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SORTING WITH DIVIDE AND CONQUER SCHEME 

Sorting 
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Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edit
ion, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014 
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TYPES OF SORTING 

 Sorting algorithms we have seen so far:  
 insertion-sort 
 selection-sort 
 heap-sort 

 Divide-and-conquer based sorting 
 merge-sort  
 quick-sort 

  Linear time Sorting 
 bucket-sort 
 radix-sort 

Divide-and-Conquer 

2 



Merge Sort 
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MERGE SORT 

7  2  9  4  →  2  4  7  9 

7  2  →  2  7 9  4  →  4  9 

7 → 7 2 → 2 9 → 9 4 → 4 
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MERGE-SORT 

 Merge-sort on an input 
sequence S with n elements 
consists of three steps: 
 Divide: If S has zero or one element, 

return S. Otherwise partition S into 
two sequences S1 and S2 of about 
n/2 elements each 

 Conquer: recursively sort S1 and S2 

 Combine: merge sorted S1 and 
sorted S2 into a unique sorted 
sequence 

Algorithm mergeSort(S) 
 Input sequence S with n    
  elements  
 Output sequence S sorted 

 according to C 
if S.size() > 1 
 (S1, S2) ← partition(S, n/2)  
 mergeSort(S1) 
 mergeSort(S2) 
 S ← merge(S1, S2) 
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Merge Sort 
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DIVIDE-AND-CONQUER 

 Divide-and conquer is a general 
algorithm design paradigm: 
 Divide: divide the input data S in 

two disjoint subsets S1 and S2 
 Conquer: solve the subproblems 

associated with S1 and S2 
 Combine: combine the solutions 

for S1 and S2 into a solution for S 
 The base case for the recursion are 

subproblems of size 0 or 1 

 Merge-sort is a sorting 
algorithm based on the divide-
and-conquer paradigm  

 Like heap-sort 
 It has O(n log n) running 

time 
 Unlike heap-sort 

 It does not use an auxiliary 
priority queue 

 It accesses data in a 
sequential manner (suitable 
to sort data on a disk) 
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Merge Sort 
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MERGING TWO SORTED SEQUENCES 

 The conquer step of 
merge-sort consists of 
merging two sorted 
sequences A and B into a 
sorted sequence S 
containing the union of the 
elements of A and B 

 Merging two sorted 
sequences, each with n/2 
elements and implemented 
by means of a doubly 
linked list, takes O(n) time 

Algorithm merge(A, B) 
 Input sequences A and B with 
   n/2 elements each  
 Output sorted sequence of A ∪ B 

 

S ← empty sequence 
while ¬A.isEmpty()  ∧ ¬B.isEmpty() 
 if A.first().element() < B.first().element() 
  S.addLast(A.remove(A.first())) 
 else 
  S.addLast(B.remove(B.first())) 
while ¬A.isEmpty() 
 S.addLast(A.remove(A.first())) 
while ¬B.isEmpty() 
 S.addLast(B.remove(B.first())) 
return S 
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MERGE-SORT TREE 
 An execution of merge-sort is depicted by a binary tree 

T, called the merge-sort tree  
 Each node represents a recursive call of merge-sort and stores 

 unsorted sequence before the execution and its partition 
 sorted sequence at the end of the execution 

 the root is the initial call  
 the leaves are calls on subsequences of size 0 or 1 

7  2  9  4  →  2  4  7  9 

7  2  →  2  7 9  4  →  4  9 

7 → 7 2 → 2 9 → 9 4 → 4 



© 2014 Goodrich, Tamassia, Goldwasser 

EXAMPLE MERGE-SORT TREE T 
Divide-and-Conquer 

8 

input sequences processed at each node of T output sequences generated at each node of T. 



© 2014 Goodrich, Tamassia, Goldwasser 

Merge Sort 
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EXECUTION EXAMPLE 

 Partition 

7  2  9  4  →  2  4  7  9 3  8  6  1  →  1  3  8  6 

7  2  →  2  7 9  4  →  4  9 3  8  →  3  8 6  1  →  1  6 

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1 

7  2  9  4  3  8  6  1  →  1  2  3  4  6  7  8  9 
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Merge Sort 
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EXECUTION EXAMPLE (CONT.) 

 Recursive call, partition 

 7  2  9  4 →  2  4  7  9 3  8  6  1  →  1  3  8  6 

7  2  →  2  7 9  4  →  4  9 3  8  →  3  8 6  1  →  1  6 

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1 

7  2  9  4  3  8  6  1  →  1  2  3  4  6  7  8  9 
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EXECUTION EXAMPLE (CONT.) 

 Recursive call, partition 

 7  2  9  4 →  2  4  7  9 3  8  6  1  →  1  3  8  6 

7  2 → 2  7 9  4  →  4  9 3  8  →  3  8 6  1  →  1  6 

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1 

7  2  9  4  3  8  6  1  →  1  2  3  4  6  7  8  9 
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EXECUTION EXAMPLE (CONT.) 

 Recursive call, base case 

 7  2  9  4 →  2  4  7  9 3  8  6  1  →  1  3  8  6 

7  2 → 2  7 9  4  →  4  9 3  8  →  3  8 6  1  →  1  6 

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1 

7  2  9  4  3  8  6  1  →  1  2  3  4  6  7  8  9 
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EXECUTION EXAMPLE (CONT.) 

 Recursive call, base case 

 7  2  9  4 →  2  4  7  9 3  8  6  1  →  1  3  8  6 

7  2 → 2  7 9  4  →  4  9 3  8  →  3  8 6  1  →  1  6 

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1 

7  2  9  4  3  8  6  1  →  1  2  3  4  6  7  8  9 
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EXECUTION EXAMPLE (CONT.) 

 Merge 

 7  2  9  4 →  2  4  7  9 3  8  6  1  →  1  3  8  6 

7  2 → 2  7 9  4  →  4  9 3  8  →  3  8 6  1  →  1  6 

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1 

7  2  9  4  3  8  6  1  →  1  2  3  4  6  7  8  9 
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Merge Sort 
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EXECUTION EXAMPLE (CONT.) 

 Recursive call, …, base case, merge 

 7  2  9  4 →  2  4  7  9 3  8  6  1  →  1  3  8  6 

7  2 → 2  7 9  4  →  4  9 3  8  →  3  8 6  1  →  1  6 

7 → 7 2 → 2 3 → 3 8 → 8 6 → 6 1 → 1 

7  2  9  4  3  8  6  1  →  1  2  3  4  6  7  8  9 

9 → 9 4 → 4 
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EXECUTION EXAMPLE (CONT.) 

 Merge 

 7  2  9  4 →  2  4  7  9 3  8  6  1  →  1  3  8  6 

7  2 → 2  7 9  4  →  4  9 3  8  →  3  8 6  1  →  1  6 

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1 

7  2  9  4  3  8  6  1  →  1  2  3  4  6  7  8  9 
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Merge Sort 
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EXECUTION EXAMPLE (CONT.) 

 Recursive call, …, merge, merge 

 7  2  9  4 →  2  4  7  9 3  8  6  1  →  1  3  6  8 

7  2 → 2  7 9  4  →  4  9 3  8  →  3  8 6  1  →  1  6 

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1 

7  2  9  4  3  8  6  1  →  1  2  3  4  6  7  8  9 
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Merge Sort 
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EXECUTION EXAMPLE (CONT.) 

 Merge 

 7  2  9  4 →  2  4  7  9 3  8  6  1  →  1  3  6  8 

7  2 → 2  7 9  4  →  4  9 3  8  →  3  8 6  1  →  1  6 

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1 

7  2  9  4  3  8  6  1  →  1  2  3  4  6  7  8  9 
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ARRAY-BASED IMPLEMENTATION OF MERGE-SORT 1 
Merge Sort 

19 
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ARRAY-BASED IMPLEMENTATION OF MERGE-SORT 2 
Divide-and-Conquer 

20 

A step in the merge of two sorted arrays for which S2[ j] < S1[i]. 

indices i &j  
represents the 

number of 
elements of S1 & 

S2 that have 
been copied to S 
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Merge Sort 
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ANALYSIS OF MERGE-SORT 

 The height h of the merge-
sort tree is O(log n)  
 at each recursive call we divide 

in half the sequence,  
 The overall work done at the 

nodes of depth i is O(n)  
 we partition and merge 2i 

sequences of size n/2i  
 we make 2i+1 recursive calls 

 Thus, the total running time 
of merge-sort is O(nlog n) 
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EXTRA1. LINKED LIST IMPLEMENTATIONS OF MERGE-SORT 1 
Divide-and-Conquer 

22 
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LINKED LIST IMPLEMENTATIONS OF MERGE-SORT 2 

 Using basic queue as its container type 

Divide-and-Conquer 

23 
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EXAMPLE MERGE IN LINKED-LIST IMPLEMENTATION  
Divide-and-Conquer 

24 
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EXAMPLE MERGE IN LINKED-LIST IMPLEMENTATION 2 
Divide-and-Conquer 

25 
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EXTRA2. A BOTTOM-UP (NONRECURSIVE) MERGE-SORT 

 nonrecursive version of array-based merge-sort, which 
runs in O(nlogn) 

 The main idea is to perform merge-sort bottom-up, 
performing the merges level by level going up the 
merge-sort tree. 

Divide-and-Conquer 

26 
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A BOTTOM-UP (NONRECURSIVE) MERGE-SORT 

 

Divide-and-Conquer 

27 
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A BOTTOM-UP (NONRECURSIVE) MERGE-SORT 
Divide-and-Conquer 

28 
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QUICK-SORT 

7  4  9  6  2  →  2  4  6  7  9 

4  2  →  2  4 7  9  →  7  9 

2 → 2 9 → 9 
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Quick-Sort 
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QUICK-SORT 

 Quick-sort is a randomized 
sorting algorithm based on the 
divide-and-conquer paradigm: 
 Divide: pick a random element x 

(called pivot) and partition S into  
 L elements less than x 
 E elements equal x 
 G elements greater than x 

 Conquer: Recursively sort L and G 
 Combine: join L, E and G 
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Quick-Sort 
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PARTITION 

 We partition an input sequence as 
follows: 
 We remove, in turn, each element 

y from S and  
 We insert y into L, E or G, 

depending on the result of the 
comparison with the pivot x 

 Each insertion and removal is at 
the beginning or at the end of a 
sequence, and hence takes O(1) 
time 

 Thus, the partition step of quick-
sort takes O(n) time 

Algorithm partition(S, p) 
 Input sequence S, position p of pivot  
 Output subsequences L, E, G of the  
  elements of S less than, equal to, 
  or greater than the pivot, resp. 
 L, E, G ← empty sequences 

x ← S.remove(p)  
while ¬S.isEmpty() 
 y ← S.remove(S.first()) 
 if y < x 
  L.addLast(y) 
 else if y = x 
   E.addLast(y) 
 else { y > x } 
  G.addLast(y) 
return L, E, G 
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Quick-Sort 
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QUICK-SORT TREE 
 An execution of quick-sort is depicted by a binary tree called quick-

sort tree. 
 Each node represents a recursive call of quick-sort and stores 

 Unsorted sequence before the execution and its pivot 
 Sorted sequence at the end of the execution 

 The root is the initial call  
 The leaves are calls on subsequences of size 0 or 1 
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Quick-Sort 
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EXECUTION EXAMPLE 

 Pivot selection 

7  2  9  4  →  2  4  7  9 

2 → 2 

7  2  9  4 3  7  6  1  →  1  2  3  4  6  7  8  9 

3  8  6  1  →  1  3  8  6 

3 → 3 8 → 8 9  4  →  4  9 

9 → 9 4 → 4 
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Quick-Sort 

34 

EXECUTION EXAMPLE (CONT.) 

 Partition, recursive call, pivot selection 

 2  4  3  1 →  2  4  7  9 

9  4  →  4  9 

9 → 9 4 → 4 

7  2  9  4  3  7  6  1 →  1  2  3  4  6  7  8  9 

3  8  6  1  →  1  3  8  6 

3 → 3 8 → 8 2 → 2 
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Quick-Sort 
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EXECUTION EXAMPLE (CONT.) 

 Partition, recursive call, base case 

  2  4  3  1 →→  2  4  7   

1 → 1 9  4  →  4  9 

9 → 9 4 → 4 

7  2  9  4 3  7  6  1 → →  1  2  3  4  6  7  8  9 

3  8  6  1  →  1  3  8  6 

3 → 3 8 → 8 
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Quick-Sort 
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EXECUTION EXAMPLE (CONT.) 

 Recursive call, …, base case, join 

3  8  6  1  →  1  3  8  6 

7  2  9  4 3  7  6  1 →  1  2  3  4  6  7  8  9 

2  4  3  1  →  1  2  3  4 

1 → 1 4  3  →  3  4 

4 → 4 
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Quick-Sort 
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EXECUTION EXAMPLE (CONT.) 

 Recursive call, pivot selection 

7  9  7  1  →  1  3  8  6 

8 8 

7  2  9  4 3  7  6  1 →  1  2  3  4  6  7  8  9 

2  4  3  1  →  1  2  3  4 

1 → 1 4  3  →  3  4 

4 → 4 

9 9 
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Quick-Sort 
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EXECUTION EXAMPLE (CONT.) 

 Partition, …, recursive call, base case 

7  9  7  1  →  1  3  8  6 

7  2  9  4 3  7  6  1 →  1  2  3  4  6  7  8  9 

2  4  3  1  →  1  2  3  4 

1 → 1 4  3  →  3  4 

4 → 4 

9 → 9 
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Quick-Sort 
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EXECUTION EXAMPLE (CONT.) 

 Join, join 

7  9  7   →  17  7  9 

7  2  9  4  3  7  6  1  → 1  2  3  4  6  7  7  9 

2  4  3  1  →  1  2  3  4 

1 → 1 4  3  →  3  4 

4 → 4 

9 → 9 
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Quick-Sort 
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WORST-CASE RUNNING TIME 
 The worst case for quick-sort occurs when the pivot is the unique minim

um or maximum element 
 One of L and G has size n − 1 and the other has size 0 
 The running time is proportional to the sum 

n + (n − 1) + … + 2 + 1 
 Thus, the worst-case running time of quick-sort is O(n2) 

depth time 

0 n 

1 n − 1 

… … 

n − 1 1 
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Quick-Sort 
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EXPECTED RUNNING TIME 

 Consider a recursive call of quick-sort on a sequence of size s 
 Good call: the sizes of L and G are each less than 3s/4 
 Bad call: one of L and G has size greater than 3s/4 

 
 

 
 
 A call is good with probability 1/2 

 1/2 of the possible pivots cause good calls: 

7  9  7  1  →  1 

7  2  9  4 3  7  6  1 9 

2  4  3  1  7 2 9 4 3 7 6 1 

7  2  9  4 3  7  6  1 

Good call Bad call 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Good pivots Bad pivots Bad pivots 
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LINKED 
QUEUE 
BASED  
 
IMPLEM
ENTATIO
N 

Quick-Sort 

42 
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Quick-Sort 
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EXPECTED RUNNING TIME, PART 2 
 Probabilistic Fact: The expected number of coin tosses required in order 

to get k heads is 2k 
 For a node of depth i, we expect 

 i/2 ancestors are good calls 
 The size of the input sequence for the current call is at most (3/4)i/2n 

s(r)

s(a) s(b)

s(c) s(d) s(f)s(e)

time per levelexpected height

O(log n)

O(n)

O(n)

O(n)

total expected time: O(n log n)

 Therefore, we have 
 For a node of depth 2log4/3n, the 

expected input size is one 
 The expected height of the quick-sort 

tree is O(log n) 

 The amount or work done at the 
nodes of the same depth is O(n) 

 Thus, the expected running time 
of quick-sort is O(n log n) 
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Quick-Sort 
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IN-PLACE QUICK-SORT 

 Quick-sort can be implemented to 
run in-place 

 In the partition step, we use 
replace operations to rearrange 
the elements of the input 
sequence such that 
 the elements less than the pivot 

have rank less than h 
 the elements equal to the pivot 

have rank between h and k 
 the elements greater than the 

pivot have rank greater than k 
 The recursive calls consider 

 elements with rank less than h 
 elements with rank greater than 

k 

Algorithm inPlaceQuickSort(S, l, r) 
 Input sequence S, ranks l and r 
 Output sequence S with the 
  elements of rank between l and r 
  rearranged in increasing order 
  if l ≥ r 

  return 
i ← a random integer between l and r  
x ← S.elemAtRank(i)  
(h, k) ← inPlacePartition(x) 
inPlaceQuickSort(S, l, h − 1) 
inPlaceQuickSort(S, k + 1, r) 
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Quick-Sort 
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IN-PLACE PARTITIONING 
 Perform the partition using two indices to split S into L and E 

U G (a similar method can split E U G into E and G). 
 
 

 
 Repeat until j and k cross: 

 Scan j to the right until finding an element > x. 
 Scan k to the left until finding an element < x. 
 Swap elements at indices j and k 

3  2  5  1  0  7  3  5  9  2  7  9  8  9  7  6  9 

j k 
(pivot = 6) 

3  2  5  1  0  7  3  5  9  2  7  9  8  9  7  6  9 

j k 
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JAVA IMP
LEMENTA
TION 

Quick-Sort 

46 
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Divide-and-Conquer 

47 

Divide step of in-place quick-sort, using 
index l as shorthand for identifier left, 
and index r as shorthand for identifier 
right.  
• Index l scans the sequence from left 

to right, and  
• index r scans the sequence from 

right to left.  
• A swap is performed when l is at an 

element as large as the pivot and r 
is at an element as small as the 
pivot.  

• A final swap with the pivot, in part 
(f ), completes the divide step. 



© 2014 Goodrich, Tamassia, Goldwasser 

Quick-Sort 
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SUMMARY OF SORTING ALGORITHMS 

Algorithm Time Notes 

selection-sort O(n2)  in-place 
 slow (good for small inputs) 

insertion-sort O(n2)  in-place 
 slow (good for small inputs) 

quick-sort 
O(n log n) 
expected 

 in-place, randomized 
 fastest (good for large inputs) 

heap-sort O(n log n)  in-place 
 fast (good for large inputs) 

merge-sort O(n log n)  sequential data access 
 fast  (good for huge inputs) 
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