwasser C

TYPES OF SORTING

- × Sorting algorithms we have seen so far:
 - + insertion-sort
 - + selection-sort
 - + heap-sort

× Divide-and-conquer based sorting

- + merge-sort
- + quick-sort
- × Linear time Sorting
 - + bucket-sort
 - + radix-sort

MERGE SORT

- Merge-sort on an input sequence *S* with *n* elements consists of three steps:
 - *Divide*: If S has zero or one element, return S. Otherwise partition S into two sequences S₁ and S₂ of about n/2 elements each
 - + *Conquer*. recursively sort S_1 and S_2
 - + *Combine*: merge sorted S_1 and sorted S_2 into a unique sorted sequence

Algorithm *mergeSort*(*S*)

- Input sequence S with n elements
- Output sequence S sorted according to C if S.size() > 1 $(S_1, S_2) \leftarrow partition(S, n/2)$ mergeSort(S₁) mergeSort(S₂) $S \leftarrow merge(S_1, S_2)$

DIVIDE-AND-CONQUER

- Divide-and conquer is a general algorithm design paradigm:
 - *Divide*: divide the input data *S* in two disjoint subsets *S*₁ and *S*₂
 - + *Conquer*: solve the subproblems associated with S_1 and S_2
 - + *Combine*: combine the solutions for S_1 and S_2 into a solution for S
- The base case for the recursion are subproblems of size 0 or 1

- Merge-sort is a sorting algorithm based on the divideand-conquer paradigm
- × Like heap-sort
 - + It has <u>O(n log n) running</u> <u>time</u>
 - Unlike heap-sort
 - + It <u>does not use an auxiliary</u> priority queue
 - It <u>accesses data in a</u> <u>sequential manner (suitable</u> to sort data on a disk)

MERGING TWO SORTED SEQUENCES

- The conquer step of merge-sort consists of merging two sorted sequences *A* and *B* into a sorted sequence *S* containing the union of the elements of *A* and *B*
- Merging two sorted sequences, each with n/2 elements and implemented by means of a doubly linked list, takes O(n) time

© 2014 Goodrich, Tamassia, Goldwasser

Algorithm *merge*(A, B) **Input** sequences A and **B** with n/2 elements each **Output** sorted sequence of $A \cup B$ $S \leftarrow$ empty sequence while $\neg A.isEmpty() \land \neg B.isEmpty()$ **if** A.first().element() < B.first().element() S.addLast(A.remove(A.first())) else S.addLast(B.remove(B.first())) while $\neg A.isEmpty()$ S.addLast(A.remove(A.first())) while ¬*B.isEmpty*() S.addLast(B.remove(B.first())) return S

MERGE-SORT TREE

- * An execution of merge-sort is depicted by a binary tree T, called the *merge-sort tree*
 - + Each **node** represents a recursive call of merge-sort and stores
 - × unsorted sequence before the execution and its partition
 - × sorted sequence at the end of the execution
 - + the root is the initial call
 - + the leaves are calls on subsequences of size 0 or 1

EXAMPLE MERGE-SORT TREE T

input sequences processed at each node of T

output sequences generated at each node of T.

EXECUTION EXAMPLE

× Partition

EXECUTION EXAMPLE (CONT.)

* Recursive call, partition

EXECUTION EXAMPLE (CONT.)

× Recursive call, partition

EXECUTION EXAMPLE (CONT.)

* Recursive call, base case

EXECUTION EXAMPLE (CONT.)

* Recursive call, base case

EXECUTION EXAMPLE (CONT.)

× Merge

EXECUTION EXAMPLE (CONT.)

* Recursive call, ..., base case, merge

EXECUTION EXAMPLE (CONT.)

× Merge 29 3 8 6 1 7 4 $9 4 \rightarrow 2 4$ 7 2 9 $2 \rightarrow 2$ 7 $9 4 \rightarrow 4 9$ 7 $2 \rightarrow 2$ 9 \rightarrow

EXECUTION EXAMPLE (CONT.)

* Recursive call, ..., merge, merge

EXECUTION EXAMPLE (CONT.)

× Merge

ARRAY-BASED IMPLEMENTATION OF MERGE-SORT 1

1	/** Merge-sort contents of array S. */		
2	<pre>public static <k> void mergeSort(K[] S, Comparator<k> comp) {</k></k></pre>		
3	int $n = S.length;$		
4	if $(n < 2)$ return;	<pre>// array is trivially sorted</pre>	
5	// divide		
6	int mid = $n/2$;		
7	K[] S1 = Arrays.copyOfRange(S, 0, mid)	; // copy of first half	
8	K[] S2 = Arrays.copyOfRange(S, mid, n)	; // copy of second half	
9	// conquer (with recursion)		
10	mergeSort(S1, comp);	<pre>// sort copy of first half</pre>	
11	mergeSort(S2, comp);	// sort copy of second half	
12	// merge results		
13	merge(S1, S2, S, comp);	// merge sorted halves back into original	
14	}		
	-		

10

ARRAY-BASED IMPLEMENTATION OF MERGE-SORT 2

indices *i &j* represents the number of elements of *S*1 & S2 that have been copied to *S*

A step in the merge of two sorted arrays for which $S_2[j] < S_1[j]$.

ANALYSIS OF MERGE-SORT

- * The height h of the mergesort tree is $O(\log n)$
 - at each recursive call we divid in half the sequence,
- The overall work done at the nodes of depth *i* is <u>O(n)</u>
 - + we partition and merge 2^i sequences of size $n/2^i$
 - + we make 2^{i+1} recursive calls
- Thus, the total running time of merge-sort is <u>O(nlog n)</u>

Total time: $O(n \log n)$

EXTRA1. LINKED LIST IMPLEMENTATIONS OF MERGE-SORT 1

```
/** Merge-sort contents of queue. */
16
      public static <K> void mergeSort(Queue<K> S, Comparator<K> comp) {
17
18
        int n = S.size();
        if (n < 2) return;
                                              // queue is trivially sorted
19
20
        // divide
21
        Queue<K > S1 = new LinkedQueue <>(); // (or any queue implementation)
        Queue < K > S2 = new LinkedQueue <>();
22
23
        while (S1.size() < n/2)
          S1.engueue(S.degueue());
24
                                             // move the first n/2 elements to S1
        while (!S.isEmpty())
25
          S2.enqueue(S.dequeue());
26
                                              // move remaining elements to S2
        // conquer (with recursion)
27
        mergeSort(S1, comp);
28
                                             // sort first half
        mergeSort(S2, comp);
                                              // sort second half
29
       // merge results
30
        merge(S1, S2, S, comp);
                                              // merge sorted halves back into original
31
32
```

LINKED LIST IMPLEMENTATIONS OF MERGE-SORT 2

× Using basic queue as its container type

```
/** Merge contents of sorted queues S1 and S2 into empty queue S. */
 1
     public static <K> void merge(Queue<K> S1, Queue<K> S2, Queue<K> S,
2
3
                                                           Comparator<K> comp) {
4
       while (!S1.isEmpty() && !S2.isEmpty()) {
5
         if (comp.compare(S1.first(), S2.first()) < 0)</pre>
           S.engueue(S1.degueue()); // take next element from S1
6
7
         else
8
           S.enqueue(S2.dequeue()); // take next element from S2
9
10
       while (!S1.isEmpty())
         S.enqueue(S1.dequeue());
11
                                             // move any elements that remain in S1
       while (!S2.isEmpty())
12
         S.engueue(S2.degueue());
13
                                             // move any elements that remain in S2
14
15
```

EXAMPLE MERGE IN LINKED-LIST IMPLEMENTATION

EXAMPLE MERGE IN LINKED-LIST IMPLEMENTATION 2

© 2014 Goodrich, Tamassia, Congressia

EXTRA2. A BOTTOM-UP (NONRECURSIVE) MERGE-SORT

- x nonrecursive version of array-based merge-sort, which runs in O(nlogn)
- The main idea is to perform merge-sort bottom-up, performing the merges level by level going up the merge-sort tree.

A BOTTOM-UP (NONRECURSIVE) MERGE-SORT

```
/** Merge-sort contents of data array. */
17
      public static <K> void mergeSortBottomUp(K[] orig, Comparator<K> comp) {
18
        int n = orig.length;
19
20
        K[] src = orig;
                                // alias for the original
21
        K[] dest = (K[]) new Object[n]; // make a new temporary array
                                       // reference used only for swapping
22
        K[] temp;
        for (int i=1; i < n; i *= 2) { // each iteration sorts all runs of length i
23
         for (int j=0; j < n; j += 2*i) // each pass merges two runs of length i
24
25
            merge(src, dest, comp, j, i);
         temp = src; src = dest; dest = temp; // reverse roles of the arrays
26
27
28
        if (orig != src)
          System.arraycopy(src, 0, orig, 0, n); // additional copy to get result to original
29
30
      }
```

Divide-and-Conquer

A BOTTOM-UP (NONRECURSIVE) MERGE-SORT

```
/** Merges in[start..start+inc-1] and in[start+inc..start+2*inc-1] into out. */
 1
      public static <K> void merge(K[] in, K[] out, Comparator<K> comp,
 2
 3
                                                              int start, int inc) {
 4
        int end1 = Math.min(start + inc, in.length);
                                                                 // boundary for run 1
 5
        int end2 = Math.min(start + 2 * inc, in.length);
                                                                 // boundary for run 2
                                                                  // index into run 1
 6
        int x=start:
 7
        int y=start+inc;
                                                                  // index into run 2
                                                                  // index into output
 8
        int z=start:
        while (x < end1 \&\& y < end2)
 9
          if (comp.compare(in[x], in[y]) < 0)
10
            out[z++] = in[x++]:
11
                                                                  // take next from run 1
12
          else
13
            out[z++] = in[y++];
                                                                  // take next from run 2
        if (x < end1) System.arraycopy(in, x, out, z, end1 - x); // copy rest of run 1
14
        else if (y < end2) System.arraycopy(in, y, out, z, end2 - y); // copy rest of run 2
15
16
```

OUICK-SORT

QUICK-SORT

- Quick-sort is a randomized sorting algorithm based on the divide-and-conquer paradigm:
 - *Divide*: pick a random element *x* (called pivot) and partition *S* into
 - \times **L** elements less than x
 - × *E* elements equal *x*
 - \times **G** elements greater than **x**
 - + Conquer: Recursively sort L and G
 - + Combine: join L, E and G

PARTITION

- We partition an input sequence as follows:
 - We remove, in turn, each element
 y from S and
 - We insert y into L, E or G,
 depending on the result of the
 comparison with the pivot x
- Each insertion and removal is at the beginning or at the end of a sequence, and hence takes O(1) time
- Thus, the partition step of quicksort takes O(n) time

© 2014 Goodrich, Tamassia, Goldwasser

Algorithm *partition*(*S*, *p*)

Input sequence *S*, position *p* of pivot Output subsequences L, E, G of the elements of S less than, equal to, or greater than the pivot, resp. $L, E, G \leftarrow$ empty sequences $x \leftarrow S.remove(p)$ while ¬*S.isEmpty*() $y \leftarrow S.remove(S.first())$ if y < xL.addLast(y) else if y = x**E.addLast**(y) else { y > x } G.addLast(y) return L, E, G

OUICK-SORT TREE

- An execution of quick-sort is depicted by a binary tree called *quick-sort tree*.
 - + Each node represents a recursive call of quick-sort and stores
 - × Unsorted sequence before the execution and its pivot
 - × Sorted sequence at the end of the execution
 - + The **root** is the initial call
 - + The leaves are calls on subsequences of size 0 or 1

EXECUTION EXAMPLE

× Pivot selection

EXECUTION EXAMPLE (CONT.)

* Partition, recursive call, pivot selection

EXECUTION EXAMPLE (CONT.)

* Partition, recursive call, base case

EXECUTION EXAMPLE (CONT.)

* Recursive call, ..., base case, join

EXECUTION EXAMPLE (CONT.)

* Recursive call, pivot selection

EXECUTION EXAMPLE (CONT.)

* Partition, ..., recursive call, base case

EXECUTION EXAMPLE (CONT.)

× Join, join

WORST-CASE RUNNING TIME

- The worst case for quick-sort occurs when the pivot is the unique minim um or maximum element
- One of *L* and *G* has size n 1 and the other has size 0
- * The running time is proportional to the sum

 $n + (n - 1) + \ldots + 2 + 1$

* Thus, the worst-case running time of quick-sort is $O(n^2)$

EXPECTED RUNNING TIME

× Consider a recursive call of quick-sort on a sequence of size s

- + Good call: the sizes of L and G are each less than 3s/4
- + **Bad call:** one of *L* and *G* has size greater than 3s/4

- ★ A call is good with probability 1/2
 - + 1/2 of the possible pivots cause good calls:

/** Quick-sort contents of a queue. */			
<pre>public static <k> void quickSort(Queue<k></k></k></pre>	S, Comparator <k> comp) {</k>		
int $n = S.size();$			
if $(n < 2)$ return;	<pre>// queue is trivially sorted</pre>		
// divide			
K pivot = S.first();	<pre>// using first as arbitrary pivot</pre>		
Queue <k> L = new LinkedQueue<>();</k>			
Queue <k> E = new LinkedQueue<>();</k>			
Queue <k> G = new LinkedQueue<>();</k>			
<pre>while (!S.isEmpty()) {</pre>	<pre>// divide original into L, E, and G</pre>		
K element = S.dequeue();			
<pre>int c = comp.compare(element, pivot);</pre>			
if $(c < 0)$	<pre>// element is less than pivot</pre>		
L.enqueue(element);			
else if (c == 0)	<pre>// element is equal to pivot</pre>		
E.enqueue(element);			
else	<pre>// element is greater than pivot</pre>		
G.enqueue(element);			
}			
// conquer			
quickSort(L, comp);	// sort elements less than pivot		
quickSort(G, comp);	// sort elements greater than pivot		
// concatenate results			
while (!L.isEmpty())			
S.enqueue(L.dequeue());			
while (!E.isEmpty())			
S.enqueue(E.dequeue());			
while (!G.IsEmpty())			
S.enqueue(G.dequeue());			

EXPECTED RUNNING TIME, PART 2

- * Probabilistic Fact: The expected number of coin tosses required in order to get k heads is 2k
- × For a node of depth i, we expect
 - + *i*/2 ancestors are good calls
 - + The size of the input sequence for the current call is at most $(3/4)^{i/2}n$
- × Therefore, we have
 - For a node of depth 2log4/3n, the expected input size is one
 - The expected height of the quick-sort tree is O(log n)
- The amount or work done at the nodes of the same depth is O(n)
- Thus, the expected running time of quick-sort is O(n log n)

IN-PLACE QUICK-SORT

- Quick-sort can be implemented to run in-place
- In the partition step, we use replace operations to rearrange the elements of the input sequence such that
 - + the elements less than the pivot have rank less than *h*
 - + the elements equal to the pivot have rank between *h* and *k*
 - the elements greater than the pivot have rank greater than k
- * The recursive calls consider
 - + elements with rank less than h
 - + elements with rank greater than k

Algorithm *inPlaceQuickSort*(*S*, *l*, *r*)

Input sequence *S*, ranks *l* and *r*

Output sequence S with the

elements of rank between *l* and *r* rearranged in increasing order

if $l \ge r$

return

 $i \leftarrow$ a random integer between l and r

 $x \leftarrow S.elemAtRank(i)$

 $(h, k) \leftarrow inPlacePartition(x)$

inPlaceQuickSort(S, l, h - 1)

inPlaceQuickSort(*S*, *k* + 1, *r*)

IN-PLACE PARTITIONING

 Perform the partition using two indices to split S into L and E U G (a similar method can split E U G into E and G).

- Repeat until j and k cross:
 - + Scan j to the right until finding an element $\geq x$.
 - + Scan k to the left until finding an element < x.
 - + Swap elements at indices j and k


```
/** Sort the subarray S[a..b] inclusive. */
      private static <K> void quickSortInPlace(K[] S, Comparator<K> comp,
 2
 3
 4
        if (a \ge b) return; // subarray is trivially sorted
 5
        int left = a;
 6
        int right = b-1;
        K pivot = S[b];
 7
 8
                                   // temp object used for swapping
        K temp;
 9
        while (left \leq right) {
10
          // scan until reaching value equal or larger than pivot (or right marker)
          while (left \leq right && comp.compare(S[left], pivot) < 0) left++;
11
          // scan until reaching value equal or smaller than pivot (or left marker)
12
          while (left \leq right && comp.compare(S[right], pivot) > 0) right--;
13
          if (left <= right) { // indices did not strictly cross
14
            // so swap values and shrink range
15
            temp = S[left]; S[left] = S[right]; S[right] = temp;
16
17
            left++; right--;
18
          }
19
         }
20
        // put pivot into its final place (currently marked by left index)
        temp = S[left]; S[left] = S[b]; S[b] = temp;
21
22
        // make recursive calls
        quickSortInPlace(S, comp, a, left - 1);
23
24
        quickSortInPlace(S, comp, left + 1, b);
25
```

© 2014 Goodrich, Tamassia, Goldwasser

int a, int b) {

Divide step of in-place quick-sort, using index / as shorthand for identifier left, and index *r* as shorthand for identifier right.

- Index / scans the sequence from left to right, and
- index r scans the sequence from right to left.
- A swap is performed when / is at an element as large as the pivot and r is at an element as small as the pivot.
- A final swap with the pivot, in part (f), completes the divide step.

SUMMARY OF SORTING ALGORITHMS

Algorithm	Time	Notes
selection-sort	O (n ²)	in-placeslow (good for small inputs)
insertion-sort	$O(n^2)$	in-placeslow (good for small inputs)
quick-sort	O(n log n) expected	 in-place, randomized fastest (good for large inputs)
heap-sort	O (n log n)	in-placefast (good for large inputs)
merge-sort	O (n log n)	 sequential data access fast (good for huge inputs)