TREES

Presentation for use with the textbook Data Structures and Algorithms in Java, $6^{\text {th }}$ edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014

WHAT IS A TREE

In computer science, a tree is an abstract model of hierarchical structure (a type of nonlinear data structure)

* Trees consists of nodes with a parent-child relation
* Trees also provide a natural or ganization for data,
+ Organization charts
+ File systems
+ Programming environment

Figure 8.3: Tree representing a portion of a file system.

TREE TERMINOLOGY

* Root: node without parent (A)
* Internal node: node with at least one child (A, B, C, F)
* External node (a.k.a. leaf): node without children (E, I, J, K, G, H, D)
* Ancestors of a node: parent, grandparent, grand-grandparent, etc.
* Descendant of a node: child, grandchild, grand-grandchild, etc.
* Subtree: tree consisting of a node

Canada S. America Overseas and its descendants

TREE TERMINOLOGY CONT

* Siblings: two nodes that are children of the same parent
* Depth of a node: number of ancestors
* Height of a tree: maximum depth of any node (3)
* Edge: a pair of nodes (u, v) such that u is the parent of v, or vice versa.
* Path: a sequence of nodes such that any two consecutive nodes in the sequence form an edge

FORMAL TREE DEFINITION

* Formally, we define a tree T as a set of nodes storing elements such that the nodes have a parent-child relationship that satisfies the following properties:
+ If T is nonempty, it has a special node, called the root of T, that has no parent.
+ Each node v of T different from the root has a unique parent node w; every node with parent w is a child of w.
* Note: a tree can be empty (no nodes)
=> Tree can be defined recursively such that a tree T is either empty or consists of a node r, called the root of T, and a (possibly empty) set of subtrees whose roots are the children of r.

ORDERED TREES

* A tree is ordered if there is a meaningful linear order among the children of each node;
+ An order is usually visualized by arranging siblings left to right, according to their order.

An ordered tree associated with a book.

* We use positions as an abstraction for a node of a tree
* A position object for a tree supports the method:
+ getElement(): Returns the element stored at this position.
* Accessor methods for navigating through positions of a tree T
$+\operatorname{root}()$: Returns the position of the root of the tree (or null if empty).
+ parent(p): Returns the position of the parent of position p (or null if p is the root).
+ children(p): Returns an iterable collection containing the children of position p (if any).
+ numChildren(p): Returns the number of children of position p.

TREE ADT CONT.

* Query methods, which are often used with conditionals statements:
+ isInternal(p): Returns true if position p has at least one child.
+ isExternal(p): Returns true if position p does not have any children.
+ isRoot(p): Returns true if position p is the root of the tree.
* General methods, unrelated to the specific structure of the tree:
+ size(): Returns the number of positions (and hence elements) that are contained in the tree.
+ isEmpty(): Returns true if the tree does not contain any positions (and thus no elements).
+ iterator(): Returns an iterator for all elements in the tree (so that the tree itself is Iterable).
+ positions(): Returns an iterable collection of all positions of the tree.
* Additional update methods may be defined by data structures implementing the Tree ADT. (Discussed later)

A TREE INTERFACE IN JAVA

Methods for a Tree interface:

```
/** An interface for a tree where nodes can have an arbitrary number of children. */
public interface Tree<E> extends Iterable<E> {
    Position<E> root();
    Accessor
    Position<E> parent(Position<E> p) throws IllegalArgumentException; methods
    Iterable<Position<E>> children(Position<E> p)
                        throws IllegalArgumentException;
    int numChildren(Position<E> p) throws IllegalArgumentException;
    boolean isInternal(Position<E> p) throws IllegalArgumentException;
    boolean isExternal(Position<E> p) throws IllegalArgumentException;
    boolean isRoot(Position<E> p) throws IllegalArgumentException;
    int size();
    boolean isEmpty();
    Iterator<E> iterator();
    Iterable<Position<E>> positions();
}
```


AN ABSTRACTTREE BASE CLASS IN JAVA

* If a concrete implementation provides three fundamental methods-root(), parent(p), and children(p)- all other behaviors of the Tree interface can be derived within the AbstractTree base class.

```
/** An abstract base class providing some functionality of the Tree interface. */
public abstract class AbstractTree<E> implements Tree<E> {
    public boolean isInternal(Position<E>p) { return numChildren(p)>0;}
    public boolean isExternal(Position<E> p) { return numChildren(p)== 0; }
    public boolean isRoot(Position<E> p) { return p == root(); }
    public boolean isEmpty() { return size() == 0; }
}
```

An initial implementation of the AbstractTree base class. (We add additional functionality to this class as the chapter continues.)

COMPUTING DEPTH

* Let p be a position within tree T. The depth of p is the number of ancestors of p, other than p itself. The depth of p can also be recursively defined as follows:
+ If p is the root, then the depth of p is 0 .
+ Otherwise, the depth of p is one plus the depth of the parent of p.

```
/** Returns the number of levels separating Position p from the root. */
public int depth(Position<E> p) {
    if (isRoot(p))
        return 0;
    else
        return 1 + depth(parent(p));
}
```


COMPUTING HEIGHT

* We next define the height of a tree to be equal to the maximum of the depths of its positions (or zero, if the tree is empty).
* If using the definition as is, the height computation become inefficient:

```
/** Returns the height of the tree. */
private int heightBad() {
    int h = 0;
    for (Position<E> p : positions())
        if (isExternal(p))
            h = Math.max(h, depth(p));
    return h;
}
```

Analysis:
Positions(p): can be implemented to run in $\mathrm{O}(\mathrm{n})$; Because heightBad calls algorithm depth (p) on each leaf of T, its running time is

$$
\left.a n+\sum_{p \in L}\left(d_{p}+1\right)\right)
$$

where L is the set of leaf positions of T.
In the worst case, the sum $\sum_{p \in L}\left(d_{p}+1\right)$ is proportional to n^{2}.
Thus, algorithm heightBad runs in $\left.Q n^{2}\right)$ worstcase time.

COMPUTING HEIGHT CONT

* Recursive definition to compute height.
* Define the height of a position p in a tree T as follows:
+ If p is a leaf, then the height of p is 0 .
+ Otherwise, the height of p is one more than the maximum of the heights of p 's children.

The height of the root of a nonempty tree T, according to the recursive definition, equals the maximum depth among all leaves of tree T.

COMPUTING HEIGHT CONT

/** Returns the height of the subtree rooted at Position p. */
public int height(Position<E>p) \{
int $\mathrm{h}=0$;
base case if p is external
for (Position<E>c : children(p))
$\mathrm{h}=$ Math.max(h, $1+$ height(c));
return h;
$O(n)$ worst-case time
\}
> The overall height of a nonempty tree can be computed by sending the root of the tree as a parameter.

* Assuming that children (p) executes in $O\left(c_{p}+1\right)$ time, where c_{p} denotes the number of children of p. Algorithm height (p) spends $O\left(c_{p}+1\right)$ time at each position p to compute the maximum, and its overall running time is

$$
O\left(\sum_{p}\left(c_{p}+1\right)\right)=O\left(n+\sum_{p} c_{p}\right) .
$$

Let T be a tree with n positions, and let c_{p} denote the number of children of a position p of T. Then, summing over the positions of $T_{1} \Sigma_{p} c_{p}=n-1$.

BINARY TREES

* A binary tree is an ordered tree with the following properties:
+ Every node has at most two children.
+ Each child node is labeled as being either a left child or a right child.
+ A left child precedes a right child in the order of children of a node.
* The subtree rooted at a left or right child of an internal node v is called a left subtree or right subtree, respectively, of v.
* A binary tree is proper (full) if each node has either zero or two children.
+ Every internal node has exactly two children.
* A binary tree that is not proper is improper
* Alternative recursive definition: a binary tree is either
+ a tree consisting of a single node, or
+ a tree whose root has an ordered pair of children, each of which is a binary tree

BINARY TREES CONT. : ARITHMETIC EXPRESSION TREE

* Leaves are associated with variables or constants
* Internal nodes are associated with one of the operators +, -, *, and /
* Each node in such a tree has a value associated with it.
+ If a node is leaf, then its value is that of its variable or constant.
+ If a node is internal, then its value is
 defined by applying its operation to the values of its children.
A typical arithmetic expression tree is a proper binary tree,
* If allowed unary operators, like
tree represents the expression $((((3+1) * 3) /((9-5)+2))-((3 *(7-4))+6))$
The value associated with the internal node labeled "/" is 2. negation (-), then tree is improper binary

BINARY TREES CONT. : RECISION TREE

* Binary tree associated with a decision process
+ internal nodes: questions with yes/no answer
+ external nodes: decisions
* Example: dining decision

Want a fast meal?

BINARY TREE ABSTRACT DATA TYPE

* Binary tree is a specialization of a tree that supports three additional accessor methods:
$+\operatorname{left}(p)$: Returns the position of the left child of p (or null if p has no left child).
+ right(p): Returns the position of the right child of p (or null if p has no right child).
+ sibling(p): Returns the position of the sibling of p (or null if p has no sibling).
* We again defer the definition and implementation of specialized update methods for binary trees.

BINARY TREE ADT: BINARYTREE INTERFACE

/** An interface for a binary tree, in which each node has at most two children. */ public interface BinaryTree<E> extends Tree<E> \{
/** Returns the Position of p's ieft child (or null if no child exists). */
Position<E> left(Position<E>p) throws IIlegalArgumentException;
/** Returns the Position of p's right child (or null if no child exists). */
Position<E> right(Position<E>p) throws IllegalArgumentException;
/** Returns the Position of p's sibling (or null if no sibling exists). */
Position<E> sibling(Position<E>p) throws IllegalArgumentException;
$9\}$

BINARY TREE ADT: ABSTRACTBINARYTREE BASE CLASS

/** An abstract base class providing some functionality of the BinaryTree interface.*/ public abstract class AbstractBinaryTree $<\mathrm{E}>$ extends AbstractTree $<\mathrm{E}>$ implements BinaryTree $<\mathrm{E}>\{$
/** Returns the Position of p's sibling (or null if no sibling exists). */
public Position<E> sibling(Position<E>p) \{
Position<E> parent $=$ parent (p);
if (parent $==$ null) return null;
// p must be the root
if ($p==$ left(parent))
$/ / \mathrm{p}$ is a left child
return right(parent): // (right child might be null)
else
// p is a right child
returı left(parent);
\}

BINARY TREE ADT: ABSTRACTBINARYTREE BASE CLASS

```
/** Returns the number of children of Position p. */
    public int numChildren(Position<E> p) {
        int count=0;
        if (left(p)!= null)
            count++;
    if (right(p)!= null)
        count++;
    return count;
}
/** Returns an iterable collection of the Positions representing p's children. */
public Iterable<Position<E>> children(Position<E> p) {
    List<Position<E>> snapshot = new ArrayList<>(2); // max capacity of 2
    if (left(p)!= null)
        snapshot.adc((left(p));
        if (right(p)!= null)
            snapshot.add(right(p));
        return snapshot;
    }
```

\}

PROPERTIES OF PROPER BINARY TREES

Proposition: Let T be a nonempty binary tree, and let n, n_{E}, n_{l}, and h denote the number of nodes, number of external nodes, number of internal nodes, and height of T, respectively. Then T has the following properties:

1. $h+1 \leq n \leq 2^{h+1}-1$
2. $1 \leq n_{E} \leq 2^{h}$
3. $h \leq n_{l} \leq 2^{\mathrm{h}}-1$
4. $\log (n+1)-1 \leq h \leq n-1$

Also, if T is proper, then T has the following properties:

1. $2 h+1 \leq n \leq 2^{h+1}-1$
2. $h+1 \leq n_{E} \leq 2^{h}$

Level
Nodes

3. $h \leq n_{1} \leq 2^{h-1}$
4. $\log (n+1)-1 \leq h \leq(n-1) / 2$

* Relating Internal Nodes to External Nodes in a Proper Binary Tree
* Proposition: In a nonempty proper binary tree T, with n_{E} external nodes and n_{l} internal nodes, we have $n_{E}=$ $n_{l}+1$.

LINKED STRUCTURE FOR BINARY TREES

linked structure, with a node that maintains references to the element stored at a position p and to the nodes associated with the children and parent of p.

OPERATIONS FOR UPDATING A LINKED BINARY TREE

* Means for changing the structure of content of a tree.
* Suggested update methods for a linked binary tree:
+ addRoot(e): Creates a root for an empty tree, storing e as the element, and returns the position of that root; an error occurs if the tree is not empty.
+ addLeft (p, e) : Creates a left child of position p, storing element e, and returns the position of the new node; an error occurs if p already has a left child.
$+\operatorname{addRight}(p, e)$: Creates a right child of position p, storing element e, and returns the position of the new node; an error occurs if p already has a right child.
$+\operatorname{set}(p, e)$: Replaces the element stored at position p with element e, and returns the previously stored element.
$\operatorname{attach}(p, T 1, T 2)$: Attaches the internal structure of trees $T 1$ and $T 2$ as the respective left and right subtrees of leaf position p and resets $T 1$ and $T 2$ to empty trees; an error condition occurs if p is not a leaf.
+ remove(p): Removes the node at position p,replacing it with its child (if any), and returns the element that had been stored at p; an error occurs if p has two children.

Each can be implemented in $O_{(1)}$ worst-case time with our linked representation

JAVA
IMPLEMENTA TION OF A LINKED BINARY TREE STRUCTURE 1
the Position
interface.
/** Concrete implementation of a binary tree using a node-based, linked structure. */ public class LinkedBinaryTree<E> extends AbstractBinaryTree<E> \{

```
//-
    protected static class Node<E> implements Position<E> {
        private E element; // an element stored at this node
        private Node<E> parent; // a reference to the parent node (if any)
        private Node<E> left; // a reference to the left child (if any)
        private Node<E> right; // a reference to the right child (if any)
        /** Constructs a node with the given element and neighbors. */
    public Node(E e,Node<E> above, Node<E> leftChild, Node<E> rightChild) {
        element = e;
        parent = above;
        left = leftChild;
        right = rightChild;
    }
    // accessor methods
    public E getElement() { return element; }
    public Node<E> getParent() { return parent; }
    public Node<E> getLeft() { return left; }
    public Node<E> getRight() { return right; }
    // update methods
    public void setElement(E e) { element = e; }
    public void setParent(Node<E> parentNode) { parent = parentNode; }
    public void setLeft(Node<E> leftChild) { left = leftChild; }
    public void setRight(Node<E> rightChild) {right = rightChild; }
} //
```


JAVA IMPLEMENTATION OF A LINKED BINARY TREE STRUCTURE 2

```
                createNode: returns a new node instance.
                This factory method pattern allowing us to
                        later subclass our tree in order to use a
                            specialized node type. (Discussed latter)
```

```
/** Factory function to create a new node storing element e. */
```

/** Factory function to create a new node storing element e. */
protected Node<E> createNode(E e, Node<E> parent,
protected Node<E> createNode(E e, Node<E> parent,
Node<E> left,Node<E> right) {
Node<E> left,Node<E> right) {
return new Node<E>(e, parent, left, right);
return new Node<E>(e, parent, left, right);
}
}
// LinkedBinaryTree instance variables
// LinkedBinaryTree instance variables
protected Node<E> root = null;
protected Node<E> root = null;
private int size = 0;
private int size = 0;
// root of the tree
// root of the tree
// number of nodes in the tree
// number of nodes in the tree
// constructor
// constructor
public LinkedBinaryTree() {} // constructs an empty binary tree

```
public LinkedBinaryTree() {} // constructs an empty binary tree
```


JAVA IMPLEMENTATION OF A LINKED BINARY TREE STRUCTURE 3

```
// nonpublic utility
/** Validates the position and returns it as a node. */
protected Node<E> validate(Position<E> p) throws IllegalArgumentException {
        if (!(p instanceof Node))
            throw new IllegalArgumentException("Not valid position type");
    Node<E> node = (Node<E>) p; // safe cast
    if (node.getParent() == node) // our convention for defunct node
            throw new IllegalArgumentException("p is no longer in the tree");
    return node;
}
// accessor methods (not already implemented in AbstractBinaryTree)
/** Returns the number of nodes in the tree. */
public int size() {
    return size;
}
/** Returns the root Position of the tree (or null if tree is empty). */
public Position<E> root() {
    return root;
}
```


JAVA IMPLEMENTATION OF A LINKED BINARY TREE STRUCTURE 4

```
/** Returns the Position of p's parent (or null if p is root). */
public Position<E> parent(Position<E> p) throws IllegalArgumentException {
    Node<E> node = validate(p);
    return node.getParent();
}
/** Returns the Position of p's left child (or null if no child exists). */
public Position<E> left(Position<E> p) throws IllegalArgumentException {
    Node<E> node = validate(p);
    return node.getLeft();
}
/** Returns the Position of p's right child (or null if no child exists). */
public Position<E> right(Position<E> p) throws IllegalArgumentException {
    Node<E> node = validate(p);
    return node.getRight();
}
```


JAVA IMPLEMENTATION OF A LINKED BINARY TREE STRUCTURE 5

```
// update methods supported by this class
/** Places element e at the root of an empty tree and returns its new Position. */
public Position<E> addRoot(E e) throws IllegalStateException {
    if (lisEmpty()) throw new IllegalStateException("Tree is not empty");
    root = createNode(e, null, null, null);
    size = 1;
    return root;
}
/** Creates a new left child of Position p storing element e; returns its Position. */
public Position<E> addLeft(Position<E> p, E e)
                    throws IllegalArgumentException {
    Node<E> parent = validate(p);
    if (parent.getLeft() != null)
        throw new IllegalArgumentException("p already has a left child");
    Node<E> child = createNode(e, parent, null, null);
    parent.setLeft(child);
    size++;
return child;
}
```


JAVA IMPLEMENTATION OF A LINKED BINARY TREE STRUCTURE 6

```
/** Creates a new right child of Position p storing element e; returns its Position. */
public Position<E> addRight(Position<E> p, E e)
                            throws IllegalArgumentException {
    Node<E> parent = validate(p);
    if (parent.getRight() != null)
        throw new IllegalArgumentException("p already has a right child");
    Node<E> child = createNode(e, parent, null, null);
    parent.setRight(child);
    size++;
    return child;
}
/** Replaces the element at Position p with e and returns the replaced element. */
public E set(Position<E> p, E e) throws IllegalArgumentException {
    Node<E> node = validate(p);
    E temp = node.getElement();
    node.setElement(e);
    return temp;
}
```


JAVA IMPLEMENTATION OF A LINKED BINARY TREE STRUCTURE 7

/** Attaches trees t1 and t2 as left and right subtrees of external p. */
public void attach(Position<E>p, LinkedBinaryTree<E>t1,
LinkedBinaryTree<E> t2) throws IllegalArgumentException \{
Node $<E>$ node $=$ validate (p);
if (islnternal(p)) throw new IllegalArgumentException("p must be a leaf");
size $+=\mathrm{t} 1 \cdot \operatorname{size}()+\mathrm{t} 2 \cdot \operatorname{size}()$;
if (!t1.isEmpty()) \{ // attach t 1 as left subtree of node
t1.root.setParent(node);
node.setLeft(t1.root);
t1.root $=$ null;
t1. size $=0$;
\}
if (!t2.isEmpty()) \{ // attach t2 as right subtree of node
t2.root.setParent(node);
node.setRight(t2.root);
t2.root $=$ null;
t2. size $=0$;
\}
\},
/** Removes the node at Position p and replaces it with its child, if any. */
public E remove $($ Position $<\mathrm{E}>\mathrm{p})$ throws IllegalArgument Exception \{
Node<E> node = validate (p);
if (numChildren(p) $==2$)
throw new IllegalArgumentException("p has two children");
Node<E> child = (node.getLeft() != null ? node.getLeft() : node.getRight());
if (child != null)
child.setParent(node.getParent()); // child's grandparent becomes its parent
if (node $==$ root)
root $=$ child; // child becomes root
else \{
Node<E> parent $=$ node.getParent();
if (node $==$ parent.getLeft())
parent.setLeft(child);
else
parent.setRight(child);
\}
size--;
E temp $=$ node.getElement () ;
node.setElement(null);
node.setLeft(null);
node.setRight(null);
node.setParent(node); // our convention for defunct node
return temp;
\}
164

PERFORMANCE OF THE LINKED BINARY TREE IMPLEMENTATION

Method	Running Time
size, isEmpty	$O(1)$
root, parent, left, right, sibling, children, numChildren	$O(1)$
isInternal, isExternal, isRoot	$O(1)$
addRoot, addLeft, addRight, set, attach, remove	$O(1)$
depth (p)	$O\left(d_{p}+1\right)$
height	$O(n)$

Running times for the methods of an n-node binary tree implemented with a linked structure. The space usage is $\alpha(n) . d_{p}$ is depth of node.

ARRAY-BASED REPRESENTATION OF A BINARY TREE

* Utilize the way of numbering the positions of T.
* For every position p of T, let $f(p)$ be the of integer defined as follows.
+ If p is the root of T, then $f(p)=0$.
+ If p is the left child of position q, then $f(p)=2 \wedge(q)+1$.
+ If p is the right child of position q, then $f(p)=2 f(q)+2$.
* f is known as level numbering of the positions in a binary tree T, for it numbers the positions on each level of T in increasing order from left to right.

ARRAY-BASED REPRESENTATION OF A BINARY TREE 2

an array-based structure A, with the element at position p of T stored at index $f(p)$ of the array.

$/$	$*$	+	+	4	-	2	3	1			9	5		
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14

ARRAY-BASED REPRESENTATION OF A BINARY TREE 3

* Advantage:
+ position p can be represented by the single integer f(p),
+ position-based methods such as root, parent, left, and right can be implemented using simple arithmetic operations on the number $f(p)$.
\times The left child of p has index $2 f(p)+1$,
\times the right child of p has index $2 f(p)+2$,
\times the parent of p has index $\lfloor(f(p)-1) / 2\rfloor$.
* Disadvantage:
+ space usage of an array-based representation depends greatly on the shape of the tree;
\times worst case space usage: $N=2^{n}-1$, where n is the number of nodes in T
+ many update operations for trees cannot be efficiently supported.
EX> removing a node and promoting its child takes $O(n)$ time: the node and all it's descendants.

LINKED STRUCTURE FOR GENERAL TREES

* General trees have no a priori limit on the number of children t hat a node may have
* each node store a single container of references to its children

LINKED STRUCTURE FOR GENERAL TREES 2

Method	Running Time
size, isEmpty	$O(1)$
root, parent, isRoot, isInternal, isExternal	$O(1)$
numChildren (p)	$O(1)$
children (p)	$O\left(c_{p}+1\right)$
depth (p)	$O\left(d_{p}+1\right)$
height	$O(n)$

DEPTH-FIRST TREE TRAVERSAL 1: PREORDER TRAYERSAL

* A traversal visits the nodes of a tree in a systematic manner
* In a preorder traversal, a node is visited before its descendants
* Application: print a structured document

Algorithm preOrder(v)

 visit(v)for each child w of \boldsymbol{v}
preorder (w)

DEPTH-FIRST TREE TRAYERSAL 2: POSTORDER TRAYERSAL

* In a postorder traversal, a node is visited after its descendants
Application: compute space used by files in a directory and its subdirectories

Algorithm postOrder(v) for each child w of \boldsymbol{v} postOrder (w) visit(v)

DEPTH-FIRST TREE TRAYERSAL 3: IN-ORDER (SYMMMETRFiCQ SEARCH

* In an in-order traversal a node is visited after its left subtree and before its right subtree
* Application: draw a binary tree
$+x(v)=$ in-order rank of v
$+y(v)=$ depth of v

Algorithm inOrder(v)
if left $(v) \neq$ null inOrder (left (v))
visit(v)
if $\operatorname{right}(v) \neq$ null inOrder (right (v))

BREADTH-FIRST TREE TRAVERSAL

Breadth-first traversal. traverses a tree so that we visit all the positions at depth d before we visit the positions at depth $d+1$.

Algorithm breadthfirst():

Initialize queue Q to contain root()
while Q not empty do
$p=Q$.dequeue()
perform the "visit" action for position p for each child c in children (p) do

BINARY SEARCH TREES

* Let S be a set whose unique elements have an order relation. A binary search tree for S is a proper binary tree T such that, for each internal position p of T :
+ Position p stores an element of S, denoted as e(p).
+ Elements stored in the left subtree of p (if any) are less than $e(p)$.
+ Elements stored in the right subtree of p (if any) are greater than $e(p)$.

running time of searching in a binary search tree T is proportional to the height of T.

IMPLEMENTING TREE TRAVERSALS IN JAVA

* We can implement the iterator() method by adapting an iteration produced by the positions() method.

```
    }
```

 //--------------- nested Elementlterator class
 /* This class adapts the iteration produced by positions() to return elements. */
 private class Elementlterator implements Iterator < E > \{
 Iterator \(<\) Position \(<\mathrm{E} \gg\) posIterator \(=\) positions().iterator();
 public boolean hasNext() \{ return positerator.hasNext(); \}
 public E next() \{ return positerator.next().getElement(); \} // return element!
 public void remove() \{ poslterator remove(); \}
 /** Returns an iterator of the elements stored in the tree. */
 public Iterator \(<\mathrm{E}>\) iterator() \{ return new Elementlterator(); \}
 * We first need to choose tree traversal algorithms to implement the positions() method.
\times EX> public Iterable<Position<E>> positions() \{return preorder(); \}

IMPLEMENTING PREORDER TRAYERSALS IN JAYA

* private preorderSubtree method allows us to parameterize the recursive process with a specific position of the tree that serves as the root of a subtree to traverse

```
/ /** Adds positions of the subtree rooted at Position p to the given snapshot. */
2 private void preorderSubtree(Position<E> p, List<Position<E>> snapshot) {
3napshot.add(p); // for preorder, we add position p before exploring subtrees
for (Position<E> c : children(p))
5 preorderSubtree(c, snapshot);
6
```

public preorder method: has the responsibility of creating an empty list for the snapshot buffer, and invoking the recursive method at the root of the tree $1 \quad / * *$ Returns an iterable collection of positions of the tree, reported in preorder. */ 2 public Iterable<Position<E>> preorder() \{
3 List $<$ Position $<$ E \gg snapshot $=$ new ArrayList $<>$ ();
4 if (!isEmpty())
preorderSubtree(root(), snapshot); // fill the snapshot recursively
return snapshot;
\}

IMPLEMENTING POSTTORDER TRAVERSALSS IN JAVA

```
/** Adds positions of the subtree rooted at Position p to the given snapshot. */
private void postorderSubtree(Position<E> p, List<Position<E>> snapshot) {
    for (Position<E> c : children(p))
            postorderSubtree(c, snapshot);
    snapshot.add(p); // for postorder, we add position p after exploring subtrees
}
/** Returns an iterable collection of positions of the tree, reported in postorder. */
public Iterable<Position<E>> postorder() {
    List<Position<E>> snapshot = new ArrayList<>();
    if (!isEmpty())
        postorderSubtree(root(), snapshot); // fill the snapshot recursively
    return snapshot;
\
```


IMPLEMENTING IN-ORDER TRAVERSALS IN JAVA

* The inorder traversal algorithm, because it explicitly relies on the notion of a left and right child of a node, only applies to binary trees. (define it in AbstractBinaryTree class.)

```
/** Adds positions of the subtree rooted at Position p to the given snapshot. */
private void inorderSubtree(Position<E> p, List<Position<E>> snapshot) {
    if (left(p) != null)
        inorderSubtree(left(p), snapshot);
    snapshot.add(p);
    if (right(p)!= null)
        inorderSubtree(right(p), snapshot);
}
/** Returns an iterable collection of positions of the tree, reported in inorder. */
public Iterable<Position<E >> inorder() {
    List<Position<E>> snapshot = new ArrayList<>();
    if (!isEmpty())
        inorderSubtree(root(), snapshot); // fill the snapshot recursively
    return snapshot;
}
/** Overrides positions to make inorder the default order for binary trees. */
public Iterable<Position<E>> positions() {
    return inorder();
}
```


IMPLEMENTING BREADTHFIRSTT TRAVERSALS IN JAVA

```
/** Returns an iterable collection of positions of the tree in breadth-first order. */
public Iterable<Position<E>> breadthfirst() {
    List<Position<E>> snapshot = new ArrayList<>();
    if (!isEmpty()) {
        Queue<Position<E>> fringe = new LinkedQueue<>();
        fringe.enqueue(root()); // start with the root
        while (Ifringe.isEmpty()) {
            Position<E>p = fringe.dequeue( ); // remove from front of the queue
            snapshot.add(p); // report this position
            for (Position<E> c : children(p))
            fringe.enqueue(c); // add children to back of queue
        }
    }
    return snapshot;
}
```


APPLICATIONS OF TREE TRAVERSALS:

TABLE OF CONTENTS

* Preorder traversal of the tree can be used to produce a table of contents for the document

unindented version	Paper	Paper
	Title	Title
	Abstract	Abstract
	§1	§1
for (Position $<E>p: T$.preorder ())	§1.1	§1.1
for (Position<E>P - T.preorder())	§1.2	§1.2
System.out.printin(p.getElement())	§2	§2
	§2.1	§2.1
indented version	unindented version	indented version
1 /** Prints preorder representation of subtree of T rooted at p having depth d. */ 2 public static $<\mathrm{E}>$ void printPreorderIndent(Tree $<\mathrm{E}>\mathrm{T}$, Position $<\mathrm{E}>p$, int d) \{		
3 System.out.println(spaces(2*d) + p.getElement()); // indent based ond		
4 for (Position<E> c : T.children(p))		
5 printPreorderIndent($\mathrm{T}, \mathrm{c}, \mathrm{d}+1$);	// child depth is $\mathrm{d}+1$	
$6\}$		50

APPLICATIONS OF TREE TRAVERSALS: EXALUATE ARITHMETIC EXPRESSIONS

* Specialization of a post-order traversal
+ recursive method returning the value of a subtree
+ when visiting an internal node, combine the values of


```
Algorithm evalExpr(v)
    if isExternal (v)
            return v.element ()
    else
    x}\leftarrowevalExpr(left(v)
    y \leftarrowevalExpr(right(v))
    \diamond}\mathrm{ operator stored at v
    return }x\diamond
```


APPLICATIONS OF TREE TRAVERSALS: PRINT ARITHMETIC EXPRESSIONS

- Specialization of an in-order

 traversal+ print operand or operator when visiting node
+ print "(" before traversing left subtree
+ print ")" after traversing right


```
Algorithm printExpression(v)
    if left (v)}=\mathrm{ null
        print("("))
        inOrder (left(v))
    print(v.element ())
    if right(v)}\not=\mathrm{ null
    inOrder (right(v))
    print (")'")
```

$((2 \times(a-1))+(3 \times b))$

EULER TOUR TRAYERSAL

Euler tour traversal are generic traversal of a tree

* Includes a special cases the preorder, postorder and inorder travers als
* Walk around the tree and visit each node three times:
+ on the left (pre-visit)
+ from below (in-visit)
+ on the right (post-visit)
* Complexity of the walk is $O(n)$,

EULER TOUR TRAVERSAL CONT.

Algorithm eulerTour(T, p):
perform the "pre visit" action for position p
for each child c in T.children (p) do
eulerTour $(T, c) \quad\{$ recursively tour the subtree rooted at c \}
perform the "post visit" action for position p

Algorithm eulerTourBinary (T, p) :
perform the "pre visit" action for position p
if p has a left child $l c$ then eulerTourBinary $(T, l c)$ $\{$ recursively tour the left subtree of $p\}$
perform the "in visit" action for position p
if p has a right child $r c$ then eulerTourBinary $(T, r c) \quad\{$ recursively tour the right subtree of $p\}$
perform the "post visit" action for position p

