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DEFINITION OF AN AVL TREE

Any binary search tree T that
satisfies the height-balance
property is said to be an AVL tree,
named after the initials of its
iInventors: Adel’son-Vel’skii and
Landis.

Height-Balance Property. For
every internal position p of T, the
heights of the children of p differ
by at most 1.




PROPERTIES OF AVL TREE

height-balance property allows
subtree of an AVL tree is itself an AVL tree.
The height of an AVL tree storing n entries is O(logn).
(view 11.3 for the proof)

height-balance property characterizing AVL trees is

equivalent to saying that every position is balanced.

Given a binary search tree T, we say that a position is
balanced if the absolute value of the difference between
the heights of its children is at most 1,

AVL tree guarantees worst-case logarithmic running time
for all the fundamental map operations




UPDATE OPERATIONS:; INSERTION

The insertion and deletion operations starts off with
corresponding operations of (standard) binary search
trees, but with post-processing for each operation to
restore the balance
After insertion, the height-balance property may violated
Restructure T to fix any unbalance with a “search-and-repair”

strategy.

Any ancestor of z that became temporarily unbalanced
becomes balanced again, and this one restructuring
restores the height-balance property globally.




Let z be the first position we encounter in
going up from p toward the root of T such
that z is unbalanced

let y denote the child of z with greater
height

let x be the child of y with greater height
(there cannot be a tie)

Perform restructure(x)

before the insertion

I
after an insertion in subtree T3
causes imbalance at z

I
after }réstoring palance'with trifode
restructuring



EXAMPLE OF INSERT
insertion of an entry with key 54 in the AVL tree

after adding a new node for key 54,
the nodes storing keys 78
and 44 become unbalanced;

a trinode restructuring restores the
height-balance
property



UPDATE OPERATIONS: DELETION

As with insertion, we use trinode restructuring to restore
balance in the tree T after deletion.

let z be the first unbalanced position encountered going up
from p toward the root of T,

let y be that child of z with greater height

let x be the child of y defined as follows:

if one of the children of y is taller than the other, let x be the taller child
of y;

else (both children of y have the same height), let x be the child of y on
the same side as y

Run restructure(x) operation.

After rebalancing z, we continue walking up T looking for
unbalanced positions

The height-balance property is guaranteed to be /ocally restored within
the subtree of b but not globally.




EXAMPLE

Deletion of the entry with key 32 from the AVL tree

I I Ty

A trinode restructuring of x, y, and
Z restores the height-balance
property.

after removing the node storing
key 32, the root becomes
unbalanced



PERFORMANCE OF AVL TREES

the height of an AVL tree with n entries is guaranteed
to be O(logn).

Method | Running Time

size, isEmpty | O(1)
get, put, remove | O(logn)
firstEntry, lastEntry | O(logn)
cellingEntry, floorEntry, lowerEntry, higherEntry | O(logn)
\
L

subMap | O(s+logn)
entrySet, keySet, values i
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JAVA IMPLEMENTATION OF AVL TREE 1.
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[#% An implementation of a sorted map using an AVL tree. #/

public class AVLTreeMap<K V> extends TreeMap<K V> {

[#x Constructs an empty map using the natural ordering of keys. %/

public AVLTreeMap( ) { super(); }

/##+ Constructs an empty map using the given comparator to order keys. #/

public AVLTreeMap(Comparator<K=> comp) { super(comp); }
[+ Returns the height of the given tree position. #/
protected int height(Position<Entry<K V== p) {

j

return tree getAux(p);

AVLTreeMap uses the node’s
auxiliary

balancing variable to store the
height of the subtree rooted at
that node, with leaves

having a balance factor of O by
default.

/## Recomputes the height of the given position based on its children's heights. #/
protected void recomputeHeight( Position<Entry<K V=2 p) {

j

tree.setAux(p, 1 + Math.max(height(left(p)), height(right(p))));

/#% Returns whether a position has balance factor between —1 and 1 inclusive. #/
protected boolean isBalanced(Position<Entry<K,V>> p] |

j

return Math.abs(height(left(p)) — height(right(p)}) <=1
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19 /## Returns a child of p with height no smaller than that of the other child. */
20 protected Position<Entry<K,V=> tallerChild(Position<Entry<K V== p) {

21 if (height(left(p)) = height(right(p))) return left(p); /| clear winner
22 if (height(left(p)) < height(right(p))) return right(p); /| clear winner
23 /[ equal height children; break tie while matching parent's orientation

24 if (isRoot(p)) return left(p); [/ choice is irrelevant

25 if (p == left(parent(p))) return left(p); [/ return aligned child

26 else return right(p);

2T}

49 /## Overrides the IreeMap rebalancing hook that is called after an insertion. #/
30 protected void rebalancelnsert(Position<Entry<K,V=> p) {

51 rebalance(p);

2 |

33 /#x Overrides the TreeMap rebalancing hook that is called after a deletion. %/
54 protected void rebalanceDelete(Position<Entry<K,V>> p) {

33 if (lisRoot(p))

36 rebalance(parent(p));

T}

38 |}
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28 [x#

29 # Utility used to rebalance after an insert or removal operation. This traverses the
30 + path upward from p, performing a trinode restructuring when imbalance is found,
31 % continuing until balance is restored.

32 %/

33 pr-':}tected void rebalance(Position<Entry <K V== p) {
3 int oldHeight, newHeight;

33 do {

36 oldHeight = height(p); // not yet recalculated if internal
37 if (lisBalanced(p)) { // imbalance detected
38 /| perform trinode restructuring, setting p to resulting root,

30 // and recompute new local heights after the restructuring

40 p = restructure(tallerChild(tallerChild(p)));

41 recomputeHeight(left(p));

42 recomputeHeight{right(p));

43 }

4 recomputeHeight(p);

45 newHeight = height(p);

16 p = parent(p);

17 | while (oldHeight != newHeight && p != null);
8 )
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