
HEAPS:
IMPLEMENTING EFFICIENT PRIORITY QUEUES

Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T.
Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014

© 2014 Goodrich, Tamassia,
Goldwasser

Heaps

1

2

6 5

7 9

RECALL PRIORITY QUEUE ADT
 A priority queue stores a

collection of entries
 Each entry is a pair

(key, value)
 Main methods of the Priority

Queue ADT
 insert(k, v): inserts an entry

with key k and value v
 removeMin(): removes and

returns the entry with smallest
key

 Additional methods
 min(): returns, but does not

remove, an entry with smallest
key

 size(), isEmpty()

 Applications:
 Standby flyers
 Auctions
 Stock market

© 2014 Goodrich, Tamassia,
Goldwasser

Heaps

2

HEAPS
 A binary heap is a binary tree storing

keys at its nodes and satisfying the
following properties:

 (min) Heap-Order: for every internal
node v other than the root,
key(v) ≥ key(parent(v))

 Complete Binary Tree: let h be the
height of the heap
 for i = 0, … , h − 1, there are 2i nodes

of depth i
 at depth h − 1, the internal nodes are

to the left of the external nodes

 The last node of a heap is the
rightmost node of maximum
depth

© 2014 Goodrich, Tamassia,
Goldwasser

Heaps

3

2

6 5

7 9

last node

HEIGHT OF A HEAP

 Theorem: A heap T storing n entries has height h = ⌊log n⌋.
 Proof: (we apply the complete binary tree property)

 Let h be the height of a heap storing n keys
 Since there are 2i keys at depth i = 0, … , h − 1 and at least one key at

depth h, we have n ≥ 1 + 2 + 4 + … + 2h−1 + 1

 Thus, n ≥ 2h , i.e., h ≤ log n

© 2014 Goodrich, Tamassia,
Goldwasser

Heaps

4

1

2

2h−1

1

keys
0

1

h−1

h

depth

HEAPS AND PRIORITY QUEUES

 We can use a heap to implement a priority queue
 We store a (key, element) item at each internal node
 We keep track of the position of the last node

 Size() and isEmpty() methods can be implemented based on
examination of the tree

 Min() operation is equally trivial
 Algorithms for implementing the insert and removeMin methods will

be discussed.

© 2014 Goodrich, Tamassia,
Goldwasser

Heaps

5

(2, Sue)

(6, Mark) (5, Pat)

(9, Jeff) (7, Anna)

INSERTION INTO A HEAP
 Method insert(k, v) of the

priority queue ADT
corresponds to the insertion
of a key k to the heap

 The insertion algorithm
consists of three steps to
maintain the complete binary
tree property,
 Find the insertion node z (the n

ew last node)
 Store k at z
 Restore the heap-order

property

© 2014 Goodrich, Tamassia,
Goldwasser

Heaps

6

2

6 5

7 9

insertion node
2

6 5

7 9 1

z

z

UPHEAP

 After the insertion of a new key k, the heap-order property may be
violated

 Algorithm upheap restores the heap-order property by swapping k
along an upward path from the insertion node

 Upheap terminates when the key k reaches the root or a node
whose parent has a key smaller than or equal to k

 Since a heap has height O(log n), upheap runs in O(log n) time

© 2014 Goodrich, Tamassia,
Goldwasser

Heaps

7

2

1 5

7 9 6 z

1

2 5

7 9 6 z

EXAMPLE OF UP-HEAP
© 2014 Goodrich, Tamassia,

Goldwasser
Heaps

8

Inserting (2,T)

EXAMPLE OF UP-HEAP CONT.
© 2014 Goodrich, Tamassia,

Goldwasser
Heaps

9

Swap (20,B) with (2,T)

EXAMPLE OF UP-HEAP CONT.
© 2014 Goodrich, Tamassia,

Goldwasser
Heaps

10

Swap (6,Z) with (2,T)

EXAMPLE OF UP-HEAP CONT.
© 2014 Goodrich, Tamassia,

Goldwasser
Heaps

11

Swap (4,C) with (2,T)

REMOVAL FROM A HEAP

 Method removeMin of the
priority queue ADT
corresponds to the removal of
the root key from the heap

 The removal algorithm
consists of three steps
 Replace the root key with the

key of the last node w
 Remove w
 Restore the heap-order

property (discussed next)

© 2014 Goodrich, Tamassia,
Goldwasser

Heaps

12

2

6 5

7 9

last node

w

7

6 5

9
w

new last node

DOWNHEAP

 After replacing the root key with the key k of the last node, the
heap-order property may be violated

 Algorithm downheap restores the heap-order property by swapping
key k along a downward path from the root

 Upheap terminates when key k reaches a leaf or a node whose
children have keys greater than or equal to k

 Since a heap has height O(log n), downheap runs in O(log n) time

© 2014 Goodrich, Tamassia,
Goldwasser

Heaps

13

7

6 5

9
w

5

6 7

9
w

EXAMPLE DOWN-HEAP
© 2014 Goodrich, Tamassia,

Goldwasser
Heaps

14

Swap last node with root

delete previous root (the last node)

EXAMPLE DOWN-HEAP CONT.
© 2014 Goodrich, Tamassia,

Goldwasser
Heaps

15

Swap (13,W) with (5,A)

EXAMPLE DOWN-HEAP CONT.
© 2014 Goodrich, Tamassia,

Goldwasser
Heaps

16

Swap (13,W) with (9,F)

EXAMPLE DOWN-HEAP CONT.
© 2014 Goodrich, Tamassia,

Goldwasser
Heaps

17

Swap (13,W) with (12,H)

UPDATING THE LAST NODE

 The last node is the rightmost node at the bottom level of the tree, or as
the leftmost position of a new level

 The last node can be found by traversing a path of O(log n) nodes
 Go up until a left child or the root is reached
 If a left child is reached, go to the right child
 Go down left until a leaf is reached

 Similar algorithm for updating the last node after a removal

© 2014 Goodrich, Tamassia,
Goldwasser

Heaps

18

HEAP-SORT

 Consider a priority queue
with n items implemented
by means of a heap
 the space used is O(n)
 methods insert and

removeMin take O(log n)
time

 methods size, isEmpty, and
min take time O(1) time

 Using a heap-based priority
queue, we can sort a sequence
of n elements in O(n log n)
time

 The resulting algorithm is
called heap-sort

 Heap-sort is much faster than
quadratic sorting algorithms,
such as insertion-sort and
selection-sort

© 2014 Goodrich, Tamassia,
Goldwasser

Heaps

19

ARRAY-BASED HEAP IMPLEMENTATION

 We can represent a heap with n keys by means of an array of length n
 For the node at rank i

 the left child is at rank 2i + 1
 the right child is at rank 2i + 2

 Links between nodes are not explicitly stored
 Methods insert and removeMin depend on locating the last position of a heap

(in heap of size n, the last position at index n−1.)
 insert corresponds to inserting at rank n + 1
 removeMin corresponds to removing at rank n

 Space usage of an array-based representation of a complete binary tree
with n nodes is O(n),

 Time bounds of methods for adding or removing elements become
amortized. (occasional resizing of array needed)

 Yields in-place heap-sort

© 2014 Goodrich, Tamassia,
Goldwasser

Heaps

20

© 2014 Goodrich, Tamassia,
Goldwasser

Heaps

21

JAVA IMPLEMENTATION 1

© 2014 Goodrich, Tamassia,
Goldwasser

Heaps

22

Although we think of our heap as a binary tree, we do not formally use the
binary tree ADT but use the more efficient array-based representation of a
tree.

compute the
position of

parent or child

JAVA IMPLEMENTATION 2

© 2014 Goodrich, Tamassia,
Goldwasser

Heaps

23

JAVA IMPLEMENTATION 3
© 2014 Goodrich, Tamassia,

Goldwasser
Heaps

24

A new entry
is added
the end of
the array-list,
and then
repositioned
as needed
with
upheap.

© 2014 Goodrich, Tamassia,
Goldwasser

Heaps

25

To remove the entry
with minimal key
(which resides at

index 0), we move
the last entry of the

array-list
from index n−1 to
index 0, and then

invoke downheap to
reposition it.

JAVA
IMPLEMENTATION 4

ANALYSIS OF A HEAP-BASED PRIORITY QUEUE
© 2014 Goodrich, Tamassia,

Goldwasser
Heaps

26

Assuming that two keys can be compared in O(1) time and
that the heap T is implemented with an array-based or
linked-based tree representation.

BOTTOM-UP HEAP CONSTRUCTION

 If we start with an initially empty heap, n successive calls
to the insert operation will run in O(nlog n) time in the
worst case.

 However, if all n key-value pairs to be stored in the heap
are given in advance, such as during the first phase of the
heap-sort algorithm, there is an alternative bottom-up
construction method that runs in O(n) time.

 we describe this bottom-up heap construction assuming
the number of keys, n, is an integer such that n = 2h+1 − 1.
 That is, the heap is a complete binary tree with every level being

full, so the heap has height h = log(n+1)−1.

© 2014 Goodrich, Tamassia,
Goldwasser

Heaps

27

MERGING TWO HEAPS

 We are given two heaps and a
key k

 We create a new heap with the
root node storing k and with the
two heaps as subtrees

 We perform downheap to restore
the heap-order property

© 2014 Goodrich, Tamassia,
Goldwasser

Heaps

28

7

3

5 8

2

6 4

3

5 8

2

6 4

2

3

5 8

4

6 7

BOTTOM-UP HEAP CONSTRUCTION

 We can construct a heap
storing n given keys in using
a bottom-up construction
with log n phases

 In phase i, pairs of heaps
with 2i −1 keys are merged
into heaps with 2i+1−1 keys

© 2014 Goodrich, Tamassia,
Goldwasser

Heaps

29

2i −1 2i −1

2i+1−1

EXAMPLE OF BOTTOM-UP HEAP CONSTRUCTION

Consists of the following h+1 = log(n+1) steps:
1 > Construct (n+1)/2 elementary heaps storing one entry each.

© 2014 Goodrich, Tamassia,
Goldwasser

Heaps

30

EXAMPLE
© 2014 Goodrich, Tamassia,

Goldwasser
Heaps

31

2 > Form (n+1)/4 heaps, each storing three entries, by joining pairs of
elementary heaps and adding a new entry.

• The new entry is placed at the root and may have to be swapped with
the entry stored at a child to preserve the heap-order property.

EXAMPLE (CONTD.)
© 2014 Goodrich, Tamassia,

Goldwasser
Heaps

32

i> In the generic i th step, 2≤i≤h, we form (n+1)/2i heaps, each storing
2i−1 entries, by joining pairs of heaps storing (2i−1−1) entries
(constructed in the previous step) and adding a new entry. The new entry
is placed initially at the root, but may have to move down with a down-
heap bubbling to preserve the heap-order property

EXAMPLE (CONTD.)
© 2014 Goodrich, Tamassia,

Goldwasser
Heaps

33

h+1> In the last step, storing all the n entries, by joining two heaps
storing (n−1)/2 entries (constructed in the previous step) and adding
a new entry. The new entry is placed initially at the root, but may
have to move down with a down-heap bubbling to preserve the heap-
order property.

ANALYSIS

 We visualize the worst-case time of a downheap with a proxy path
that goes first right and then repeatedly goes left until the bottom of
the heap (this path may differ from the actual downheap path)

 Since each node is traversed by at most two proxy paths, the total
number of nodes of the proxy paths is O(n)

 Thus, bottom-up heap construction runs in O(n) time
 Bottom-up heap construction is faster than n successive insertions

and speeds up the first phase of heap-sort

© 2014 Goodrich, Tamassia,
Goldwasser

Heaps

34

USING THE JAVA.UTIL.PRIORITYQUEUE CLASS

 Difference:
 managing keys and values:

 Our public interface distinguishes between keys and values,
 the java.util.PriorityQueue class relies on a single element type

that is treated as a key.
 If a user wishes to insert distinct keys and values, the burden is on the

user to define and insert appropriate composite objects, and to ensure
that those objects can be compared based on their keys.

© 2014 Goodrich, Tamassia,
Goldwasser

Heaps

35

RECALL PQ SORTING

 We use a priority queue
 Insert the elements with a

series of insert operations
 Remove the elements in sorted

order with a series of
removeMin operations

 The running time depends on
the priority queue
implementation:
 Unsorted sequence gives

selection-sort: O(n2) time
 Sorted sequence gives

insertion-sort: O(n2) time
 Can we do better?

© 2014 Goodrich, Tamassia,
Goldwasser

Heaps

36

Algorithm PQ-Sort(S, C)
Input sequence S, comparator C
for the elements of S
Output sequence S sorted in
increasing order according to C
P ← priority queue with
 comparator C
while ¬S.isEmpty ()
 e ← S.remove (S. first ())

P.insert (e, e)
while ¬P.isEmpty()
 e ← P.removeMin().getKey()

S.addLast(e)

HEAP SORT

 Consider the pqSort scheme, this time using a heap-based
implementation of the priority queue

 Phase 1: insert all data into heap:
 takes O(nlog n) time. (Could be improved to O(n) with bottom-up

construction)
 Phase 2: removeMin all data in the heap

 j th removeMin operation runs in O(log(n− j+1)), since the heap
has n− j+1 entries at the time the operation

 Summing over all j, this phase takes O(nlog n) time
 Overall: The heap-sort algorithm sorts a sequence S of n

elements in O(nlog n) time, assuming two elements of S
can be compared in O(1) time.

© 2014 Goodrich, Tamassia,
Goldwasser

Heaps

37

	Heaps: �Implementing Efficient Priority Queues
	Recall Priority Queue ADT
	Heaps
	Height of a Heap
	Heaps and Priority Queues
	Insertion into a Heap
	Upheap
	Example of up-heap
	Example of up-heap cont.
	Example of up-heap cont.
	Example of up-heap cont.
	Removal from a Heap
	Downheap
	Example Down-heap
	Example Down-heap cont.
	Example Down-heap cont.
	Example Down-heap cont.
	Updating the Last Node
	Heap-Sort
	Array-based Heap Implementation
	Slide Number 21
	Java Implementation 1
	Java Implementation 2
	Java Implementation 3
	Java Implementation 4
	Analysis of a Heap-Based Priority Queue
	Bottom-Up Heap Construction
	Merging Two Heaps
	Bottom-up Heap Construction
	Example of bottom-up heap construction
	Example
	Example (contd.)
	Example (contd.)
	Analysis
	Using the java.util.PriorityQueue Class
	Recall PQ Sorting
	Heap Sort

