@ Ko rea q\& Stony Brook
ﬂﬂﬂﬂﬂ University

AVL TREE

Presentation for use with the textbook Data Structures and Algorithms in Java, 61" edition,
by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014

DEFINITION OF AN AVL TREE

Any binary search tree T that
satisfies the height-balance
property is said to be an AVL tree,
named after the initials of its
iInventors: Adel’son-Vel’skii and
Landis.

Height-Balance Property. For
every internal position p of T, the
heights of the children of p differ
by at most 1.

PROPERTIES OF AVL TREE

height-balance property allows
subtree of an AVL tree is itself an AVL tree.
The height of an AVL tree storing n entries is O(logn).
(view 11.3 for the proof)

height-balance property characterizing AVL trees is

equivalent to saying that every position is balanced.

Given a binary search tree T, we say that a position is
balanced if the absolute value of the difference between
the heights of its children is at most 1,

AVL tree guarantees worst-case logarithmic running time
for all the fundamental map operations

UPDATE OPERATIONS:; INSERTION

The insertion and deletion operations starts off with
corresponding operations of (standard) binary search
trees, but with post-processing for each operation to
restore the balance
After insertion, the height-balance property may violated
Restructure T to fix any unbalance with a “search-and-repair”

strategy.

Any ancestor of z that became temporarily unbalanced
becomes balanced again, and this one restructuring
restores the height-balance property globally.

Let z be the first position we encounter in
going up from p toward the root of T such
that z is unbalanced

let y denote the child of z with greater
height

let x be the child of y with greater height
(there cannot be a tie)

Perform restructure(x)

before the insertion

I
after an insertion in subtree T3
causes imbalance at z

I
after }réstoring palance'with trifode
restructuring

EXAMPLE OF INSERT
insertion of an entry with key 54 in the AVL tree

after adding a new node for key 54,
the nodes storing keys 78
and 44 become unbalanced;

a trinode restructuring restores the
height-balance
property

UPDATE OPERATIONS: DELETION

As with insertion, we use trinode restructuring to restore
balance in the tree T after deletion.

let z be the first unbalanced position encountered going up
from p toward the root of T,

let y be that child of z with greater height

let x be the child of y defined as follows:

if one of the children of y is taller than the other, let x be the taller child
of y;

else (both children of y have the same height), let x be the child of y on
the same side as y

Run restructure(x) operation.

After rebalancing z, we continue walking up T looking for
unbalanced positions

The height-balance property is guaranteed to be /ocally restored within
the subtree of b but not globally.

EXAMPLE

Deletion of the entry with key 32 from the AVL tree

I I Ty

A trinode restructuring of x, y, and
Z restores the height-balance
property.

after removing the node storing
key 32, the root becomes
unbalanced

PERFORMANCE OF AVL TREES

the height of an AVL tree with n entries is guaranteed
to be O(logn).

Method | Running Time

size, isEmpty | O(1)
get, put, remove | O(logn)
firstEntry, lastEntry | O(logn)
cellingEntry, floorEntry, lowerEntry, higherEntry | O(logn)
\
L

subMap | O(s+logn)
entrySet, keySet, values i

o~

1)

JAVA IMPLEMENTATION OF AVL TREE 1.

A e Led e —

17

[#% An implementation of a sorted map using an AVL tree. #/

public class AVLTreeMap<K V> extends TreeMap<K V> {

[#x Constructs an empty map using the natural ordering of keys. %/

public AVLTreeMap() { super(); }

/##+ Constructs an empty map using the given comparator to order keys. #/

public AVLTreeMap(Comparator<K=> comp) { super(comp); }
[+ Returns the height of the given tree position. #/
protected int height(Position<Entry<K V== p) {

j

return tree getAux(p);

AVLTreeMap uses the node’s
auxiliary

balancing variable to store the
height of the subtree rooted at
that node, with leaves

having a balance factor of O by
default.

/## Recomputes the height of the given position based on its children's heights. #/
protected void recomputeHeight(Position<Entry<K V=2 p) {

j

tree.setAux(p, 1 + Math.max(height(left(p)), height(right(p))));

/#% Returns whether a position has balance factor between —1 and 1 inclusive. #/
protected boolean isBalanced(Position<Entry<K,V>> p] |

j

return Math.abs(height(left(p)) — height(right(p)}) <=1

JAVA IMPLEMENTATION OF AVL TREE 3

19 /## Returns a child of p with height no smaller than that of the other child. */
20 protected Position<Entry<K,V=> tallerChild(Position<Entry<K V== p) {

21 if (height(left(p)) = height(right(p))) return left(p); /| clear winner
22 if (height(left(p)) < height(right(p))) return right(p); /| clear winner
23 /[equal height children; break tie while matching parent's orientation

24 if (isRoot(p)) return left(p); [/ choice is irrelevant

25 if (p == left(parent(p))) return left(p); [/ return aligned child

26 else return right(p);

2T}

49 /## Overrides the IreeMap rebalancing hook that is called after an insertion. #/
30 protected void rebalancelnsert(Position<Entry<K,V=> p) {

51 rebalance(p);

2 |

33 /#x Overrides the TreeMap rebalancing hook that is called after a deletion. %/
54 protected void rebalanceDelete(Position<Entry<K,V>> p) {

33 if (lisRoot(p))

36 rebalance(parent(p));

T}

38 |}

JAVA IMPLEMENTATION OF AVL TREE 3

28 [x#

29 # Utility used to rebalance after an insert or removal operation. This traverses the
30 + path upward from p, performing a trinode restructuring when imbalance is found,
31 % continuing until balance is restored.

32 %/

33 pr-':}tected void rebalance(Position<Entry <K V== p) {
3 int oldHeight, newHeight;

33 do {

36 oldHeight = height(p); // not yet recalculated if internal
37 if (lisBalanced(p)) { // imbalance detected
38 /| perform trinode restructuring, setting p to resulting root,

30 // and recompute new local heights after the restructuring

40 p = restructure(tallerChild(tallerChild(p)));

41 recomputeHeight(left(p));

42 recomputeHeight{right(p));

43 }

4 recomputeHeight(p);

45 newHeight = height(p);

16 p = parent(p);

17 | while (oldHeight != newHeight && p != null);
8)

™ =1 ol e L}] 1 -] I al . * L1 1 e

	AVL Tree
	Definition of an AVL Tree
	Properties of AVL Tree
	Update Operations: Insertion
	Slide Number 5
	Example of insert
	Update Operations: Deletion
	Example
	Performance of AVL Trees
	Java Implementation of AVL Tree 1.
	Java Implementation of AVL Tree 3
	Java Implementation of AVL Tree 3

