
AVL TREE

© 2014 Goodrich, Tamassia,
Goldwasser

AVL Tree

1

Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition,
by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014

DEFINITION OF AN AVL TREE

 Any binary search tree T that
satisfies the height-balance
property is said to be an AVL tree,
named after the initials of its
inventors: Adel’son-Vel’skii and
Landis.

 Height-Balance Property: For
every internal position p of T, the
heights of the children of p differ
by at most 1.

© 2014 Goodrich, Tamassia,
Goldwasser

AVL Tree

2

PROPERTIES OF AVL TREE

 height-balance property allows
 subtree of an AVL tree is itself an AVL tree.
 The height of an AVL tree storing n entries is O(logn).
 (view 11.3 for the proof)

 height-balance property characterizing AVL trees is

equivalent to saying that every position is balanced.
 Given a binary search tree T, we say that a position is

balanced if the absolute value of the difference between
the heights of its children is at most 1,

 AVL tree guarantees worst-case logarithmic running time
for all the fundamental map operations

© 2014 Goodrich, Tamassia,
Goldwasser

AVL Tree

3

UPDATE OPERATIONS: INSERTION

 The insertion and deletion operations starts off with
corresponding operations of (standard) binary search
trees, but with post-processing for each operation to
restore the balance
 After insertion, the height-balance property may violated
 Restructure T to fix any unbalance with a “search-and-repair”

strategy.

 Any ancestor of z that became temporarily unbalanced
becomes balanced again, and this one restructuring
restores the height-balance property globally.

© 2014 Goodrich, Tamassia,
Goldwasser

AVL Tree

4

© 2014 Goodrich, Tamassia,
Goldwasser

AVL Tree

5

before the insertion

after an insertion in subtree T3
causes imbalance at z

after restoring balance with trinode
restructuring

• Let z be the first position we encounter in
going up from p toward the root of T such
that z is unbalanced

• let y denote the child of z with greater
height

• let x be the child of y with greater height
(there cannot be a tie)

• Perform restructure(x)

EXAMPLE OF INSERT

© 2014 Goodrich, Tamassia,
Goldwasser

AVL Tree

6

insertion of an entry with key 54 in the AVL tree

after adding a new node for key 54,
the nodes storing keys 78
and 44 become unbalanced;

a trinode restructuring restores the
height-balance
property

UPDATE OPERATIONS: DELETION

 As with insertion, we use trinode restructuring to restore
balance in the tree T after deletion.

 let z be the first unbalanced position encountered going up
from p toward the root of T,

 let y be that child of z with greater height
 let x be the child of y defined as follows:

 if one of the children of y is taller than the other, let x be the taller child
of y;

 else (both children of y have the same height), let x be the child of y on
the same side as y

 Run restructure(x) operation.
 After rebalancing z, we continue walking up T looking for

unbalanced positions
 The height-balance property is guaranteed to be locally restored within

the subtree of b but not globally.

© 2014 Goodrich, Tamassia,
Goldwasser

AVL Tree

7

EXAMPLE

© 2014 Goodrich, Tamassia,
Goldwasser

AVL Tree

8

Deletion of the entry with key 32 from the AVL tree

after removing the node storing
key 32, the root becomes
unbalanced

A trinode restructuring of x, y, and
z restores the height-balance
property.

PERFORMANCE OF AVL TREES

 the height of an AVL tree with n entries is guaranteed
to be O(logn).

© 2014 Goodrich, Tamassia,
Goldwasser

AVL Tree

9

JAVA IMPLEMENTATION OF AVL TREE 1.

© 2014 Goodrich, Tamassia,
Goldwasser

AVL Tree

10

AVLTreeMap uses the node’s
auxiliary
balancing variable to store the
height of the subtree rooted at
that node, with leaves
having a balance factor of 0 by
default.

JAVA IMPLEMENTATION OF AVL TREE 3

© 2014 Goodrich, Tamassia,
Goldwasser

AVL Tree

11

JAVA IMPLEMENTATION OF AVL TREE 3

© 2014 Goodrich, Tamassia,
Goldwasser

AVL Tree

12

	AVL Tree
	Definition of an AVL Tree
	Properties of AVL Tree
	Update Operations: Insertion
	Slide Number 5
	Example of insert
	Update Operations: Deletion
	Example
	Performance of AVL Trees
	Java Implementation of AVL Tree 1.
	Java Implementation of AVL Tree 3
	Java Implementation of AVL Tree 3

