

© 2014 Goodrich, Tamassia, Goldwasser Stony Brook









Presentation for use with the textbook Data Structures and Algorithms in Java, 6<sup>th</sup> edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014

1

# WHAT IS A TREE

In computer science, a tree is an abstract model of hierarchical structure (a type of nonlinear data structure)

- Trees consists of nodes with a parent-child relation
- Trees also provide a natural or ganization for data,
  - + Organization charts
  - + File systems

S

+ Programming environment



Figure 8.3: Tree representing a portion of a file system.

© 2014 Goodrich, Tamassia, Goldwasser

# TREE TERMINOLOGY

- **Root:** node without parent (A)
- Internal node: node with at least one child (A, B, C, F)
- External node (a.k.a. leaf): node without children (E, I, J, K, G, H, D)
- Ancestors of a node: parent, grandparent, grand-grandparent, etc.
- \* Descendant of a node: child, grandchild, grand-grandchild, etc.
- Subtree: tree consisting of a node and its descendants



organization of a fictitious corporation.

# TREE TERMINOLOGY CONT

- Siblings: two nodes that are children of the same parent
- **Depth** of a node: number of ancestors
- **Height** of a tree: maximum depth of any node (3)
- Edge: a pair of nodes (u,v) such that u is the parent of v, or vice versa.
- *Path:* a sequence of nodes such that any two consecutive nodes in the sequence form an edge

### FORMAL TREE DEFINITION

- Formally, we define a *tree* T as a set of *nodes* storing elements such that the nodes have a *parent-child* relationship that satisfies the following properties:
  - + If *T* is nonempty, it has a special node, called the *root* of *T*, that has no parent.
  - Each node v of T different from the root has a unique *parent* node w; every node with parent w is a *child* of w.
- × Note: a tree can be empty (no nodes)

=> Tree can be defined recursively such that a tree *T* is either empty or consists of a node *r*, called the root of *T*, and a (possibly empty) set of subtrees whose roots are the children of *r*.

# ORDERED TREES

- A tree is *ordered* if there is a meaningful linear order among the children of each node;
  - + An order is usually visualized by arranging siblings left to right, according to their order.



An ordered tree associated with a book.

# TREE ADT

- × We use <u>positions</u> as an abstraction for a node of a tree
- \* A position object for a tree supports the method:
  - + getElement(): Returns the element stored at this position.
- \* *Accessor methods* for navigating through positions of a tree *T* 
  - + root(): Returns the position of the root of the tree (or null if empty).
  - parent(p): Returns the position of the parent of position p (or null if p is the root).
  - + children(*p*): Returns an iterable collection containing the children of position *p* (if any).
  - + numChildren(*p*): Returns the number of children of position *p*.

# TREE ADT CONT.

\* *Query methods,* which are often used with conditionals statements:

- + isInternal(*p*): Returns true if position *p* has at least one child.
- + isExternal(*p*): Returns true if position *p* does not have any children.
- + isRoot(*p*): Returns true if position *p* is the root of the tree.
- **General methods**, unrelated to the specific structure of the tree:
  - + size(): Returns the number of positions (and hence elements) that are contained in the tree.
  - + isEmpty(): Returns true if the tree does not contain any positions (and thus no elements).
  - + iterator(): Returns an iterator for all elements in the tree (so that the tree itself is Iterable).
  - + positions(): Returns an iterable collection of all positions of the tree.
- Additional <u>update methods</u> may be defined by data structures implementing the Tree ADT. (Discussed later)

6

15

### A TREE INTERFACE IN JAVA

### Methods for a Tree interface:

- 1 /\*\* An interface for a tree where nodes can have an arbitrary number of children. \*/
- 2 public interface Tree<E> extends Iterable<E> {
- 3 Position<E> root();
- 4 Position<E> parent(Position<E> p) **throws** IllegalArgumentException;
- 5 Iterable<Position<E>> children(Position<E> p)

throws IllegalArgumentException;

- 7 **int** numChildren(Position<E> p) **throws** IllegalArgumentException;
- **boolean** isInternal(Position<E> p) **throws** IllegalArgumentException;
- 9 boolean isExternal(Position<E> p) throws IllegalArgumentException;
- 10 **boolean** isRoot(Position<E> p) **throws** IllegalArgumentException;
- 11 int size();
- 12 **boolean** isEmpty();
- 13 Iterator<E> iterator();
- 14 Iterable<Position<E>> positions();

Accessor methods

Query methods

General method s

7

### AN ABSTRACTTREE BASE CLASS IN JAVA

- If a concrete implementation provides three fundamental methods—root(), parent(p), and children(p)— all other behaviors of the Tree interface can be derived within the AbstractTree base class.
  - 1 /\*\* An abstract base class providing some functionality of the Tree interface. \*/
  - 2 public abstract class AbstractTree<E> implements Tree<E> {
  - 3 public boolean isInternal(Position<E> p) { return numChildren(p) > 0; }
  - 4 public boolean isExternal(Position<E> p) { return numChildren(p) == 0; }
  - 5 public boolean isRoot(Position<E> p) { return p == root(); }
  - 6 public boolean isEmpty() { return size() == 0; }

An initial implementation of the AbstractTree base class. (We add additional

functionality to this class as the chapter continues.)

### **COMPUTING DEPTH**

- Let p be a position within tree T. The *depth* of p is the number of ancestors of p, other than p itself.
- × The depth of *p* can also be recursively defined as follows:
  - + If *p* is the root, then the depth of *p* is 0.
  - + Otherwise, the depth of *p* is one plus the depth of the parent of *p*.

```
1 /** Returns the number of levels separating Position p from the root. */
2 public int depth(Position<E> p) {
3 if (isRoot(p))
4 return 0;
5 else
6 return 1 + depth(parent(p));
7 }
```

## COMPUTING HEIGHT

- We next define the *height* of a tree to be equal to the maximum of the depths of its positions (or zero, if the tree is empty).
- If using the definition as is, the height computation become inefficient:

```
/** Returns the height of the tree. */
     private int heightBad() {
3
       int h = 0:
4
       for (Position<E> p : positions())
5
         if (isExternal(p))
            h = Math.max(h, depth(p));
6
       return h;
7
8
```

Analysis:

Positions(p): can be implemented to run in O(n); Because heightBad calls algorithm depth(p) on each leaf of T, its running time is  $O(n + \sum_{p \in L} (d_p + 1)),$ 

where L is the set of leaf positions of T. In the worst case, the sum  $\sum_{\rho \in I} (d_{\rho} + 1)$  is proportional to  $n^2$ .

Thus, algorithm heightBad runs in  $O(n^2)$  worstcase time.

# **COMPUTING HEIGHT CONT**

- × Recursive definition to compute height.
- × Define the *height* of a position *p* in a tree *T* as follows:
  - + If p is a leaf, then the height of p is 0.
  - + Otherwise, the height of *p* is one more than the maximum of the heights of *p*'s children.
- The height of the root of a nonempty tree *T*, according to the recursive definition, equals the maximum depth among all leaves of tree *T*.

## COMPUTING HEIGHT CONT



- The overall height of a nonempty tree can be computed by sending the root of the tree as a parameter.
- \* Assuming that children(*p*) executes in  $O(c_p + 1)$  time, where  $c_p$  denotes the number of children of *p*. Algorithm height(*p*) spends  $O(c_p + 1)$  time at each position *p* to compute the maximum, and its overall running time is  $O(\sum_p (c_p + 1)) = O(n + \sum_p c_p).$

Let *T* be a tree with *n* positions, and let  $c_p$  denote the number of children of a position *p* of *T*. Then, summing over the positions of *T*,  $\sum_p c_p = n-1$ .

#### **BINARY TREES**

Trees

- × A *binary tree* is an ordered tree with the following properties:
  - + Every node has at most two children.
  - + Each child node is labeled as being either a *left child* or a *right child*.
  - + A left child precedes a right child in the order of children of a node.
- The subtree rooted at a left or right child of an internal node v is called a *left subtree* or *right subtree*, respectively, of v.
- \* A binary tree is *proper (full)* if each node has either zero or two children.
  - + Every internal node has exactly two children.
- × A binary tree that is not proper is *improper*
- × Alternative recursive definition: a binary tree is either
  - + a tree consisting of a single node, or
  - + a tree whose root has an ordered pair of children, each of which is a binary tree



- Internal nodes are associated with one of the operators +, -, \*, and /
- Each node in such a tree has a value associated with it.
  - + If a node is leaf, then its value is that of its variable or constant.

**BINARY TREES CONT. : ARITHMETIC EXPRESSION TREE** 

- If a node is internal, then its value is defined by applying its operation to the values of its children.
- \* A typical arithmetic expression tree is a proper binary tree,
- If allowed unary operators, like negation (-), then tree is improper binary

(-) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+)

© 2014 Goodrich, Tamassia,

tree represents the expression ((((3+1)\*3)/((9-5)+2))-((3\*(7-4))+6)))The value associated with the internal node labeled "/" is 2.

### **BINARY TREES CONT.** : DECISION TREE

- **\*** Binary tree associated with a decision process
  - + internal nodes: questions with yes/no answer
  - + external nodes: decisions
- × Example: dining decision



#### **BINARY TREE ABSTRACT DATA TYPE**

- \* Binary tree is a specialization of a tree that supports three additional accessor methods:
  - + left(*p*): Returns the position of the left child of *p* (or null if *p* has no left child).
  - + right(p): Returns the position of the right child of p (or null if p has no right child).
  - + sibling(p): Returns the position of the sibling of p (or null if p has no sibling).
- \* We again defer the definition and implementation of specialized update methods for binary trees.

### **BINARY TREE ADT: BINARYTREE INTERFACE**

- 1 /\*\* An interface for a binary tree, in which each node has at most two children. \*/
- 2 public interface BinaryTree<E> extends Tree<E> {
- 3 /\*\* Returns the Position of p's left child (or null if no child exists). \*/
- 4 Position<E> left(Position<E> p) throws IllegalArgumentException;
- 5 /\*\* Returns the Position of p's right child (or null if no child exists). \*/
- 6 Position<E> right(Position<E> p) throws IllegalArgumentException;
- 7 /\*\* Returns the Position of p's sibling (or null if no sibling exists). \*/
- 8 Position<E> sibling(Position<E> p) throws IllegalArgumentException;

9

### BINARY TREE ADT: ABSTRACTBINARYTREE BASE CLASS

```
/** An abstract base class providing some functionality of the BinaryTree interface.*/
    public abstract class AbstractBinaryTree<E> extends AbstractTree<E>
 3
                                                       implements BinaryTree<E> {
      /** Returns the Position of p's sibling (or null if no sibling exists). */
4
      public Position\langle E \rangle sibling(Position\langle E \rangle p) {
 5
        Position<E> parent = parent(p);
 6
        if (parent == null) return null;
 7
                                                          // p must be the root
8
        if (p == left(parent))
                                                          // p is a left child
                                                          // (right child might be null)
9
           return right(parent);
                                                          // p is a right child
10
        else
                                                          // (left child might be null)
           return left(parent);
11
12
```

### BINARY TREE ADT: ABSTRACTBINARYTREE BASE CLASS

- /\*\* Returns the number of children of Position p. \*/ 13 **public int** numChildren(Position $\langle E \rangle p$ ) { 14
- 15 int count=0;
- 16 if (left(p) != null) 17
  - count++:

18

19

20

21

22

24 25

26

27

28

29 30 31

- **if** (right(p) != null) count++:
  - return count;

```
/** Returns an iterable collection of the Positions representing p's children. */
```

```
23
      public lterable<Position<E>> children(Position<E> p) {
```

```
List<Position<E>> snapshot = new ArrayList<>(2); // \max \operatorname{capacity} of 2
```

```
if (left(p) != null)
```

```
snapshot.add(left(p));
```

- if (right(p) != null) snapshot.add(right(p));
  - return snapshot;

© 2014 Goodrich, Tamassia,

© 2014 Goodrich, Tamassia, Goldwasser

# PROPERTIES OF PROPER BINARY TREES

Proposition: Let *T* be a nonempty binary tree, and let n,  $n_E$ ,  $n_I$ , and h denote the number of nodes, number of external nodes, number of internal nodes, and height of *T*, respectively. Then *T* has the following properties:

1. 
$$h+1 \le n \le 2^{h+1}-1$$
  
2.  $1 \le n_E \le 2^h$   
3.  $h \le n_I \le 2^{h-1}$   
4.  $\log(n+1)-1 \le h \le n-1$ 

Also, if *T* is proper, then *T* has the following properties:

1.  $2h+1 \le n \le 2^{h+1}-1$ 2.  $h+1 \le n_E \le 2^h$ 3.  $h \le n_I \le 2^h-1$ 4.  $\log(n+1)-1 \le h \le (n-1)/2$ 



- Relating Internal Nodes to External Nodes in a Proper Binary Tree
- × Proposition: In a nonempty proper binary tree T, with  $n_E$  external nodes and  $n_I$  internal nodes, we have  $n_E = n_I + 1$ .

### LINKED STRUCTURE FOR BINARY TREES

*linked structure*, with a node that maintains references to the element stored at a position *p* and to the nodes associated with the children and parent of *p*.



### **OPERATIONS FOR UPDATING A LINKED BINARY TREE**

- \* Means for changing the structure of content of a tree.
- \* Suggested update methods for a linked binary tree:
  - + addRoot(*e*): Creates a root for an empty tree, storing *e* as the element, and returns the position of that root; an error occurs if the tree is not empty.
  - + addLeft(*p*, *e*): Creates a left child of position *p*, storing element *e*, and returns the position of the new node; an error occurs if *p* already has a left child.
  - + addRight(*p*, *e*): Creates a right child of position *p*, storing element *e*, and returns the position of the new node; an error occurs if *p* already has a right child.
  - + **set(***p*, *e***):** Replaces the element stored at position *p* with element *e*, and returns the previously stored element.
  - + attach(*p*, *T*1, *T*2): Attaches the internal structure of trees *T*1 and *T*2 as the respective left and right subtrees of leaf position *p* and resets *T*1 and *T*2 to empty trees; an error condition occurs if *p* is not a leaf.
  - + remove(p): Removes the node at position p,replacing it with its child (if any), and returns the element that had been stored at p; an error occurs if p has two children.

Each can be implemented in O(1) worst-case time with our linked representation

© 2014 Goodrich, Tamassia,

2 3

4

5

6

8

9

10

11

12

13

14

15 16

17

18

19

20

21 22

23

24

25

26

27

nested Node class, which implements the Position

interface.

```
© 2014 Goodrich, Tamassia,

/** Concrete implementation of a binary tree using a node-based, linked structure. */

public class LinkedBinaryTree<E> extends AbstractBinaryTree<E> {
```

```
//----- nested Node class ------
protected static class Node<E> implements Position<E> {
  private E element:
                                      // an element stored at this node
  private Node<E> parent;
                                      // a reference to the parent node (if any)
  private Node<E> left;
                                      // a reference to the left child (if any)
  private Node<E> right;
                                       // a reference to the right child (if any)
  /** Constructs a node with the given element and neighbors. */
  public Node(E e, Node<E> above, Node<E> leftChild, Node<E> rightChild) {
   element = e:
   parent = above;
   left = leftChild;
   right = rightChild;
  // accessor methods
  public E getElement() { return element; }
  public Node<E> getParent() { return parent; }
  public Node<E> getLeft() { return left; }
  public Node<E> getRight() { return right; }
  // update methods
  public void setElement(E e) { element = e; }
  public void setParent(Node<E> parentNode) { parent = parentNode; }
  public void setLeft(Node<E> leftChild) { left = leftChild; }
  public void setRight(Node\langle E \rangle rightChild) { right = rightChild; }
} //----- end of nested Node class ------
```

createNode: returns a new node instance. This *factory method pattern* allowing us to later subclass our tree in order to use a specialized node type. (Discussed latter)

```
28
      /** Factory function to create a new node storing element e. */
29
30
      protected Node<E> createNode(E e, Node<E> parent,
31
                                       Node<E> left, Node<E> right) {
        return new Node<E>(e, parent, left, right);
32
33
      }
34
35
      // LinkedBinaryTree instance variables
                                               // root of the tree
      protected Node<E> root = null;
36
37
      private int size = 0;
                                               // number of nodes in the tree
38
39
         constructor
40
      public LinkedBinaryTree() { }
                                                  constructs an empty binary tree
```

```
41
      // nonpublic utility
42
      /** Validates the position and returns it as a node. */
43
      protected Node<E> validate(Position<E> p) throws IllegalArgumentException {
44
       if (!(p instanceof Node))
45
          throw new IllegalArgumentException("Not valid position type");
        Node<E> node = (Node<E>) p; // safe cast
46
47
        if (node.getParent() == node) // our convention for defunct node
          throw new IllegalArgumentException("p is no longer in the tree");
48
49
        return node;
50
51
52
      // accessor methods (not already implemented in AbstractBinaryTree)
53
      /** Returns the number of nodes in the tree. */
54
      public int size() {
55
       return size;
56
57
58
      /** Returns the root Position of the tree (or null if tree is empty). */
59
      public Position <E> root() {
60
       return root;
61
62
```

```
/** Returns the Position of p's parent (or null if p is root). */
63
      public Position\langle E \rangle parent(Position\langle E \rangle p) throws IllegalArgumentException {
64
         Node<E> node = validate(p);
65
66
         return node.getParent();
67
       }
68
69
       /** Returns the Position of p's left child (or null if no child exists). */
      public Position\langle E \rangle left(Position\langle E \rangle p) throws IllegalArgumentException {
70
         Node<E> node = validate(p);
71
72
         return node.getLeft();
73
74
75
       /** Returns the Position of p's right child (or null if no child exists). */
      public Position<E> right(Position<E> p) throws IllegalArgumentException {
76
77
         Node<E> node = validate(p);
         return node.getRight();
78
79
```

```
80
      // update methods supported by this class
81
      /** Places element e at the root of an empty tree and returns its new Position. */
82
      public Position<E> addRoot(E e) throws IllegalStateException {
        if (!isEmpty()) throw new IllegalStateException("Tree is not empty");
83
        root = createNode(e, null, null, null);
84
85
        size = 1;
86
        return root:
87
88
89
      /** Creates a new left child of Position p storing element e; returns its Position. */
      public Position\langle E \rangle addLeft(Position\langle E \rangle p, E e)
90
91
                                throws IllegalArgumentException {
92
        Node<E> parent = validate(p);
93
        if (parent.getLeft() != null)
94
           throw new IllegalArgumentException("p already has a left child");
         Node<E> child = createNode(e, parent, null, null);
95
         parent.setLeft(child);
96
97
        size++:
        return child;
98
99
```

```
101
       /** Creates a new right child of Position p storing element e; returns its Position. */
       public Position<E> addRight(Position<E> p, E e)
102
                                throws IllegalArgumentException {
103
104
         Node<E> parent = validate(p);
         if (parent.getRight() != null)
105
           throw new IllegalArgumentException("p already has a right child");
106
         Node<E> child = createNode(e, parent, null, null);
107
         parent.setRight(child);
108
109
         size++:
110
         return child;
111
112
113
       /** Replaces the element at Position p with e and returns the replaced element. */
       public E set(Position<E> p, E e) throws IllegalArgumentException {
114
         Node<E> node = validate(p);
115
116
         E \text{ temp} = \text{node.getElement}();
         node.setElement(e);
117
118
         return temp;
119
```

```
120
        /** Attaches trees t1 and t2 as left and right subtrees of external p. */
       public void attach(Position<E> p, LinkedBinaryTree<E> t1,
121
122
                          LinkedBinaryTree<E> t2) throws IllegalArgumentException {
123
         Node<E> node = validate(p);
         if (isInternal(p)) throw new IllegalArgumentException("p must be a leaf");
124
         size += t1.size() + t2.size();
125
         if (!t1.isEmpty( )) {
126
                                                    attach t1 as left subtree of node
           t1.root.setParent(node);
127
           node.setLeft(t1.root);
128
           t1.root = null:
129
130
           t1.size = 0;
131
132
         if (!t2.isEmpty()) {
                                                    attach t2 as right subtree of node
133
           t2.root.setParent(node);
           node.setRight(t2.root);
134
           t2.root = null;
135
136
           t2.size = 0:
137
138
100
```

```
139
                                /** Removes the node at Position p and replaces it with its child, if any. */
                               public E remove(Position<E> p) throws IllegalArgumentException {
                         140
JAVA
                                 Node<E> node = validate(p);
                         141
                                 if (numChildren(p) == 2)
IMPLEMENT
                         142
                         143
                                   throw new IllegalArgumentException("p has two children");
ATION OF A
                                 Node<E> child = (node.getLeft() != null ? node.getLeft() : node.getRight() );
                         144
                         145
                                 if (child != null)
LINKED
                         146
                                   child.setParent(node.getParent()); // child's grandparent becomes its parent
                         147
                                 if (node == root)
BINARY
                         148
                                   root = child:
                                                                        child becomes root
                         149
TREE
                                 else {
                         150
                                   Node<E> parent = node.getParent();
STRUCTURE
                         151
                                   if (node == parent.getLeft())
                                                                      remove(p): intentionally sets the
                         152
                                     parent.setLeft(child);
8
                                                                  parent field of a deleted node to refer
                         153
                                   else
                                                                      to itself, in accordance with our
                         154
                                     parent.setRight(child);
                                                                     conventional representation of a
                         155
                                                                   defunct node (as detected within the
                         156
                                 size--;
                         157
                                 E \text{ temp} = \text{node.getElement}();
                                                                             validate method).
                                 node.setElement(null);
                         158
                                                                        help garbage collection
                                 node.setLeft(null);
                         159
                         160
                                 node.setRight(null);
                                 node.setParent(node);
                         161
                                                                      // our convention for defunct node
                         162
                                 return temp;
                         163
                         164
                                //----- end of LinkedBinaryTree class ------
```

#### © 2014 Goodrich, Tamassia, Goldwasser PERFORMANCE OF THE LINKED BINARY TREE IMPLEMENTATION

| Method                                                    | <b>Running Time</b> |
|-----------------------------------------------------------|---------------------|
| size, isEmpty                                             | <i>O</i> (1)        |
| root, parent, left, right, sibling, children, numChildren | <i>O</i> (1)        |
| isInternal, isExternal, isRoot                            | <i>O</i> (1)        |
| addRoot, addLeft, addRight, set, attach, remove           | <i>O</i> (1)        |
| depth(p)                                                  | $O(d_p + 1)$        |
| height                                                    | O(n)                |

Running times for the methods of an *n*-node binary tree implemented with a linked structure. The space usage is O(n).  $d_p$  is depth of node.

34

#### **ARRAY-BASED REPRESENTATION OF A BINARY TREE**

(a)

- Utilize the way of numbering the positions of T.
- For every position p of T, let f(p) be the of integer defined as follows.
  - + If *p* is the root of *T*, then *f*(*p*)=0.
  - + If *p* is the left child of position *q*, then *f*(*p*) = 2*f*(*q*)+1.
  - + If p is the right child of position q, then f(p) = 2f(q)+2.
- f is known as *level numbering* of the positions in a binary tree T, for it numbers the positions on each level of T in increasing order from left to right.





© 2014 Goodrich, Tamassia, Goldwasser

© 2014 Goodrich, Tamassia, Goldwasser

#### **ARRAY-BASED REPRESENTATION OF A BINARY TREE 2**

an array-based structure A, with the element at position p of T stored at index f(p) of the array.



### **ARRAY-BASED REPRESENTATION OF A BINARY TREE 3**

- × Advantage:
  - + position p can be represented by the single integer f(p),
  - + position-based methods such as root, parent, left, and right can be implemented using simple arithmetic operations on the number f(p).
    - × The left child of p has index 2f(p)+1,
    - × the right child of p has index 2f(p)+2,
    - × the parent of p has index [(f(p) 1)/2].
- × Disadvantage:
  - + space usage of an array-based representation depends greatly on the shape of the tree;
    - × worst case space usage:  $N = 2^n 1$ , where n is the number of nodes in T
  - + many update operations for trees cannot be efficiently supported.
    - × EX> removing a node and promoting its child takes *O*(*n*) time: the node and all it's descendants.

### LINKED STRUCTURE FOR GENERAL TREES



- General trees have no a priori limit on the number of children t hat a node may have
- × each node store a single *container* of references to its children

#### LINKED STRUCTURE FOR GENERAL TREES 2

- - -

Trees

| Method                                       | Running Time |
|----------------------------------------------|--------------|
| size, isEmpty                                | <i>O</i> (1) |
| root, parent, isRoot, isInternal, isExternal | <i>O</i> (1) |
| numChildren(p)                               | O(1)         |
| children(p)                                  | $O(c_p + 1)$ |
| depth(p)                                     | $O(d_p + 1)$ |
| height                                       | O(n)         |

Goldwasser

#### © 2014 Goodrich, Tamassia, Trees **DEPTH-FIRST TREE TRAVERSAL 1: PREORDER TRAVERSAL**

- A traversal visits the nodes of a tree in a systematic manner
- In a preorder traversal, a node is X visited before its descendants
- Application: print a structured X document





# DEPTH-FIRST TREE TRAVERSAL 2: POSTORDER TRAVERSAL

- In a postorder traversal, a node is visited after its descendants
- Application: compute space used by files in a directory and its subdirectories

Algorithm *postOrder(v)* for each child *w* of *v postOrder* (*w*) *visit(v)* 

© 2014 Goodrich, Tamassia,



## DEPTH-FIRST TREE TRAVERSAL 3: IN-ORDER (SYMMETRIC) SEARCH

6

3

- In an in-order traversal a node is visited after its left subtree and before its right subtree
- \* Application: draw a binary tree
  - + x(v) = in-order rank of v
  - + y(v) = depth of v

3

Algorithm *inOrder*(v)

if left (v) ≠ null
 inOrder (left (v))
visit(v)
if right(v) ≠ null
 inOrder (right (v))

© 2014 Goodrich, Tamassia,

Initialize queue Q to contain root()

while *Q* not empty do

### **BREADTH-FIRST TREE TRAVERSAL**

\* **Breadth-first traversal.** traverses a tree so that we visit all the positions at depth d before we visit the positions at depth d+1. Algorithm breadthfirst():



### BINARY SEARCH TREES

- Let S be a set whose unique elements have an <u>order relation</u>. A binary search tree for S is a proper binary tree T such that, for each internal position p of T:
  - + Position *p* stores an element of S, denoted as *e*(*p*).
  - + Elements stored in the left subtree of p (if any) are less than e(p).
  - + Elements stored in the right subtree of p (if any) are greater than e(p).



running time of searching in a binary search tree *T* is proportional to the height of *T*.

### **IMPLEMENTING TREE TRAVERSALS IN JAVA**

 We can implement the iterator() method by adapting an iteration produced by the positions() method.

```
1 //----- nested ElementIterator class ------
2 /* This class adapts the iteration produced by positions() to return elements. */
3 private class ElementIterator implements Iterator<E> {
4 Iterator<Position<E>> posIterator = positions().iterator();
5 public boolean hasNext() { return posIterator.hasNext(); }
6 public E next() { return posIterator.next().getElement(); } // return element!
7 public void remove() { posIterator.remove(); }
8
9
```

- 10 /\*\* Returns an iterator of the elements stored in the tree. \*/
- 11 public lterator<E> iterator() { return new ElementIterator(); }
- We first need to choose tree traversal algorithms to implement the positions() method.
- EX> public Iterable<Position<E>> positions() { return preorder(); }

### IMPLEMENTING PREORDER TRAVERSALS IN JAVA

- private preorderSubtree method allows us to parameterize the recursive process with a specific position of the tree that serves as the root of a subtree to traverse
  - /\*\* Adds positions of the subtree rooted at Position p to the given snapshot. \*/
  - 2 private void preorderSubtree(Position<E> p, List<Position<E>> snapshot) {
  - 3 snapshot.add(p); // for preorder, we add position p before exploring subtrees
  - 4 for (Position<E> c : children(p))
    - preorderSubtree(c, snapshot);
  - 5 6
- public preorder method: has the responsibility of creating an empty list for the snapshot buffer, and invoking the recursive method at the root of the
  - tree 1 /\*\* Returns an iterable collection of positions of the tree, reported in preorder. \*/
    - 2 public Iterable<Position<E>> preorder() {
    - 3 List<Position<E>> snapshot = new ArrayList<>();
    - 4 if (!isEmpty())
    - 5 preorderSubtree(root(), snapshot); // fill the snapshot recursively
    - 6 return snapshot;
    - 7

### IMPLEMENTING POSTORDER TRAVERSALS IN JAVA

/\*\* Adds positions of the subtree rooted at Position p to the given snapshot. \*/ 1 private void postorderSubtree(Position $\langle E \rangle$  p, List $\langle Position \langle E \rangle \rangle$  snapshot) { 2 3 for (Position  $\langle E \rangle$  c : children(p)) postorderSubtree(c, snapshot); 4 5 snapshot.add(p); // for postorder, we add position p after exploring subtrees 6 7 /\*\* Returns an iterable collection of positions of the tree, reported in postorder. \*/ 8 public lterable<Position<E>> postorder() { 9 List < Position < E >> snapshot = new ArrayList <>();10 if (lisEmpty()) 11 postorderSubtree(root(), snapshot); // fill the snapshot recursively 12 return snapshot; 13 l

## IMPLEMENTING IN-ORDER TRAVERSALS IN JAVA

 The inorder traversal algorithm, because it explicitly relies on the notion of a left and right child of a node, <u>only applies to binary trees</u>. ( define it in AbstractBinaryTree class.)

```
/** Adds positions of the subtree rooted at Position p to the given snapshot. */
      private void inorderSubtree(Position<E> p, List<Position<E>> snapshot) {
 2
        if (left(p) != null)
 3
          inorderSubtree(left(p), snapshot);
 4
 5
        snapshot.add(p);
        if (right(p) = null)
 6
          inorderSubtree(right(p), snapshot);
 7
 8
 9
      /** Returns an iterable collection of positions of the tree, reported in inorder. */
      public lterable<Position<E>> inorder() {
10
        List<Position<E>> snapshot = new ArrayList<>();
11
12
        if (!isEmpty())
13
          inorderSubtree(root(), snapshot); // fill the snapshot recursively
14
        return snapshot;
15
      /** Overrides positions to make inorder the default order for binary trees. */
16
      public Iterable<Position<E>> positions() {
17
        return inorder();
18
19
```

### IMPLEMENTING BREADTHFIRST TRAVERSALS IN JAVA

```
/** Returns an iterable collection of positions of the tree in breadth-first order. */
 1
      public lterable<Position<E>> breadthfirst() {
 2
        List < Position < E >> snapshot = new ArrayList <>();
 3
        if (lisEmpty()) {
 4
 5
           Queue<Position<E>> fringe = new LinkedQueue<>();
           fringe.enqueue(root());
                                                       // start with the root
 6
           while (!fringe.isEmpty()) {
 7
             Position \langle E \rangle p = fringe.dequeue();
 8
                                                       // remove from front of the queue
             snapshot.add(p);
                                                       // report this position
 9
             for (Position \langle E \rangle c : children(p))
10
               fringe.enqueue(c);
11
                                                        // add children to back of queue
12
13
14
        return snapshot;
15
```

### APPLICATIONS OF TREE TRAVERSALS: TABLE OF CONTENTS

 Preorder traversal of the tree can be used to produce a table of contents for the document

|                                                                                                                                                                                                                                             | Paper                                                                                      | Paper            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------|
|                                                                                                                                                                                                                                             | Title                                                                                      | Title            |
| unindented version                                                                                                                                                                                                                          | Abstract                                                                                   | Abstract         |
|                                                                                                                                                                                                                                             | §1                                                                                         | §1               |
| for (Position $\langle F \rangle$ p $\cdot$ T preorder())                                                                                                                                                                                   | §1.1                                                                                       | §1.1             |
| C = (1  oscion (2  p  is n predicter))                                                                                                                                                                                                      | §1.2                                                                                       | §1.2             |
| System.out.println(p.getElement( ));                                                                                                                                                                                                        | §2                                                                                         | §2               |
|                                                                                                                                                                                                                                             | §2.1                                                                                       | §2.1             |
|                                                                                                                                                                                                                                             |                                                                                            |                  |
| indented version                                                                                                                                                                                                                            | unindented version                                                                         | indented version |
| <pre>1 /** Prints preorder representation of subtree of T roo<br/>2 public static <e> void printPreorderIndent(Tree<e<br>3 System.out.println(spaces(2*d) + p.getElement());<br/>4 for (Position<e> c : T.children(p))</e></e<br></e></pre> | oted at p having depth d. */<br>> T, Position <e> p, int d) {<br/>// indent based on d</e> |                  |
| 5 printPreorderIndent(1, c, d+1);                                                                                                                                                                                                           | // child depth is $d+1$                                                                    |                  |
| 6                                                                                                                                                                                                                                           |                                                                                            | EO               |

### APPLICATIONS OF TREE TRAVERSALS: EVALUATE ARITHMETIC EXPRESSIONS

Х

- Specialization of a post-order traversal
  - recursive method returning the value of a subtree
  - when visiting an internal node, combine the values of the subtrees

Algorithm evalExpr(v)if isExternal(v)return v.element()else  $x \leftarrow evalExpr(left(v))$   $y \leftarrow evalExpr(right(v))$   $\diamond \leftarrow$  operator stored at vreturn  $x \diamond y$ 

### APPLICATIONS OF TREE TRAVERSALS: PRINT ARITHMETIC EXPRESSIONS

Х

 Specialization of an in-order traversal

X

- print operand or operator when visiting node
- print "(" before traversing left subtree
- + print ")" after traversing right subtree

Algorithm printExpression(v) if left (v)  $\neq$  null print("('') inOrder (left(v)) print(v.element ()) if right(v)  $\neq$  null inOrder (right(v)) print (")'')

 $((2 \times (a - 1)) + (3 \times b))$ 

"walk" around T,

### EULER TOUR TRAVERSAL

- \* *Euler tour traversal* are generic traversal of a tree
- Includes a special cases the preorder, postorder and inorder travers als
- \* Walk around the tree and visit each node three times:
  - + on the left (pre-visit)
  - + from below (in-visit)
  - + on the right (post-visit)
- Complexity of the walk is O(n),

### EULER TOUR TRAVERSAL CONT.

```
Algorithm eulerTour(T, p):
```

```
perform the "pre visit" action for position p
for each child c in T.children(p) do
eulerTour(T, c) { recursively tour the subtree rooted at c }
perform the "post visit" action for position p
```

#### Algorithm eulerTourBinary(T, p):

```
perform the "pre visit" action for position p

if p has a left child lc then

eulerTourBinary(T, lc) { recursively tour the left subtree of p }

perform the "in visit" action for position p

if p has a right child rc then

eulerTourBinary(T, rc) { recursively tour the right subtree of p }

perform the "post visit" action for position p
```