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RECALL PRIORITY QUEUE ADT 
 A priority queue stores a 

collection of entries 
 Each entry is a pair 

(key, value) 
 Main methods of the Priority 

Queue ADT 
 insert(k, v): inserts an entry 

with key k and value v 
 removeMin(): removes and 

returns the entry with smallest 
key 

 Additional methods 
 min(): returns, but does not 

remove, an entry with smallest 
key 

 size(), isEmpty() 

 Applications: 
 Standby flyers 
 Auctions 
 Stock market 
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HEAPS 
 A binary heap is a binary tree storing 

keys at its nodes and satisfying the 
following properties: 

 (min) Heap-Order: for every internal 
node v other than the root, 
key(v) ≥ key(parent(v))  

 Complete Binary Tree: let h be the 
height of the heap 
 for i = 0, … , h − 1, there are 2i nodes 

of depth i 
 at depth h − 1, the internal nodes are 

to the left of the external nodes 

 The last node of a heap is the 
rightmost node of maximum 
depth 
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HEIGHT OF A HEAP 

 Theorem: A heap T storing n entries has height h = ⌊log n⌋. 
 Proof: (we apply the complete binary tree property) 

 Let h be the height of a heap storing n keys 
 Since there are 2i keys at depth i = 0, … , h − 1 and at least one key at 

depth h, we have n ≥ 1 + 2 + 4 + … + 2h−1  + 1  

 Thus, n ≥ 2h , i.e., h ≤ log n 

© 2014 Goodrich, Tamassia, 
Goldwasser 

Heaps 

4 

1 

2 

2h−1 

1 

keys 
0 

1 

h−1 

h 

depth 



HEAPS AND PRIORITY QUEUES 

 We can use a heap to implement a priority queue 
 We store a (key, element) item at each internal node 
 We keep track of the position of the last node 

 
 
 
 
 
 

 Size() and isEmpty()  methods can be implemented based on 
examination of the tree 

 Min() operation is equally trivial 
 Algorithms  for implementing the insert and removeMin methods will 

be discussed. 
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INSERTION INTO A HEAP 
 Method insert(k, v) of the 

priority queue ADT 
corresponds to the insertion 
of a key k to the heap 
 

 The insertion algorithm 
consists of three steps to 
maintain the complete binary 
tree property, 
 Find the insertion node z (the n

ew last node) 
 Store k at z 
 Restore the heap-order 

property 
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UPHEAP 

 After the insertion of a new key k, the heap-order property may be 
violated 

 Algorithm upheap restores the heap-order property by swapping k 
along an upward path from the insertion node 

 Upheap terminates when the key k reaches the root or a node 
whose parent has a key smaller than or equal to k  

 Since a heap has height O(log n), upheap runs in O(log n) time 
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EXAMPLE OF UP-HEAP 
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Inserting (2,T) 



EXAMPLE OF UP-HEAP CONT. 
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Swap (20,B) with (2,T) 



EXAMPLE OF UP-HEAP CONT. 
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Swap (6,Z) with (2,T) 



EXAMPLE OF UP-HEAP CONT. 
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REMOVAL FROM A HEAP 

 Method removeMin of the 
priority queue ADT 
corresponds to the removal of 
the root key from the heap 

 The removal algorithm 
consists of three steps 
 Replace the root key with the 

key of the last node w 
 Remove w  
 Restore the heap-order 

property (discussed next) 
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DOWNHEAP 

 After replacing the root key with the key k of the last node, the 
heap-order property may be violated 

 Algorithm downheap restores the heap-order property by swapping 
key k along a downward path from the root 

 Upheap terminates when key k reaches a leaf or a node whose 
children have keys greater than or equal to k  

 Since a heap has height O(log n), downheap runs in O(log n) time 

© 2014 Goodrich, Tamassia, 
Goldwasser 

Heaps 

13 

7 

6 5 

9 
w 

5 

6 7 

9 
w 



EXAMPLE DOWN-HEAP 
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Swap last node with root 

delete previous root (the last node) 



EXAMPLE DOWN-HEAP CONT.  
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Swap (13,W) with (5,A) 



EXAMPLE DOWN-HEAP CONT.  
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Swap (13,W) with (9,F) 



EXAMPLE DOWN-HEAP CONT.  
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UPDATING THE LAST NODE 

 The last node is the rightmost node at the bottom level of the tree, or as 
the leftmost position of a new level  

 The last node can be found by traversing a path of O(log n) nodes 
 Go up until a left child or the root is reached 
 If a left child is reached, go to the right child 
 Go down left until a leaf is reached 

 Similar algorithm for updating the last node after a removal 
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HEAP-SORT 

 Consider a priority queue 
with n items implemented 
by means of a heap 
 the space used is O(n) 
 methods insert and 

removeMin take O(log n) 
time 

 methods size, isEmpty, and 
min take time O(1) time 

 Using a heap-based priority 
queue, we can sort a sequence 
of n elements in O(n log n) 
time 

 The resulting algorithm is 
called heap-sort 

 Heap-sort is much faster than 
quadratic sorting algorithms, 
such as insertion-sort and 
selection-sort 
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ARRAY-BASED HEAP IMPLEMENTATION 

 We can represent a heap with n keys by means of an array of length n  
 For the node at rank i 

 the left child is at rank 2i + 1 
 the right child is at rank 2i + 2 

 Links between nodes are not explicitly stored 
 Methods insert and removeMin depend on locating the last position of a heap 

(in heap of size n, the last position at index n−1.) 
 insert corresponds to inserting at rank n + 1 
 removeMin corresponds to removing at rank n 

 Space usage of an array-based representation of a complete binary tree 
with n nodes is O(n),  

 Time bounds of methods for adding or removing elements become 
amortized. (occasional resizing of array needed) 

 Yields in-place heap-sort 
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JAVA IMPLEMENTATION 1 
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Although we think of our heap as a binary tree, we do not formally use the 
binary tree ADT but use the more efficient array-based representation of a 
tree.  

compute the 
position of 

parent or child 



JAVA IMPLEMENTATION 2 
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JAVA IMPLEMENTATION 3 
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A new entry 
is added 
the end of 
the array-list, 
and then 
repositioned 
as needed 
with 
upheap. 
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To remove the entry 
with minimal key 
(which resides at 

index 0), we move 
the last entry of the 

array-list 
from index n−1 to 
index 0, and then 

invoke downheap to 
reposition it. 
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ANALYSIS OF A HEAP-BASED PRIORITY QUEUE 
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Assuming that two keys can be compared in O(1) time and 
that the heap T is implemented with an array-based or 
linked-based tree representation. 



BOTTOM-UP HEAP CONSTRUCTION  

 If we start with an initially empty heap, n successive calls 
to the insert operation will run in O(nlog n) time in the 
worst case.  

 However, if all n key-value pairs to be stored in the heap 
are given in advance, such as during the first phase of the 
heap-sort algorithm, there is an alternative bottom-up 
construction method that runs in O(n) time. 

 we describe this bottom-up heap construction assuming 
the number of keys, n, is an integer such that n = 2h+1 − 1.  
 That is, the heap is a complete binary tree with every level being 

full, so the heap has height h = log(n+1)−1.  
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MERGING TWO HEAPS 

 We are given two heaps and a 
key k 

 We create a new heap with the 
root node storing k and with the 
two heaps as subtrees 

 We perform downheap to restore 
the heap-order property  
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BOTTOM-UP HEAP CONSTRUCTION 

 We can construct a heap 
storing n given keys in using 
a bottom-up construction 
with log n phases 

 In phase i, pairs of heaps 
with 2i −1 keys are merged 
into heaps with 2i+1−1 keys 
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EXAMPLE OF BOTTOM-UP HEAP CONSTRUCTION 

Consists of the following h+1 = log(n+1) steps: 
1 > Construct (n+1)/2 elementary heaps storing one entry each. 
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EXAMPLE 
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2 >  Form (n+1)/4 heaps, each storing three entries, by joining pairs of 
elementary heaps and adding a new entry. 

• The new entry is placed at the root and may have to be swapped with 
the entry stored at a child to preserve the heap-order property. 



EXAMPLE (CONTD.) 
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i>  In the generic i th step, 2≤i≤h, we form (n+1)/2i heaps, each storing 
2i−1 entries, by joining pairs of heaps storing (2i−1−1) entries 
(constructed in the previous step) and adding a new entry. The new entry 
is placed initially at the root, but may have to move down with a down-
heap bubbling to preserve the heap-order property 



EXAMPLE (CONTD.) 
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h+1> In the last step, storing all the n entries, by joining two heaps 
storing (n−1)/2 entries (constructed in the previous step) and adding 
a new entry. The new entry is placed initially at the root, but may 
have to move down with a down-heap bubbling to preserve the heap-
order property. 



ANALYSIS 

 We visualize the worst-case time of a downheap with a proxy path 
that goes first right and then repeatedly goes left until the bottom of 
the heap (this path may differ from the actual downheap path) 

 Since each node is traversed by at most two proxy paths, the total 
number of nodes of the proxy paths is O(n)  

 Thus, bottom-up heap construction runs in O(n) time  
 Bottom-up heap construction is faster than n successive insertions 

and speeds up the first phase of heap-sort 
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USING THE JAVA.UTIL.PRIORITYQUEUE CLASS 

 Difference:  
 managing keys and values: 

 Our public interface distinguishes between keys and values,  
 the java.util.PriorityQueue class relies on a single element type 

that is treated as a key.  
 If a user wishes to insert distinct keys and values, the burden is on the 

user to define and insert appropriate composite objects, and to ensure 
that those objects can be compared based on their keys. 
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RECALL PQ SORTING 

 We use a priority queue 
 Insert the elements with a 

series of insert operations 
 Remove the elements in sorted 

order with a series of 
removeMin operations 

 The running time depends on 
the priority queue 
implementation: 
 Unsorted sequence gives 

selection-sort: O(n2) time 
 Sorted sequence gives 

insertion-sort: O(n2) time 
 Can we do better? 
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Algorithm PQ-Sort(S, C) 
Input sequence S, comparator C 
for the elements of S 
Output sequence S sorted  in 
increasing order according to C 
P ← priority queue with  
 comparator C 
while ¬S.isEmpty () 
 e ← S.remove (S. first ()) 

P.insert (e, e) 
while ¬P.isEmpty() 
 e ← P.removeMin().getKey() 

S.addLast(e) 



HEAP SORT 

 Consider the pqSort scheme, this time using a heap-based 
implementation of the priority queue 

 Phase 1: insert all data into heap:  
 takes O(nlog n) time. (Could be improved to O(n) with bottom-up 

construction) 
 Phase 2: removeMin all data in the heap  

 j th removeMin operation runs in O(log(n− j+1)), since the heap 
has n− j+1 entries at the time the operation 

 Summing over all j, this phase takes O(nlog n) time 
 Overall: The heap-sort algorithm sorts a sequence S of n 

elements in O(nlog n) time, assuming two elements of S 
can be compared in O(1) time. 

© 2014 Goodrich, Tamassia, 
Goldwasser 

Heaps 

37 


	Heaps: �Implementing Efficient Priority Queues
	Recall Priority Queue ADT
	Heaps
	Height of a Heap
	Heaps and Priority Queues
	Insertion into a Heap
	Upheap
	Example of up-heap
	Example of up-heap cont.
	Example of up-heap cont.
	Example of up-heap cont.
	Removal from a Heap
	Downheap
	Example Down-heap
	Example Down-heap cont. 
	Example Down-heap cont. 
	Example Down-heap cont. 
	Updating the Last Node
	Heap-Sort
	Array-based Heap Implementation
	Slide Number 21
	Java Implementation 1
	Java Implementation 2
	Java Implementation 3
	Java Implementation 4
	Analysis of a Heap-Based Priority Queue
	Bottom-Up Heap Construction 
	Merging Two Heaps
	Bottom-up Heap Construction
	Example of bottom-up heap construction
	Example
	Example (contd.)
	Example (contd.)
	Analysis
	Using the java.util.PriorityQueue Class
	Recall PQ Sorting
	Heap Sort

