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WHAT IS A TREE 

 
 Trees consists of nodes with a 

parent-child relation 
 

 Trees also provide a natural or
ganization for data,  
 Organization charts 
 File systems 
 Programming environment

s 
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In computer science, a tree is an abstract 
model of hierarchical structure  (a type of 
nonlinear data structure) 



TREE TERMINOLOGY 

 Root: node without parent (A) 
 Internal node: node with at least 

one child (A, B, C, F) 
 External node (a.k.a. leaf ): node 

without children (E, I, J, K, G, H, D) 
 Ancestors of a node: parent, 

grandparent, grand-grandparent, 
etc. 

 Descendant of a node: child, 
grandchild, grand-grandchild, etc. 

 Subtree: tree consisting of a node 
and its descendants 
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 organization of a fictitious corporation. 



TREE TERMINOLOGY CONT 

 Siblings: two nodes that are children of the same 
parent  

 Depth of a node: number of ancestors 
 Height of a tree: maximum depth of any node (3) 
 Edge: a pair of nodes (u,v) such that u is the parent 

of v, or vice versa.  
 Path: a sequence of nodes such that any two 

consecutive nodes in the sequence form an edge  
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FORMAL TREE DEFINITION  

 Formally, we define a tree T as a set of nodes storing elements 
such that the nodes have a parent-child relationship that 
satisfies the following properties:  
 If T is nonempty, it has a special node, called the root of T , that has no 

parent.  
 Each node v of T different from the root has a unique parent node w; 

every node with parent w is a child of w. 
 

 Note: a tree can be empty (no nodes)  
=> Tree can be defined recursively such that a tree T is either empty or 
consists of a node r, called the root of T, and a (possibly empty) set of 
subtrees whose roots are the children of r.  
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ORDERED TREES 

 A tree is ordered if there is a meaningful linear order among 
the children of each node;  
 An order is usually visualized by arranging siblings left to right, according 

to their order.  
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TREE ADT 

 We use positions as an abstraction for a node of a tree 
 A position object for a tree supports the method:  

 getElement(): Returns the element stored at this position.  
 

 Accessor methods for navigating through positions of a tree T  
 root(): Returns the position of the root of the tree (or null if empty).  
 parent(p): Returns the position of the parent of position p (or null if p is 

the root).  
 children(p): Returns an iterable collection containing the children of 

position p (if any). 
 numChildren(p): Returns the number of children of position p.  
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TREE ADT CONT. 

 Query methods, which are often used with conditionals statements: 
 isInternal(p): Returns true if position p has at least one child.  
 isExternal(p): Returns true if position p does not have any children.  
 isRoot(p): Returns true if position p is the root of the tree.  

 General methods, unrelated to the specific structure of the tree:  
 size(): Returns the number of positions (and hence elements) that are 

contained in the tree.  
 isEmpty(): Returns true if the tree does not contain any positions (and 

thus no elements).  
 iterator(): Returns an iterator for all elements in the tree (so that the tree 

itself is Iterable).  
 positions(): Returns an iterable collection of all positions of the tree.  

 Additional update methods may be defined by data structures 
implementing the Tree ADT. (Discussed later) 
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A TREE INTERFACE IN JAVA  

Methods for a Tree interface: 
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Accessor 
methods  

Query 
methods 

General 
method

s 



AN ABSTRACTTREE BASE CLASS IN JAVA  

 If a concrete implementation provides three fundamental 
methods—root(), parent(p), and children(p)— all other behaviors 
of the Tree interface can be derived within the AbstractTree 
base class.  
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An initial implementation of the AbstractTree base class. (We add additional 

functionality to this class as the chapter continues.) 



COMPUTING DEPTH 

 Let p be a position within tree T. The depth of p is the 
number of ancestors of p, other than p itself.  

 The depth of p can also be recursively defined as follows:  
 If p is the root, then the depth of p is 0.  
 Otherwise, the depth of p is one plus the depth of the parent of p. 
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COMPUTING HEIGHT 

 We next define the height of a tree to be equal to the maximum 
of the depths of its positions (or zero, if the tree is empty).  
 

 If using the definition as is, the height computation become 
inefficient:  
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Analysis:  
Positions(p): can be implemented to run in O(n);  
Because heightBad calls algorithm depth(p) on 
each leaf of T , its running time is  

O(n + ∑p∈L(dp + 1)),  
where L is the set of leaf positions of T.  
In the worst case, the sum ∑p∈L(dp +1) is 
proportional to n2.  
Thus, algorithm heightBad runs in O(n2) worst-
case time.  
  



COMPUTING HEIGHT CONT 

 Recursive definition to compute height.  
 Define the height of a position p in a tree T as follows:  

 If p is a leaf, then the height of p is 0. 
 Otherwise, the height of p is one more than the maximum of the 

heights of p’s children.  
 

 The height of the root of a nonempty tree T, according to 
the recursive definition, equals the maximum depth 
among all leaves of tree T .  
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COMPUTING HEIGHT CONT 
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O(n) worst-case time 

 The overall height of a nonempty tree can be computed by sending the root of the 
tree as a parameter. 

 Assuming that children(p) executes in O(cp + 1) time, where cp denotes the 
number of children of p. Algorithm height(p) spends O(cp +1) time at each 
position p to compute the maximum, and its overall running time is  

O(∑p(cp +1)) = O(n+∑p cp).  
 
Let T be a tree with n positions, and let cp denote the number of children of a 
position p of T. Then, summing over the positions of T, ∑pcp =n−1.  



BINARY TREES  
 A binary tree is an ordered tree with the following properties:  

 Every node has at most two children. 
 Each child node is labeled as being either a left child or a right child.  
 A left child precedes a right child in the order of children of a node.  

 The subtree rooted at a left or right child of an internal node v is 
called a left subtree or right subtree, respectively, of v. 

 A binary tree is proper (full) if each node has either zero or two 
children.  
 Every internal node has exactly two children.  

 A binary tree that is not proper is improper 
 Alternative recursive definition: a binary tree is either 

 a tree consisting of a single node, or 
 a tree whose root has an ordered pair of children, each of which is a binary 

tree 
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BINARY TREES CONT. : ARITHMETIC EXPRESSION TREE 
 Leaves are associated with 

variables or constants  
 Internal nodes are associated with 

one of the operators +, −, ∗, and / 
 Each node in such a tree has a 

value associated with it.  
 If a node is leaf, then its value is that 

of its variable or constant.  
 If a node is internal, then its value is 

defined by applying its operation to 
the values of its children.  

 A typical arithmetic expression tree 
is a proper binary tree,  

 If allowed unary operators, like 
negation (−), then tree is improper 
binary  
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tree represents the expression  
((((3+1)∗3)/((9−5)+2))−((3∗(7−4))+6))  

The value associated with the internal node 
labeled “/” is 2. 



BINARY TREES CONT. : DECISION TREE 

 Binary tree associated with a decision process 
 internal nodes: questions with yes/no answer 
 external nodes: decisions 

 Example: dining decision 
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Want a fast meal? 

How about coffee? On expense account? 

Starbucks Chipotle Gracie’s Café Paragon 

Yes No 

Yes No Yes No 



BINARY TREE ABSTRACT DATA TYPE  

 Binary tree is a specialization of a tree that supports 
three additional accessor methods:  
 left(p): Returns the position of the left child of p (or null if p 

has no left child).  
 right(p): Returns the position of the right child of p (or null if 

p has no right child).  
 sibling(p): Returns the position of the sibling of p (or null if p 

has no sibling). 
 

 We again defer the definition and implementation of specialized update 
methods for binary trees.  
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BINARY TREE  ADT: BINARYTREE INTERFACE  
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BINARY TREE  ADT: ABSTRACTBINARYTREE BASE CLASS  
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BINARY TREE  ADT: ABSTRACTBINARYTREE BASE CLASS  
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PROPERTIES OF PROPER BINARY TREES 
© 2014 Goodrich, Tamassia, 

Goldwasser 
Trees 

22 

Proposition: Let T be a nonempty binary tree, and let n, nE , nI , and h 
denote the number of nodes, number of external nodes, number of 
internal nodes, and height of T , respectively. Then T has the following 
properties: 

1. h+1≤n≤2h+1−1 
2. 1≤nE ≤2h 

3. h≤nI ≤2h-1 
4. log(n+1)−1 ≤ h ≤ n−1 

Also, if T is proper, then T has the 
following properties: 

1. 2h+1≤n≤2h+1−1 
2. h+1≤nE ≤2h 

3. h≤nI ≤2h−1 
4. log(n+1)−1 ≤ h ≤ (n−1)/2 



 Relating Internal Nodes to External Nodes in a Proper 
Binary Tree  

 Proposition: In a nonempty proper binary tree T , with 
nE external nodes and nI internal nodes, we have nE = 
nI + 1.  
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LINKED STRUCTURE FOR BINARY TREES  
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l inked structure, with a node that maintains references to the element 
stored at a position p and to the nodes associated with the children and 
parent of p. 



OPERATIONS FOR UPDATING A LINKED BINARY TREE  
 Means for changing the structure of content of a tree.  
 Suggested update methods for a linked binary tree:  

 addRoot(e): Creates a root for an empty tree, storing e as the element, and 
returns the position of that root; an error occurs if the tree is not empty.  

 addLeft(p, e): Creates a left child of position p, storing element e, and returns 
the position of the new node; an error occurs if p already has a left child.  

 addRight(p, e): Creates a right child of position p, storing element e, and returns 
the position of the new node; an error occurs if p already has a right child.  

 set(p, e): Replaces the element stored at position p with element e, and returns 
the previously stored element.  

 attach(p, T1, T2): Attaches the internal structure of trees T1 and T2 as the 
respective left and right subtrees of leaf position p and resets T1 and T2 to 
empty trees; an error condition occurs if p is not a leaf.  

 remove(p): Removes the node at position p,replacing it with its child (if any), and 
returns the element that had been stored at p; an error occurs if p has two 
children.  
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Each can be implemented in O(1) worst-case time with our linked representation 



JAVA 
IMPLEMENTA
TION OF A 
LINKED 
BINARY TREE 
STRUCTURE 1 
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nested Node class, 
which implements 

the Position 

interface. 
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JAVA IMPLEMENTATION OF A LINKED BINARY TREE STRUCTURE 2 
createNode: returns a new node instance. 

This factory method pattern allowing us to 
later subclass our tree in order to use a 
specialized node type. (Discussed latter) 



JAVA IMPLEMENTATION OF A LINKED BINARY TREE STRUCTURE 3 
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JAVA IMPLEMENTATION OF A LINKED BINARY TREE STRUCTURE 4 
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JAVA IMPLEMENTATION OF A LINKED BINARY TREE STRUCTURE 5 
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JAVA IMPLEMENTATION OF A LINKED BINARY TREE STRUCTURE 6 
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JAVA IMPLEMENTATION OF A LINKED BINARY TREE STRUCTURE 7 
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JAVA 
IMPLEMENT
ATION OF A 
LINKED 
BINARY 
TREE 
STRUCTURE 
8 
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 remove(p): intentionally sets the 
parent field of a deleted node to refer 

to itself, in accordance with our 
conventional representation of a 

defunct node (as detected within the 
validate method). 



PERFORMANCE OF THE LINKED BINARY TREE IMPLEMENTATION  
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Running times for the methods of an n-node binary 
tree implemented with a linked structure. The space 

usage is O(n). dp is depth of node.  



ARRAY-BASED REPRESENTATION OF A BINARY TREE  

 Utilize the way of numbering the 
positions of T.  

 For every position p of T , let f(p) 
be the of integer defined as 
follows.  
 If p is the root of T, then f(p)=0. 
 If p is the left child of position q, 

then f(p) = 2f(q)+1.  
 If p is the right child of position q, 

then f(p) = 2f(q)+2.  
 f is known as level numbering of 

the positions in a binary tree T , 
for it numbers the positions on 
each level of T in increasing order 
from left to right.  
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ARRAY-BASED REPRESENTATION OF A BINARY TREE 2 
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an array-based structure A, with the 
element at position p of T stored at 

index f(p) of the array. 



ARRAY-BASED REPRESENTATION OF A BINARY TREE 3 

 Advantage:  
 position p can be represented by the single integer f(p),  
 position-based methods such as root, parent, left, and right can be 

implemented using simple arithmetic operations on the number f(p).  
 The left child of p has index 2f(p)+1,  
 the right child of p has index 2f(p)+2,  
 the parent of p has index ⌊( f ( p) − 1)/2⌋.  

 Disadvantage:  
 space usage of an array-based representation depends greatly on the 

shape of the tree;  
 worst case space usage: N = 2n − 1 , where n is the number of nodes in T 

 many update operations for trees cannot be efficiently supported.  
 EX> removing a node and promoting its child takes O(n) time: the node and all 

it’s descendants. 
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LINKED STRUCTURE FOR GENERAL TREES  

 General trees have no a priori limit on the number of children t
hat a node may have  

 each node store a single container of references to its children  
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container  



LINKED STRUCTURE FOR GENERAL TREES 2 
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DEPTH-FIRST TREE TRAVERSAL 1: PREORDER TRAVERSAL 

 A traversal visits the nodes of a 
tree in a systematic manner 

 In a preorder traversal, a node is 
visited before its descendants  

 Application: print a structured 
document 
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Algorithm preOrder(v) 
visit(v) 
for each child w of v 
 preorder (w) 



DEPTH-FIRST TREE TRAVERSAL 2: POSTORDER TRAVERSAL 

 In a postorder traversal, a node 
is visited after its descendants 

 Application: compute space used 
by files in a directory and its 
subdirectories 
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Algorithm postOrder(v) 
for each child w of v 
 postOrder (w) 
visit(v) 



DEPTH-FIRST TREE TRAVERSAL 3: IN-ORDER (SYMMETRIC) 
SEARCH  

 In an in-order traversal a node is 
visited after its left subtree and 
before its right subtree 

 Application: draw a binary tree 
 x(v) = in-order rank of v 
 y(v) = depth of v 
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Algorithm inOrder(v) 
if left (v) ≠ null 

inOrder (left (v)) 
visit(v) 
if right(v) ≠ null 

inOrder (right (v)) 



BREADTH-FIRST TREE TRAVERSAL 

 Breadth-first traversal: traverses a tree so that we visit all 
the positions at depth d before we visit the positions at 
depth d+1. 
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Algorithm breadthfirst( ): 
   Initialize queue Q to contain root( ) 
   while Q not empty do 
      p = Q.dequeue( )  
      perform the “visit” action for position p 
       for each child c in children(p) do 
           Q.enqueue(c) 



BINARY SEARCH TREES 

 Let S be a set whose unique elements have an order relation. A 
binary search tree for S is a proper binary tree T such that, for 
each internal position p of T: 
 Position p stores an element of S, denoted as e(p). 
 Elements stored in the left subtree of p (if any) are less than e(p). 
 Elements stored in the right subtree of p (if any) are greater than e(p). 
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running time of searching in a 
binary search tree T is 

proportional 
to the height of T. 



IMPLEMENTING TREE TRAVERSALS IN JAVA 
 We can implement the iterator( ) method by adapting an 

iteration produced by the positions( ) method. 
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 We first need to choose tree traversal algorithms to  implement 
the positions( ) method.  

 Ex>  



IMPLEMENTING PREORDER TRAVERSALS IN JAVA 
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 private preorderSubtree method allows us to parameterize the recursive 
process with a specific position of the tree that serves as the root of a 
subtree to traverse 
 

 
 

 
 public preorder method:  has the responsibility of creating an empty list for 

the snapshot buffer, and invoking the recursive method at the root of the 
tree 



IMPLEMENTING POSTORDER TRAVERSALS IN JAVA 
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IMPLEMENTING IN-ORDER TRAVERSALS IN JAVA 
 The inorder traversal algorithm, because it explicitly relies on the notion of a 

left and right child of a node, only applies to binary trees. ( define it in 
AbstractBinaryTree class.) 
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IMPLEMENTING BREADTHFIRST TRAVERSALS IN JAVA 
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APPLICATIONS OF TREE TRAVERSALS:  
TABLE OF CONTENTS 
 Preorder traversal of the tree can be used to produce a table of 

contents for the document 
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unindented version indented version 

unindented version 

indented version 



APPLICATIONS OF TREE TRAVERSALS:  
EVALUATE ARITHMETIC EXPRESSIONS 

 Specialization of a post-order 
traversal 
 recursive method returning 

the value of a subtree 
 when visiting an internal 

node, combine the values of 
the subtrees 
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Algorithm evalExpr(v) 
if isExternal (v) 

return v.element () 
else 
 x ← evalExpr(left(v)) 
 y ← evalExpr(right(v)) 
 ◊ ← operator stored at v 

return x ◊ y 
+ 

× × 

− 2 

5 1 

3 2 



APPLICATIONS OF TREE TRAVERSALS:  
PRINT ARITHMETIC EXPRESSIONS 

 Specialization of an in-order 
traversal 
 print operand or operator when 

visiting node 
 print “(“ before traversing left 

subtree 
 print “)“ after traversing right 

subtree 
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Algorithm printExpression(v) 
if left (v) ≠ null 
 print(“(’’) 

inOrder (left(v)) 
print(v.element ()) 
if right(v) ≠ null 

inOrder (right(v)) 
 print (“)’’) 

+ 

× × 

− 2 

a 1 

3 b 

((2 × (a − 1)) + (3 × b)) 



EULER TOUR TRAVERSAL 
 Euler tour traversal are generic traversal of a tree 
 Includes a special cases the preorder, postorder and inorder travers

als 
 Walk around the tree and visit each node three times: 

 on the left (pre-visit) 
 from below (in-visit) 
 on the right (post-visit) 

 Complexity of the walk is O(n), 
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+ 

× 

− 2 

5 1 

3 2 

L 
B 

R × 

“walk” around T, 



EULER TOUR TRAVERSAL CONT. 
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