
PRIORITY QUEUES 

Presentation for use with the textbook Data Structures and Algorithms 
in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwass
er, Wiley, 2014 

© 2014 Goodrich, Tamassia, 
Goldwasser 

Priority Queues 

1 



PRIORITY QUEUE 

 Queue ADT is a collection of objects that are added and removed 
according to the first-in, first-out (FIFO) principle.  

 However, sometimes a FIFO policy does not suffice.  
 Ex> “first come, first serve” policy might seem reasonable, but other 

priorities also come into play.  
 A priority queue is a data structure for storing prioritized elements 

that allows arbitrary insertion, and allows the removal of the element 
that has first priority (minimal key). 

 Applications: 
 Standby flyers 
 Auctions 
 Stock market 

 

© 2014 Goodrich, Tamassia, 
Goldwasser 

Priority Queues 

2 



PRIORITY QUEUE ADT 

 A priority queue stores a 
collection of entries 

 Each entry is a pair    
    (key, value) 
 Priority is stored in the key 

 Main methods 
 insert(k, v): inserts an entry with key k and value v 
 removeMin(): removes and returns the entry with smallest key, or null 

if the the priority queue is empty 
 Additional methods 

 min(): returns, but does not remove, an entry with smallest key, or null 
if the the priority queue is empty 

 size(), isEmpty() 
 

© 2014 Goodrich, Tamassia, 
Goldwasser 

Priority Queues 

3 



EXAMPLE 

 A sequence of priority queue methods: 

© 2014 Goodrich, Tamassia, 
Goldwasser 

Priority Queues 

4 



ENTRY ADT 

 An entry in a priority queue is 
simply a key-value pair 

 Priority queues store entries to 
allow for efficient insertion and 
removal based on keys 

 Methods: 
 getKey: returns the key for this 

entry 
 getValue: returns the value 

associated with this entry 

 Java interface: 

© 2014 Goodrich, Tamassia, 
Goldwasser 

Priority Queues 

5 



COMPARABLE INTERFACE 

 Java provides two 
means for defining 
comparisons between 
object types 
 First, implementing the 

java.lang.Comparable 
interface, which includes 
a single method, 
compareTo. 

 Second, implementing 
Comparator Interface  

 implementing the 
java.lang.Comparable 
interface for natural ordering 
 a.compareTo(b) 

 i < 0 designates that a < b. 
 i = 0 designates that a = b. 
 i > 0 designates that a > b. 
 Lexicographic for String 

class 
 

© 2014 Goodrich, Tamassia, 
Goldwasser 

Priority Queues 

6 



COMPARATOR ADT 

 We may want to compare objects 
according to some notion 

 other than their natural ordering 
 A comparator encapsulates the 

action of comparing two objects 
according to a given total order 
relation 
 Comparator is an object that is 

external to the class of the 
keys it compares.  

 When the priority queue needs to 
compare two keys, it uses its 
comparator 

 Primary method  
 Compare(x, y): returns an 

integer i such that  
 i < 0 if a < b, 
 i = 0 if a = b 
 i > 0 if a > b 
 An error occurs if a and b 

cannot be compared. 

© 2014 Goodrich, Tamassia, 
Goldwasser 

Priority Queues 

7 



KEYS & TOTAL ORDER RELATIONS 

 Keys in a priority queue 
can be arbitrary objects 
on which an linear 
ordering is defined 

 Two distinct entries in a 
priority queue can have 
the same key 

 Mathematical concept of total 
order relation ≤ 
 Comparability property: 

either x ≤ y or y ≤ x 
 Antisymmetric property: 

x ≤ y and y ≤ x ⇒ x = y 
 Transitive property: 

 x ≤ y and y ≤ z ⇒ x ≤ z 

© 2014 Goodrich, Tamassia, 
Goldwasser 

Priority Queues 

8 



EXAMPLE COMPARATOR 

 Ex> a comparator that evaluates strings based on their 
length 

© 2014 Goodrich, Tamassia, 
Goldwasser 

Priority Queues 

9 



COMPARATORS AND THE PRIORITY QUEUE ADT 

 In general and reusable form of a priority queue,  
 Allow a user to choose any key type and  
 Allow to send an appropriate comparator instance as a parameter 

to the priority queue constructor.  
 The priority queue use that comparator anytime it needs to compare two 

keys to each other 
 Allow a default priority queue to instead rely on the natural 

ordering for the given keys 

© 2014 Goodrich, Tamassia, 
Goldwasser 

Priority Queues 

11 



THE ABSTRACTPRIORITYQUEUE BASE CLASS 
© 2014 Goodrich, Tamassia, 

Goldwasser 
Priority Queues 

12 



THE ABSTRACTPRIORITYQUEUE BASE CLASS CONT. 
© 2014 Goodrich, Tamassia, 

Goldwasser 
Priority Queues 

13 



SEQUENCE-BASED PRIORITY QUEUE 

 Implementation with an 
unsorted list 

 
 Performance: 

 insert takes O(1) time since 
we can insert the item at the 
beginning or end of the 
sequence 

 removeMin and min take O(n) 
time since we have to 
traverse the entire sequence 
to find the smallest key  

 Implementation with a sorted 
list 

 
 Performance: 

 insert takes O(n) time since 
we have to find the place 
where to insert the item 

 removeMin and min take O(1) 
time, since the smallest key is 
at the beginning 

© 2014 Goodrich, Tamassia, 
Goldwasser 

Priority Queues 

14 

4 5 2 3 1 1 2 3 4 5 



UNSORTED LIST IMPLEMENTATION 
© 2014 Goodrich, Tamassia, 

Goldwasser 
Priority Queues 

15 



UNSORTED LIST IMPLEMENTATION, 2 

© 2014 Goodrich, Tamassia, 
Goldwasser 

Priority Queues 

16 



SORTED LIST IMPLEMENTATION 

© 2014 Goodrich, Tamassia, 
Goldwasser 

Priority Queues 

17 



SORTED LIST IMPLEMENTATION, 2 

© 2014 Goodrich, Tamassia, 
Goldwasser 

Priority Queues 

18 



PRIORITY QUEUE SORTING “SCHEME” 
 We can use a priority queue to sort a list of comparable elements 

1. Insert the elements one by one with a series of insert operations 
2. Remove the elements in sorted order with a series of removeMin operations 

 The running time of this sorting method depends on the priority queue 
implementation 
 
 
 
 
 
 
 

 
 

 The pqSort scheme is the paradigm of several popular sorting algorithms, 
including selection-sort, insertion-sort, and heap-sort 

© 2014 Goodrich, Tamassia, 
Goldwasser 

Priority Queues 

19 



SELECTION-SORT 

 Selection-sort is the variation of PQ-sort where the 
priority queue is implemented with an unsorted 
sequence 

 Running time of Selection-sort: 
1. Inserting the elements into the priority queue with n insert 

operations takes O(n) time 
2. Removing the elements in sorted order from the priority queue 

with n removeMin operations takes time proportional to 
 
 

 
  Selection-sort runs in O(n2) time  

© 2014 Goodrich, Tamassia, 
Goldwasser 

Priority Queues 

20 



SELECTION-SORT EXAMPLE 

© 2014 Goodrich, Tamassia, 
Goldwasser 

Priority Queues 

21 



INSERTION-SORT 

 Insertion-sort is the variation of PQ-sort where the 
priority queue is implemented with a sorted 
sequence 

 Running time of Insertion-sort: 
1. Inserting the elements into the priority queue with n insert 

operations takes time proportional to 
 
 

2. Removing the elements in sorted order from the priority 
queue with  a series of n removeMin operations takes O(n) 
time 

 Insertion-sort runs in O(n2) time  

© 2014 Goodrich, Tamassia, 
Goldwasser 

Priority Queues 

22 



INSERTION-SORT EXAMPLE 

© 2014 Goodrich, Tamassia, 
Goldwasser 

Priority Queues 

23 

 



IN-PLACE INSERTION-SORT 

 Instead of using an external 
data structure, we can 
implement selection-sort and 
insertion-sort in-place 

 A portion of the input 
sequence itself serves as the 
priority queue 

 For in-place insertion-sort 
 We keep sorted the initial 

portion of the sequence 
 We can use swaps instead of 

modifying the sequence 

© 2014 Goodrich, Tamassia, 
Goldwasser 

Priority Queues 

24 

5 4 2 3 1 

5 4 2 3 1 

4 5 2 3 1 

2 4 5 3 1 

2 3 4 5 1 

1 2 3 4 5 

1 2 3 4 5 

 


	Priority Queues
	Priority Queue
	Priority Queue ADT
	Example
	Entry ADT
	Comparable Interface
	Comparator ADT
	Keys & Total Order Relations
	Example Comparator
	Comparators and the Priority Queue ADT
	The AbstractPriorityQueue Base Class
	The AbstractPriorityQueue Base Class cont.
	Sequence-based Priority Queue
	Unsorted List Implementation
	Unsorted List Implementation, 2
	Sorted List Implementation
	Sorted List Implementation, 2
	Priority Queue Sorting “scheme”
	Selection-Sort
	Selection-Sort Example
	Insertion-Sort
	Insertion-Sort Example
	In-place Insertion-Sort

