
SEARCH TREES

Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition,
by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014

© 2014 Goodrich, Tamassia,
Goldwasser

Search Trees

1

6

9 2

4 1 8

<

>
=

BINARY SEARCH TREES

© 2014 Goodrich, Tamassia,
Goldwasser

Binary Search Trees

2

ORDERED MAPS

Keys are assumed to come from a total order.
Items are stored in order by their keys
This allows us to support nearest neighbor queries
:

Item with largest key less than or equal to k
Item with smallest key greater than or equal to k

© 2014 Goodrich, Tamassia,
Goldwasser

Binary Search Trees

3

BINARY SEARCH

 Binary search can perform nearest neighbor queries on an ordered
map that is implemented with an array, sorted by key
 similar to the high-low children’s game
 at each step, the number of candidate items is halved
 terminates after O(log n) steps

 Example: find(7)

© 2014 Goodrich, Tamassia,
Goldwasser

Binary Search Trees

4

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

0

0

0

0

m l h

m l h

m l h

l=m =h

SEARCH TABLES

 A search table is an ordered map implemented by means of a sorted
sequence
 We store the items in an array-based sequence, sorted by key
 We use an external comparator for the keys

 Performance:
 Searches take O(log n) time, using binary search
 Inserting a new item takes O(n) time, since in the worst case we have to

shift n/2 items to make room for the new item
 Removing an item takes O(n) time, since in the worst case we have to shift

n/2 items to compact the items after the removal
 The lookup table is effective only for ordered maps of small size or for

maps on which searches are the most common operations, while
insertions and removals are rarely performed (e.g., credit card
authorizations)

© 2014 Goodrich, Tamassia,
Goldwasser

Binary Search Trees

5

BINARY SEARCH TREES

 We define binary search tree as
a proper binary tree storing
keys (or key-value entries) at
its internal nodes and satisfying
the following property:
 Let u, v, and w be three nodes

such that u is in the left subtree
of v and w is in the right subtree
of v. We have
key(u) ≤ key(v) ≤ key(w)

 External nodes do not store
items
 We use the leaves as

“placeholders” (sentinels)
 Represented as null references

in practice,

 An inorder traversal of a
binary search trees visits the
keys in increasing order

© 2014 Goodrich, Tamassia,
Goldwasser

Binary Search Trees

6

SEARCH
 To search for a key k, we

trace a downward path
starting at the root

 The next node visited
depends on the comparison
of k with the key of the
current node

 If we reach a leaf, the key is
not found

 Example: get(4):
 Call TreeSearch(4,root)

 The algorithms for nearest
neighbor queries are similar

© 2014 Goodrich, Tamassia,
Goldwasser

Binary Search Trees

8

Algorithm TreeSearch(k, v)
 if T.isExternal (v)

 return v
if k < key(v)
 return TreeSearch(k, left(v))
else if k = key(v)
 return v
else { k > key(v) }
 return TreeSearch(k, right(v))

6

9 2

4 1 8

<

>
=

ANOTHER EXAMPLE OF SEARCH
© 2014 Goodrich, Tamassia,

Goldwasser
Binary Search Trees

9

A successful search for key
65 in a binary search tree;

An unsuccessful search for key 68
that terminates at the leaf to the
left of the key 76.

ANALYSIS OF BINARY TREE SEARCHING

 Algorithm TreeSearch is recursive and executes a
constant number of primitive operations for each
recursive call.

© 2014 Goodrich, Tamassia,
Goldwasser

Binary Search Trees

10

We’ll talk about various
strategies to maintain an
upper bound of O(logn) on
the height soon

executes in
time O(h)

INSERTION
 To perform operation put(k, o), we search for key k (using TreeSearch)
 insertions, which always occur at a leaf).
 Assume a proper binary tree supports the following update operation

 expandExternal(p, e): Stores entry e at the external position p, and
expands p to be internal, having two new leaves as children.

© 2014 Goodrich, Tamassia,
Goldwasser

Binary Search Trees

11

executes in
time O(h)

EXAMPLE OF INSERT
© 2014 Goodrich, Tamassia,

Goldwasser
Binary Search Trees

12

the resulting tree

Insertion of an entry with key 68 into the search tree

Finding the position to insert

DELETION

 Deleting an entry from a binary search tree might
happen anywhere in the tree

 To perform operation remove(k), we search for key k
by calling TreeSearch(root(), k) to find the position p
storing an entry with key equal to k (if any).
 If search returns an external node, then there is no entry to

remove.
 Otherwise,

 at most one of the children of position p is internal,
 Or position p has two internal children

© 2014 Goodrich, Tamassia,
Goldwasser

Binary Search Trees

13

DELETION CONT.

 Deletion when at most one of the children of position p is
internal.
 Let position r be a child of p that is internal (or an arbitrary child,

if both are leaves).
 Remove p and the leaf that is r’s sibling, while promoting r upward

to take the place of p.

© 2014 Goodrich, Tamassia,
Goldwasser

Binary Search Trees

14 before the deletion of 32 after the deletion of 32

executes in
time O(h)

DELETION CONT.
 Deletion position p has two internal children

 Locate position r containing the entry having the greatest key that
is strictly less than that of position p (the rightmost internal position of
the left subtree of position p)

 Use r’s entry as a replacement for the one being deleted at
position p.

 Delete the node at position r from the tree.

© 2014 Goodrich, Tamassia,
Goldwasser

Binary Search Trees

15 Before deleting 88 After deleting 88

executes in
time O(h)

JAVA IMPLEMENTATION 1
© 2014 Goodrich, Tamassia,

Goldwasser
Binary Search Trees

16

JAVA IMPLEMENTATION 2
© 2014 Goodrich, Tamassia,

Goldwasser
Binary Search Trees

17

JAVA IMPLEMENTATION 3
© 2014 Goodrich, Tamassia,

Goldwasser
Binary Search Trees

18

JAVA IMPLEMENTATION 4

© 2014 Goodrich, Tamassia,
Goldwasser

Binary Search Trees

19

JAVA IMPLEMENTATION 5

© 2014 Goodrich, Tamassia,
Goldwasser

Binary Search Trees

20

JAVA IMPLEMENTATION 6

© 2014 Goodrich, Tamassia,
Goldwasser

Binary Search Trees

21

JAVA
IMPLEMENTA
TION 7

© 2014 Goodrich, Tamassia,
Goldwasser

Binary Search Trees

22

PERFORMANCE OF A BINARY SEARCH TREE
© 2014 Goodrich, Tamassia,

Goldwasser
Binary Search Trees

23

* subMap implementation can be shown to run in O(s+h)
worst-case bound for a call that reports s results

BALANCED SEARCH TREES

© 2014 Goodrich, Tamassia,
Goldwasser

Balanced Search Trees

24

BALANCED SEARCH TREES

 Augmenting a standard binary search tree with occasional
operations to reshape the tree and reduce its height
 Examples> AVL trees, splay trees, and red-black trees

 The primary operation to rebalance a binary search tree is
known as a rotation
 allows the shape of a tree to be modified while maintaining the search-

tree property.

© 2014 Goodrich, Tamassia,
Goldwasser

Binary Search Trees

25

“rotate” a child to be
above its parent

O(1) time with a
linked binary tree

representation

ALGORITHM FOR ROTATION

 = left
right =

data = 20

Node

 = left
right =

data = 10

Node
 = left

right =
data = 40

null
null

Node

 = left
right =
data = 5

null

Node
 = left

right =
data = 15

null
null

Node

 = left
right =
data = 7

null
null

Node

root

Data Structures Abstraction and Design Using Java, 2nd Edition
by Elliot B. Koffman & Paul A. T. Wolfgang, Wiley, 2010

ALGORITHM FOR ROTATION (CONT.)

 = left
right =

data = 20

Node

 = left
right =

data = 10

Node
 = left

right =
data = 40

null
null

Node

 = left
right =
data = 5

null

Node
 = left

right =
data = 15

null
null

Node

 = left
right =
data = 7

null
null

Node

root

1. Remember value of
root.left (temp = root.left)

temp

Data Structures Abstraction and Design Using Java, 2nd Edition
by Elliot B. Koffman & Paul A. T. Wolfgang, Wiley, 2010

ALGORITHM FOR ROTATION (CONT.)

 = left
right =

data = 20

Node

 = left
right =

data = 10

Node
 = left

right =
data = 40

null
null

Node

 = left
right =
data = 5

null

Node
 = left

right =
data = 15

null
null

Node

 = left
right =
data = 7

null
null

Node

root

1. Remember value of
root.left (temp = root.left)

2. Set root.left to value of
temp.right

temp

Data Structures Abstraction and Design Using Java, 2nd Edition
by Elliot B. Koffman & Paul A. T. Wolfgang, Wiley, 2010

ALGORITHM FOR ROTATION (CONT.)

 = left
right =

data = 20

Node

 = left
right =

data = 10

Node
 = left

right =
data = 40

null
null

Node

 = left
right =
data = 5

null

Node
 = left

right =
data = 15

null
null

Node

 = left
right =
data = 7

null
null

Node

root

1. Remember value of
root.left (temp = root.left)

2. Set root.left to value of
temp.right

3. Set temp.right to root

temp

Data Structures Abstraction and Design Using Java, 2nd Edition
by Elliot B. Koffman & Paul A. T. Wolfgang, Wiley, 2010

ALGORITHM FOR ROTATION (CONT.)

 = left
right =

data = 20

Node

 = left
right =

data = 10

Node
 = left

right =
data = 40

null
null

Node

 = left
right =
data = 5

null

Node
 = left

right =
data = 15

null
null

Node

 = left
right =
data = 7

null
null

Node

root

1. Remember value of
root.left (temp = root.left)

2. Set root.left to value of
temp.right

3. Set temp.right to root

4. Set root to temp

temp

Data Structures Abstraction and Design Using Java, 2nd Edition
by Elliot B. Koffman & Paul A. T. Wolfgang, Wiley, 2010

ALGORITHM FOR ROTATION (CONT.)

 = left
right =

data = 20

Node

 = left
right =

data = 10

Node

 = left
right =

data = 40
null

null

Node

 = left
right =
data = 5

null

Node

 = left
right =

data = 15
null

null

Node
 = left

right =
data = 7

null
null

Node

root

Data Structures Abstraction and Design Using Java, 2nd Edition
by Elliot B. Koffman & Paul A. T. Wolfgang, Wiley, 2010

TRINODE RESTRUCTURING.

 Trinode restructuring is a compound rotation operations with the goal
to restructure the subtree rooted at the grandparent z in order to
reduce the overall path length to current node x and its subtrees.

© 2014 Goodrich, Tamassia,
Goldwasser

Binary Search Trees

32

FOUR KINDS OF CRITICALLY UNBALANCED TREES

 Left-Left (parent balance is -2, left child balance is -1)
 Rotate right around parent

 Left-Right (parent balance -2, left child balance +1)
 Rotate left around child
 Rotate right around parent

 Right-Right (parent balance +2, right child balance +1)
 Rotate left around parent

 Right-Left (parent balance +2, right child balance -1)
 Rotate right around child
 Rotate left around parent

Data Structures Abstraction and Design Using Java, 2nd Edition
by Elliot B. Koffman & Paul A. T. Wolfgang, Wiley, 2010

EXAMPLE OF A TRINODE RESTRUCTURING OPERATION 1

© 2014 Goodrich, Tamassia,
Goldwasser

Binary Search Trees

34

BALANCING A LEFT-LEFT TREE

50

c

25

b a Each light
purple
triangle

represents a
tree of height

k

Data Structures Abstraction and Design Using Java, 2nd Edition
by Elliot B. Koffman & Paul A. T. Wolfgang, Wiley, 2010

BALANCING A LEFT-LEFT TREE (CONT.)

50

c

25

b a

The dark
purple

trapezoid
represents an
insertion into

this tree,
making its

height k + 1

Data Structures Abstraction and Design Using Java, 2nd Edition
by Elliot B. Koffman & Paul A. T. Wolfgang, Wiley, 2010

BALANCING A LEFT-LEFT TREE (CONT.)

50

c

25

b a

-2

-1

The formula
hR – hL

is used to calculate
the balance of each

node

k - (k + 1)

k – (k + 2)
The heights of the left and right
subtrees are unimportant; only
the relative difference matters

when balancing

Data Structures Abstraction and Design Using Java, 2nd Edition
by Elliot B. Koffman & Paul A. T. Wolfgang, Wiley, 2010

BALANCING A LEFT-LEFT TREE (CONT.)

50

c

25

b a

-2

-1

When the root
and left subtree

are both left-
heavy, the tree is
called a Left-Left

tree

Data Structures Abstraction and Design Using Java, 2nd Edition
by Elliot B. Koffman & Paul A. T. Wolfgang, Wiley, 2010

BALANCING A LEFT-LEFT TREE (CONT.)

50

c

25

b a

-2

-1

A Left-Left tree
can be balanced

by a rotation
right

Data Structures Abstraction and Design Using Java, 2nd Edition
by Elliot B. Koffman & Paul A. T. Wolfgang, Wiley, 2010

BALANCING A LEFT-LEFT TREE (CONT.)

50

c

25

b

a

0

0

Data Structures Abstraction and Design Using Java, 2nd Edition
by Elliot B. Koffman & Paul A. T. Wolfgang, Wiley, 2010

EXAMPLE OF TRINODE RESTRUCTURING OPERATION 2

© 2014 Goodrich, Tamassia,
Goldwasser

Binary Search Trees

41

BALANCING A LEFT-RIGHT TREE

50

c

25

a b

-2

+1
(k + 1) - k

k - (k + 2)

Data Structures Abstraction and Design Using Java, 2nd Edition
by Elliot B. Koffman & Paul A. T. Wolfgang, Wiley, 2010

BALANCING A LEFT-RIGHT TREE (CONT.)

50

c

25

a b

-2

+1

A Left-Right tree
cannot be balanced by
a simple rotation right

Data Structures Abstraction and Design Using Java, 2nd Edition
by Elliot B. Koffman & Paul A. T. Wolfgang, Wiley, 2010

BALANCING A LEFT-RIGHT TREE (CONT.)

50

c

25

a b

-2

+1

Subtree b needs to be
expanded into its

subtrees bL and bR

Data Structures Abstraction and Design Using Java, 2nd Edition
by Elliot B. Koffman & Paul A. T. Wolfgang, Wiley, 2010

BALANCING A LEFT-RIGHT TREE (CONT.)

50

c

25

a

-2

+1

40

bR bL

40 is left-heavy. The
left substree can now

be rotated left

-1

Data Structures Abstraction and Design Using Java, 2nd Edition
by Elliot B. Koffman & Paul A. T. Wolfgang, Wiley, 2010

BALANCING A LEFT-RIGHT TREE (CONT.)

50

c
25

a

-2

-2 40

bR

bL

0

The overall tree is now
Left-Left and a rotation

right will balance it.

Data Structures Abstraction and Design Using Java, 2nd Edition
by Elliot B. Koffman & Paul A. T. Wolfgang, Wiley, 2010

BALANCING A LEFT-RIGHT TREE (CONT.)

50

c

25

a

0

+1

40

bR bL

0

Data Structures Abstraction and Design Using Java, 2nd Edition
by Elliot B. Koffman & Paul A. T. Wolfgang, Wiley, 2010

BALANCING A LEFT-RIGHT TREE (CONT.)

50

c

25

a

-2

+1

40

bL bR

In the previous
example, an item was

inserted in bL.
 We now show the

steps if an item was
inserted into bR

instead

+1

Data Structures Abstraction and Design Using Java, 2nd Edition
by Elliot B. Koffman & Paul A. T. Wolfgang, Wiley, 2010

BALANCING A LEFT-RIGHT TREE (CONT.)

50

c

25

a

-2

+1

40

bL bR
Rotate the left subtree

left

+1

Data Structures Abstraction and Design Using Java, 2nd Edition
by Elliot B. Koffman & Paul A. T. Wolfgang, Wiley, 2010

BALANCING A LEFT-RIGHT TREE (CONT.)

50

c
25

a

-2

-1 40

bL

bR

Rotate the
tree right

-1

Data Structures Abstraction and Design Using Java, 2nd Edition
by Elliot B. Koffman & Paul A. T. Wolfgang, Wiley, 2010

BALANCING A LEFT-RIGHT TREE (CONT.)

50

c

25

a

0

0

40

bL bR

-1

Data Structures Abstraction and Design Using Java, 2nd Edition
by Elliot B. Koffman & Paul A. T. Wolfgang, Wiley, 2010

BALANCEABLE
BINARYTREE
CLASS

© 2014 Goodrich, Tamassia,
Goldwasser

Binary Search Trees

52

© 2014 Goodrich, Tamassia,
Goldwasser

Binary Search Trees

53

© 2014 Goodrich, Tamassia,
Goldwasser

Binary Search Trees

54

© 2014 Goodrich, Tamassia,
Goldwasser

Binary Search Trees

55

	Search Trees
	Binary Search Trees�
	Ordered Maps
	Binary Search
	Search Tables
	Binary Search Trees
	Search
	Another example of Search
	Analysis of Binary Tree Searching
	Insertion
	Example of Insert
	Deletion
	Deletion cont.
	Deletion cont.
	Java Implementation 1
	Java Implementation 2
	Java Implementation 3
	Java Implementation 4
	Java Implementation 5
	Java Implementation 6
	Java Implementation 7
	Performance of a Binary Search Tree
	Balanced Search Trees
	Balanced Search Trees
	Algorithm for Rotation
	Algorithm for Rotation (cont.)
	Algorithm for Rotation (cont.)
	Algorithm for Rotation (cont.)
	Algorithm for Rotation (cont.)
	Algorithm for Rotation (cont.)
	trinode restructuring.
	Four Kinds of Critically Unbalanced Trees
	Example of a trinode restructuring operation 1
	Balancing a Left-Left Tree
	Balancing a Left-Left Tree (cont.)
	Balancing a Left-Left Tree (cont.)
	Balancing a Left-Left Tree (cont.)
	Balancing a Left-Left Tree (cont.)
	Balancing a Left-Left Tree (cont.)
	Example of trinode restructuring operation 2
	Balancing a Left-Right Tree
	Balancing a Left-Right Tree (cont.)
	Balancing a Left-Right Tree (cont.)
	Balancing a Left-Right Tree (cont.)
	Balancing a Left-Right Tree (cont.)
	Balancing a Left-Right Tree (cont.)
	Balancing a Left-Right Tree (cont.)
	Balancing a Left-Right Tree (cont.)
	Balancing a Left-Right Tree (cont.)
	Balancing a Left-Right Tree (cont.)
	BalanceableBinaryTree class
	Slide Number 53
	Slide Number 54
	Slide Number 55

