
PRIORITY QUEUES

Presentation for use with the textbook Data Structures and Algorithms
in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwass
er, Wiley, 2014

© 2014 Goodrich, Tamassia,
Goldwasser

Priority Queues

1

PRIORITY QUEUE

 Queue ADT is a collection of objects that are added and removed
according to the first-in, first-out (FIFO) principle.

 However, sometimes a FIFO policy does not suffice.
 Ex> “first come, first serve” policy might seem reasonable, but other

priorities also come into play.
 A priority queue is a data structure for storing prioritized elements

that allows arbitrary insertion, and allows the removal of the element
that has first priority (minimal key).

 Applications:
 Standby flyers
 Auctions
 Stock market

© 2014 Goodrich, Tamassia,
Goldwasser

Priority Queues

2

PRIORITY QUEUE ADT

 A priority queue stores a
collection of entries

 Each entry is a pair
 (key, value)
 Priority is stored in the key

 Main methods
 insert(k, v): inserts an entry with key k and value v
 removeMin(): removes and returns the entry with smallest key, or null

if the the priority queue is empty
 Additional methods

 min(): returns, but does not remove, an entry with smallest key, or null
if the the priority queue is empty

 size(), isEmpty()

© 2014 Goodrich, Tamassia,
Goldwasser

Priority Queues

3

EXAMPLE

 A sequence of priority queue methods:

© 2014 Goodrich, Tamassia,
Goldwasser

Priority Queues

4

ENTRY ADT

 An entry in a priority queue is
simply a key-value pair

 Priority queues store entries to
allow for efficient insertion and
removal based on keys

 Methods:
 getKey: returns the key for this

entry
 getValue: returns the value

associated with this entry

 Java interface:

© 2014 Goodrich, Tamassia,
Goldwasser

Priority Queues

5

COMPARABLE INTERFACE

 Java provides two
means for defining
comparisons between
object types
 First, implementing the

java.lang.Comparable
interface, which includes
a single method,
compareTo.

 Second, implementing
Comparator Interface

 implementing the
java.lang.Comparable
interface for natural ordering
 a.compareTo(b)

 i < 0 designates that a < b.
 i = 0 designates that a = b.
 i > 0 designates that a > b.
 Lexicographic for String

class

© 2014 Goodrich, Tamassia,
Goldwasser

Priority Queues

6

COMPARATOR ADT

 We may want to compare objects
according to some notion

 other than their natural ordering
 A comparator encapsulates the

action of comparing two objects
according to a given total order
relation
 Comparator is an object that is

external to the class of the
keys it compares.

 When the priority queue needs to
compare two keys, it uses its
comparator

 Primary method
 Compare(x, y): returns an

integer i such that
 i < 0 if a < b,
 i = 0 if a = b
 i > 0 if a > b
 An error occurs if a and b

cannot be compared.

© 2014 Goodrich, Tamassia,
Goldwasser

Priority Queues

7

KEYS & TOTAL ORDER RELATIONS

 Keys in a priority queue
can be arbitrary objects
on which an linear
ordering is defined

 Two distinct entries in a
priority queue can have
the same key

 Mathematical concept of total
order relation ≤
 Comparability property:

either x ≤ y or y ≤ x
 Antisymmetric property:

x ≤ y and y ≤ x ⇒ x = y
 Transitive property:

 x ≤ y and y ≤ z ⇒ x ≤ z

© 2014 Goodrich, Tamassia,
Goldwasser

Priority Queues

8

EXAMPLE COMPARATOR

 Ex> a comparator that evaluates strings based on their
length

© 2014 Goodrich, Tamassia,
Goldwasser

Priority Queues

9

COMPARATORS AND THE PRIORITY QUEUE ADT

 In general and reusable form of a priority queue,
 Allow a user to choose any key type and
 Allow to send an appropriate comparator instance as a parameter

to the priority queue constructor.
 The priority queue use that comparator anytime it needs to compare two

keys to each other
 Allow a default priority queue to instead rely on the natural

ordering for the given keys

© 2014 Goodrich, Tamassia,
Goldwasser

Priority Queues

11

THE ABSTRACTPRIORITYQUEUE BASE CLASS
© 2014 Goodrich, Tamassia,

Goldwasser
Priority Queues

12

THE ABSTRACTPRIORITYQUEUE BASE CLASS CONT.
© 2014 Goodrich, Tamassia,

Goldwasser
Priority Queues

13

SEQUENCE-BASED PRIORITY QUEUE

 Implementation with an
unsorted list

 Performance:

 insert takes O(1) time since
we can insert the item at the
beginning or end of the
sequence

 removeMin and min take O(n)
time since we have to
traverse the entire sequence
to find the smallest key

 Implementation with a sorted
list

 Performance:

 insert takes O(n) time since
we have to find the place
where to insert the item

 removeMin and min take O(1)
time, since the smallest key is
at the beginning

© 2014 Goodrich, Tamassia,
Goldwasser

Priority Queues

14

4 5 2 3 1 1 2 3 4 5

UNSORTED LIST IMPLEMENTATION
© 2014 Goodrich, Tamassia,

Goldwasser
Priority Queues

15

UNSORTED LIST IMPLEMENTATION, 2

© 2014 Goodrich, Tamassia,
Goldwasser

Priority Queues

16

SORTED LIST IMPLEMENTATION

© 2014 Goodrich, Tamassia,
Goldwasser

Priority Queues

17

SORTED LIST IMPLEMENTATION, 2

© 2014 Goodrich, Tamassia,
Goldwasser

Priority Queues

18

PRIORITY QUEUE SORTING “SCHEME”
 We can use a priority queue to sort a list of comparable elements

1. Insert the elements one by one with a series of insert operations
2. Remove the elements in sorted order with a series of removeMin operations

 The running time of this sorting method depends on the priority queue
implementation

 The pqSort scheme is the paradigm of several popular sorting algorithms,
including selection-sort, insertion-sort, and heap-sort

© 2014 Goodrich, Tamassia,
Goldwasser

Priority Queues

19

SELECTION-SORT

 Selection-sort is the variation of PQ-sort where the
priority queue is implemented with an unsorted
sequence

 Running time of Selection-sort:
1. Inserting the elements into the priority queue with n insert

operations takes O(n) time
2. Removing the elements in sorted order from the priority queue

with n removeMin operations takes time proportional to

 Selection-sort runs in O(n2) time

© 2014 Goodrich, Tamassia,
Goldwasser

Priority Queues

20

SELECTION-SORT EXAMPLE

© 2014 Goodrich, Tamassia,
Goldwasser

Priority Queues

21

INSERTION-SORT

 Insertion-sort is the variation of PQ-sort where the
priority queue is implemented with a sorted
sequence

 Running time of Insertion-sort:
1. Inserting the elements into the priority queue with n insert

operations takes time proportional to

2. Removing the elements in sorted order from the priority
queue with a series of n removeMin operations takes O(n)
time

 Insertion-sort runs in O(n2) time

© 2014 Goodrich, Tamassia,
Goldwasser

Priority Queues

22

INSERTION-SORT EXAMPLE

© 2014 Goodrich, Tamassia,
Goldwasser

Priority Queues

23

IN-PLACE INSERTION-SORT

 Instead of using an external
data structure, we can
implement selection-sort and
insertion-sort in-place

 A portion of the input
sequence itself serves as the
priority queue

 For in-place insertion-sort
 We keep sorted the initial

portion of the sequence
 We can use swaps instead of

modifying the sequence

© 2014 Goodrich, Tamassia,
Goldwasser

Priority Queues

24

5 4 2 3 1

5 4 2 3 1

4 5 2 3 1

2 4 5 3 1

2 3 4 5 1

1 2 3 4 5

1 2 3 4 5

	Priority Queues
	Priority Queue
	Priority Queue ADT
	Example
	Entry ADT
	Comparable Interface
	Comparator ADT
	Keys & Total Order Relations
	Example Comparator
	Comparators and the Priority Queue ADT
	The AbstractPriorityQueue Base Class
	The AbstractPriorityQueue Base Class cont.
	Sequence-based Priority Queue
	Unsorted List Implementation
	Unsorted List Implementation, 2
	Sorted List Implementation
	Sorted List Implementation, 2
	Priority Queue Sorting “scheme”
	Selection-Sort
	Selection-Sort Example
	Insertion-Sort
	Insertion-Sort Example
	In-place Insertion-Sort

