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ORDERED MAPS 

Keys are assumed to come from a total order. 
Items are stored in order by their keys 
This allows us to support nearest neighbor queries
: 

Item with largest key less than or equal to k 
Item with smallest key greater than or equal to k 
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BINARY SEARCH 

 Binary search can perform nearest neighbor queries on an ordered 
map that is implemented with an array, sorted by key 
 similar to the high-low children’s game 
 at each step, the number of candidate items is halved 
 terminates after O(log n) steps 

 Example: find(7) 
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SEARCH TABLES 

 A search table is an ordered map implemented by means of a sorted 
sequence 
 We store the items in an array-based sequence, sorted by key 
 We use an external comparator for the keys 

 Performance: 
 Searches take O(log n) time, using binary search 
 Inserting a new item takes O(n) time, since in the worst case we have to 

shift n/2 items to make room for the new item 
 Removing an item takes O(n) time, since in the worst case we have to shift 

n/2 items to compact the items after the removal 
 The lookup table is effective only for ordered maps of small size or for 

maps on which searches are the most common operations, while 
insertions and removals are rarely performed (e.g., credit card 
authorizations) 
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BINARY SEARCH TREES 

 We define binary search tree as 
a proper binary tree storing 
keys (or key-value entries) at 
its internal nodes and satisfying 
the following property: 
 Let u, v, and w be three nodes 

such that u is in the left subtree 
of v and w is in the right subtree 
of v. We have  
key(u) ≤ key(v) ≤ key(w) 

 External nodes do not store 
items 
 We use the leaves as 

“placeholders” (sentinels) 
 Represented as null references 

in practice, 

 An inorder traversal of a 
binary search trees visits the 
keys in increasing order 
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SEARCH 
 To search for a key k, we 

trace a downward path 
starting at the root 

 The next node visited 
depends on the comparison 
of k with the key of the 
current node 

 If we reach a leaf, the key is 
not found 

 Example: get(4): 
 Call TreeSearch(4,root) 

 The algorithms for nearest 
neighbor queries are similar 
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Algorithm TreeSearch(k, v)  
 if T.isExternal (v) 

 return v 
if k < key(v) 
 return TreeSearch(k, left(v)) 
else if k = key(v) 
 return v 
else { k > key(v) } 
 return TreeSearch(k, right(v)) 
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ANOTHER EXAMPLE OF SEARCH  
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A successful search for key 
65 in a binary search tree;  

An unsuccessful search for key 68 
that terminates at the leaf to the 
left of the key 76. 



ANALYSIS OF BINARY TREE SEARCHING 

 Algorithm TreeSearch is recursive and executes a 
constant number of primitive operations for each 
recursive call. 
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We’ll talk about various 
strategies to maintain an 
upper bound of O(logn) on 
the height soon 

executes in 
time O(h) 



INSERTION 
 To perform operation put(k, o), we search for key k (using TreeSearch) 
 insertions, which always occur at a leaf). 
 Assume a proper binary tree supports the following update operation 

 expandExternal(p, e): Stores entry e at the external position p, and 
expands p to be internal, having two new leaves as children. 

© 2014 Goodrich, Tamassia, 
Goldwasser 

Binary Search Trees 

11 

executes in 
time O(h) 



EXAMPLE OF INSERT 
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the resulting tree 

Insertion of an entry with key 68 into the search tree 

Finding the position to insert 



DELETION 

 Deleting an entry from a binary search tree might 
happen anywhere in the tree 

 To perform operation remove(k), we search for key k 
by calling TreeSearch(root( ), k) to find the position p 
storing an entry with key equal to k (if any). 
 If search returns an external node, then there is no entry to 

remove.  
 Otherwise, 

 at most one of the children of position p is internal, 
 Or position p has two internal children 
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DELETION CONT.  

 Deletion when at most one of the children of position p is 
internal.  
 Let position r be a child of p that is internal (or an arbitrary child, 

if both are leaves).  
 Remove p and the leaf that is r’s sibling, while promoting r upward 

to take the place of p. 
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DELETION CONT.  
 Deletion position p has two internal children 

 Locate position r containing the entry having the greatest key that 
is strictly less than that of position p (the rightmost internal position of 
the left subtree of position p) 

 Use r’s entry as a replacement for the one being deleted at 
position p. 

 Delete the node at position r from the tree. 

© 2014 Goodrich, Tamassia, 
Goldwasser 

Binary Search Trees 

15 Before deleting 88  After deleting 88  

executes in 
time O(h) 



JAVA IMPLEMENTATION 1 
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JAVA IMPLEMENTATION 2 
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JAVA IMPLEMENTATION 3 
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JAVA IMPLEMENTATION 4 
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JAVA IMPLEMENTATION 5 

 

© 2014 Goodrich, Tamassia, 
Goldwasser 

Binary Search Trees 

20 



JAVA IMPLEMENTATION 6 
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JAVA 
IMPLEMENTA
TION 7 
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PERFORMANCE OF A BINARY SEARCH TREE 
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* subMap implementation can be shown to run in O(s+h) 
worst-case bound for a call that reports s results 



BALANCED SEARCH TREES 
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BALANCED SEARCH TREES 

 Augmenting a standard binary search tree with occasional 
operations to reshape the tree and reduce its height 
 Examples> AVL trees, splay trees, and red-black trees 

 The primary operation to rebalance a binary search tree is 
known as a rotation 
 allows the shape of a tree to be modified while maintaining the search-

tree property. 
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“rotate” a child to be 
above its parent 

O(1) time with a 
linked binary tree 

representation 



ALGORITHM FOR ROTATION 
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ALGORITHM FOR ROTATION (CONT.) 
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ALGORITHM FOR ROTATION (CONT.) 
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ALGORITHM FOR ROTATION (CONT.) 
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ALGORITHM FOR ROTATION (CONT.) 
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ALGORITHM FOR ROTATION (CONT.) 
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TRINODE RESTRUCTURING. 

 Trinode restructuring is a compound rotation operations with the goal 
to restructure the subtree rooted at the grandparent z in order to 
reduce the overall path length to current node x and its subtrees. 
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FOUR KINDS OF CRITICALLY UNBALANCED TREES 

 Left-Left (parent balance is -2, left child balance is -1) 
 Rotate right around parent 

 Left-Right (parent balance -2, left child balance +1) 
 Rotate left around child 
 Rotate right around parent 

 Right-Right (parent balance +2, right child balance +1) 
 Rotate left around parent 

 Right-Left (parent balance +2, right child balance -1) 
 Rotate right around child 
 Rotate left around parent 
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EXAMPLE OF A TRINODE RESTRUCTURING OPERATION 1 
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BALANCING A LEFT-LEFT TREE 

50 

c 

25 

b a Each light 
purple 
triangle 

represents a 
tree of height 

k 
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BALANCING A LEFT-LEFT TREE (CONT.) 

50 

c 
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b a 

The dark 
purple 

trapezoid 
represents an 
insertion into 

this tree, 
making its 

height k + 1  
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BALANCING A LEFT-LEFT TREE (CONT.) 

50 
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The formula  
hR – hL  

is used to calculate 
the balance of each 

node 

k - (k + 1) 

k – (k + 2) 
The heights of the left and right 
subtrees are unimportant; only 
the relative difference matters 

when balancing 
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BALANCING A LEFT-LEFT TREE (CONT.) 
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When the root 
and left subtree 

are both left-
heavy, the tree is 
called a Left-Left 

tree 
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BALANCING A LEFT-LEFT TREE (CONT.) 
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A Left-Left tree 
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by a rotation 
right 
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BALANCING A LEFT-LEFT TREE (CONT.) 
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EXAMPLE OF TRINODE RESTRUCTURING OPERATION 2 
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BALANCING A LEFT-RIGHT TREE 
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(k + 1) - k  

k - (k + 2)  
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BALANCING A LEFT-RIGHT TREE (CONT.) 

50 

c 
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A Left-Right tree 
cannot be balanced by 
a simple rotation right 
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BALANCING A LEFT-RIGHT TREE (CONT.) 
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Subtree b needs to be 
expanded into its 

subtrees bL and bR 
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BALANCING A LEFT-RIGHT TREE (CONT.) 
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BALANCING A LEFT-RIGHT TREE (CONT.) 
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Left-Left and a rotation 
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BALANCING A LEFT-RIGHT TREE (CONT.) 
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BALANCING A LEFT-RIGHT TREE (CONT.) 
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BALANCING A LEFT-RIGHT TREE (CONT.) 
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BALANCING A LEFT-RIGHT TREE (CONT.) 
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BALANCING A LEFT-RIGHT TREE (CONT.) 
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BALANCEABLE
BINARYTREE 
CLASS 
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