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WHAT IS A TREE 

 
 Trees consists of nodes with a 

parent-child relation 
 

 Trees also provide a natural or
ganization for data,  
 Organization charts 
 File systems 
 Programming environment

s 
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In computer science, a tree is an abstract 
model of hierarchical structure  (a type of 
nonlinear data structure) 



TREE TERMINOLOGY 

 Root: node without parent (A) 
 Internal node: node with at least 

one child (A, B, C, F) 
 External node (a.k.a. leaf ): node 

without children (E, I, J, K, G, H, D) 
 Ancestors of a node: parent, 

grandparent, grand-grandparent, 
etc. 

 Descendant of a node: child, 
grandchild, grand-grandchild, etc. 

 Subtree: tree consisting of a node 
and its descendants 
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 organization of a fictitious corporation. 



TREE TERMINOLOGY CONT 

 Siblings: two nodes that are children of the same 
parent  

 Depth of a node: number of ancestors 
 Height of a tree: maximum depth of any node (3) 
 Edge: a pair of nodes (u,v) such that u is the parent 

of v, or vice versa.  
 Path: a sequence of nodes such that any two 

consecutive nodes in the sequence form an edge  
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FORMAL TREE DEFINITION  

 Formally, we define a tree T as a set of nodes storing elements 
such that the nodes have a parent-child relationship that 
satisfies the following properties:  
 If T is nonempty, it has a special node, called the root of T , that has no 

parent.  
 Each node v of T different from the root has a unique parent node w; 

every node with parent w is a child of w. 
 

 Note: a tree can be empty (no nodes)  
=> Tree can be defined recursively such that a tree T is either empty or 
consists of a node r, called the root of T, and a (possibly empty) set of 
subtrees whose roots are the children of r.  
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ORDERED TREES 

 A tree is ordered if there is a meaningful linear order among 
the children of each node;  
 An order is usually visualized by arranging siblings left to right, according 

to their order.  
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TREE ADT 

 We use positions as an abstraction for a node of a tree 
 A position object for a tree supports the method:  

 getElement(): Returns the element stored at this position.  
 

 Accessor methods for navigating through positions of a tree T  
 root(): Returns the position of the root of the tree (or null if empty).  
 parent(p): Returns the position of the parent of position p (or null if p is 

the root).  
 children(p): Returns an iterable collection containing the children of 

position p (if any). 
 numChildren(p): Returns the number of children of position p.  
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TREE ADT CONT. 

 Query methods, which are often used with conditionals statements: 
 isInternal(p): Returns true if position p has at least one child.  
 isExternal(p): Returns true if position p does not have any children.  
 isRoot(p): Returns true if position p is the root of the tree.  

 General methods, unrelated to the specific structure of the tree:  
 size(): Returns the number of positions (and hence elements) that are 

contained in the tree.  
 isEmpty(): Returns true if the tree does not contain any positions (and 

thus no elements).  
 iterator(): Returns an iterator for all elements in the tree (so that the tree 

itself is Iterable).  
 positions(): Returns an iterable collection of all positions of the tree.  

 Additional update methods may be defined by data structures 
implementing the Tree ADT. (Discussed later) 
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A TREE INTERFACE IN JAVA  

Methods for a Tree interface: 
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Accessor 
methods  

Query 
methods 

General 
method

s 



AN ABSTRACTTREE BASE CLASS IN JAVA  

 If a concrete implementation provides three fundamental 
methods—root(), parent(p), and children(p)— all other behaviors 
of the Tree interface can be derived within the AbstractTree 
base class.  
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An initial implementation of the AbstractTree base class. (We add additional 

functionality to this class as the chapter continues.) 



COMPUTING DEPTH 

 Let p be a position within tree T. The depth of p is the 
number of ancestors of p, other than p itself.  

 The depth of p can also be recursively defined as follows:  
 If p is the root, then the depth of p is 0.  
 Otherwise, the depth of p is one plus the depth of the parent of p. 
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COMPUTING HEIGHT 

 We next define the height of a tree to be equal to the maximum 
of the depths of its positions (or zero, if the tree is empty).  
 

 If using the definition as is, the height computation become 
inefficient:  
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Analysis:  
Positions(p): can be implemented to run in O(n);  
Because heightBad calls algorithm depth(p) on 
each leaf of T , its running time is  

O(n + ∑p∈L(dp + 1)),  
where L is the set of leaf positions of T.  
In the worst case, the sum ∑p∈L(dp +1) is 
proportional to n2.  
Thus, algorithm heightBad runs in O(n2) worst-
case time.  
  



COMPUTING HEIGHT CONT 

 Recursive definition to compute height.  
 Define the height of a position p in a tree T as follows:  

 If p is a leaf, then the height of p is 0. 
 Otherwise, the height of p is one more than the maximum of the 

heights of p’s children.  
 

 The height of the root of a nonempty tree T, according to 
the recursive definition, equals the maximum depth 
among all leaves of tree T .  
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COMPUTING HEIGHT CONT 
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O(n) worst-case time 

 The overall height of a nonempty tree can be computed by sending the root of the 
tree as a parameter. 

 Assuming that children(p) executes in O(cp + 1) time, where cp denotes the 
number of children of p. Algorithm height(p) spends O(cp +1) time at each 
position p to compute the maximum, and its overall running time is  

O(∑p(cp +1)) = O(n+∑p cp).  
 
Let T be a tree with n positions, and let cp denote the number of children of a 
position p of T. Then, summing over the positions of T, ∑pcp =n−1.  



BINARY TREES  
 A binary tree is an ordered tree with the following properties:  

 Every node has at most two children. 
 Each child node is labeled as being either a left child or a right child.  
 A left child precedes a right child in the order of children of a node.  

 The subtree rooted at a left or right child of an internal node v is 
called a left subtree or right subtree, respectively, of v. 

 A binary tree is proper (full) if each node has either zero or two 
children.  
 Every internal node has exactly two children.  

 A binary tree that is not proper is improper 
 Alternative recursive definition: a binary tree is either 

 a tree consisting of a single node, or 
 a tree whose root has an ordered pair of children, each of which is a binary 

tree 
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BINARY TREES CONT. : ARITHMETIC EXPRESSION TREE 
 Leaves are associated with 

variables or constants  
 Internal nodes are associated with 

one of the operators +, −, ∗, and / 
 Each node in such a tree has a 

value associated with it.  
 If a node is leaf, then its value is that 

of its variable or constant.  
 If a node is internal, then its value is 

defined by applying its operation to 
the values of its children.  

 A typical arithmetic expression tree 
is a proper binary tree,  

 If allowed unary operators, like 
negation (−), then tree is improper 
binary  
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tree represents the expression  
((((3+1)∗3)/((9−5)+2))−((3∗(7−4))+6))  

The value associated with the internal node 
labeled “/” is 2. 



BINARY TREES CONT. : DECISION TREE 

 Binary tree associated with a decision process 
 internal nodes: questions with yes/no answer 
 external nodes: decisions 

 Example: dining decision 
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Want a fast meal? 

How about coffee? On expense account? 

Starbucks Chipotle Gracie’s Café Paragon 

Yes No 

Yes No Yes No 



BINARY TREE ABSTRACT DATA TYPE  

 Binary tree is a specialization of a tree that supports 
three additional accessor methods:  
 left(p): Returns the position of the left child of p (or null if p 

has no left child).  
 right(p): Returns the position of the right child of p (or null if 

p has no right child).  
 sibling(p): Returns the position of the sibling of p (or null if p 

has no sibling). 
 

 We again defer the definition and implementation of specialized update 
methods for binary trees.  
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BINARY TREE  ADT: BINARYTREE INTERFACE  
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BINARY TREE  ADT: ABSTRACTBINARYTREE BASE CLASS  
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BINARY TREE  ADT: ABSTRACTBINARYTREE BASE CLASS  
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PROPERTIES OF PROPER BINARY TREES 
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Proposition: Let T be a nonempty binary tree, and let n, nE , nI , and h 
denote the number of nodes, number of external nodes, number of 
internal nodes, and height of T , respectively. Then T has the following 
properties: 

1. h+1≤n≤2h+1−1 
2. 1≤nE ≤2h 

3. h≤nI ≤2h-1 
4. log(n+1)−1 ≤ h ≤ n−1 

Also, if T is proper, then T has the 
following properties: 

1. 2h+1≤n≤2h+1−1 
2. h+1≤nE ≤2h 

3. h≤nI ≤2h−1 
4. log(n+1)−1 ≤ h ≤ (n−1)/2 



 Relating Internal Nodes to External Nodes in a Proper 
Binary Tree  

 Proposition: In a nonempty proper binary tree T , with 
nE external nodes and nI internal nodes, we have nE = 
nI + 1.  
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LINKED STRUCTURE FOR BINARY TREES  
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l inked structure, with a node that maintains references to the element 
stored at a position p and to the nodes associated with the children and 
parent of p. 



OPERATIONS FOR UPDATING A LINKED BINARY TREE  
 Means for changing the structure of content of a tree.  
 Suggested update methods for a linked binary tree:  

 addRoot(e): Creates a root for an empty tree, storing e as the element, and 
returns the position of that root; an error occurs if the tree is not empty.  

 addLeft(p, e): Creates a left child of position p, storing element e, and returns 
the position of the new node; an error occurs if p already has a left child.  

 addRight(p, e): Creates a right child of position p, storing element e, and returns 
the position of the new node; an error occurs if p already has a right child.  

 set(p, e): Replaces the element stored at position p with element e, and returns 
the previously stored element.  

 attach(p, T1, T2): Attaches the internal structure of trees T1 and T2 as the 
respective left and right subtrees of leaf position p and resets T1 and T2 to 
empty trees; an error condition occurs if p is not a leaf.  

 remove(p): Removes the node at position p,replacing it with its child (if any), and 
returns the element that had been stored at p; an error occurs if p has two 
children.  
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Each can be implemented in O(1) worst-case time with our linked representation 



JAVA 
IMPLEMENTA
TION OF A 
LINKED 
BINARY TREE 
STRUCTURE 1 
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nested Node class, 
which implements 

the Position 

interface. 
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JAVA IMPLEMENTATION OF A LINKED BINARY TREE STRUCTURE 2 
createNode: returns a new node instance. 

This factory method pattern allowing us to 
later subclass our tree in order to use a 
specialized node type. (Discussed latter) 



JAVA IMPLEMENTATION OF A LINKED BINARY TREE STRUCTURE 3 
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JAVA IMPLEMENTATION OF A LINKED BINARY TREE STRUCTURE 4 
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JAVA IMPLEMENTATION OF A LINKED BINARY TREE STRUCTURE 5 
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JAVA IMPLEMENTATION OF A LINKED BINARY TREE STRUCTURE 6 

© 2014 Goodrich, Tamassia, 
Goldwasser 

Trees 

31 



JAVA IMPLEMENTATION OF A LINKED BINARY TREE STRUCTURE 7 
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JAVA 
IMPLEMENT
ATION OF A 
LINKED 
BINARY 
TREE 
STRUCTURE 
8 
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 remove(p): intentionally sets the 
parent field of a deleted node to refer 

to itself, in accordance with our 
conventional representation of a 

defunct node (as detected within the 
validate method). 



PERFORMANCE OF THE LINKED BINARY TREE IMPLEMENTATION  
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Running times for the methods of an n-node binary 
tree implemented with a linked structure. The space 

usage is O(n). dp is depth of node.  



ARRAY-BASED REPRESENTATION OF A BINARY TREE  

 Utilize the way of numbering the 
positions of T.  

 For every position p of T , let f(p) 
be the of integer defined as 
follows.  
 If p is the root of T, then f(p)=0. 
 If p is the left child of position q, 

then f(p) = 2f(q)+1.  
 If p is the right child of position q, 

then f(p) = 2f(q)+2.  
 f is known as level numbering of 

the positions in a binary tree T , 
for it numbers the positions on 
each level of T in increasing order 
from left to right.  
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ARRAY-BASED REPRESENTATION OF A BINARY TREE 2 
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an array-based structure A, with the 
element at position p of T stored at 

index f(p) of the array. 



ARRAY-BASED REPRESENTATION OF A BINARY TREE 3 

 Advantage:  
 position p can be represented by the single integer f(p),  
 position-based methods such as root, parent, left, and right can be 

implemented using simple arithmetic operations on the number f(p).  
 The left child of p has index 2f(p)+1,  
 the right child of p has index 2f(p)+2,  
 the parent of p has index ⌊( f ( p) − 1)/2⌋.  

 Disadvantage:  
 space usage of an array-based representation depends greatly on the 

shape of the tree;  
 worst case space usage: N = 2n − 1 , where n is the number of nodes in T 

 many update operations for trees cannot be efficiently supported.  
 EX> removing a node and promoting its child takes O(n) time: the node and all 

it’s descendants. 
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LINKED STRUCTURE FOR GENERAL TREES  

 General trees have no a priori limit on the number of children t
hat a node may have  

 each node store a single container of references to its children  
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container  



LINKED STRUCTURE FOR GENERAL TREES 2 
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DEPTH-FIRST TREE TRAVERSAL 1: PREORDER TRAVERSAL 

 A traversal visits the nodes of a 
tree in a systematic manner 

 In a preorder traversal, a node is 
visited before its descendants  

 Application: print a structured 
document 
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Algorithm preOrder(v) 
visit(v) 
for each child w of v 
 preorder (w) 



DEPTH-FIRST TREE TRAVERSAL 2: POSTORDER TRAVERSAL 

 In a postorder traversal, a node 
is visited after its descendants 

 Application: compute space used 
by files in a directory and its 
subdirectories 
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Algorithm postOrder(v) 
for each child w of v 
 postOrder (w) 
visit(v) 



DEPTH-FIRST TREE TRAVERSAL 3: IN-ORDER (SYMMETRIC) 
SEARCH  

 In an in-order traversal a node is 
visited after its left subtree and 
before its right subtree 

 Application: draw a binary tree 
 x(v) = in-order rank of v 
 y(v) = depth of v 
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Algorithm inOrder(v) 
if left (v) ≠ null 

inOrder (left (v)) 
visit(v) 
if right(v) ≠ null 

inOrder (right (v)) 



BREADTH-FIRST TREE TRAVERSAL 

 Breadth-first traversal: traverses a tree so that we visit all 
the positions at depth d before we visit the positions at 
depth d+1. 
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Algorithm breadthfirst( ): 
   Initialize queue Q to contain root( ) 
   while Q not empty do 
      p = Q.dequeue( )  
      perform the “visit” action for position p 
       for each child c in children(p) do 
           Q.enqueue(c) 



BINARY SEARCH TREES 

 Let S be a set whose unique elements have an order relation. A 
binary search tree for S is a proper binary tree T such that, for 
each internal position p of T: 
 Position p stores an element of S, denoted as e(p). 
 Elements stored in the left subtree of p (if any) are less than e(p). 
 Elements stored in the right subtree of p (if any) are greater than e(p). 
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running time of searching in a 
binary search tree T is 

proportional 
to the height of T. 



IMPLEMENTING TREE TRAVERSALS IN JAVA 
 We can implement the iterator( ) method by adapting an 

iteration produced by the positions( ) method. 
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 We first need to choose tree traversal algorithms to  implement 
the positions( ) method.  

 Ex>  



IMPLEMENTING PREORDER TRAVERSALS IN JAVA 
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 private preorderSubtree method allows us to parameterize the recursive 
process with a specific position of the tree that serves as the root of a 
subtree to traverse 
 

 
 

 
 public preorder method:  has the responsibility of creating an empty list for 

the snapshot buffer, and invoking the recursive method at the root of the 
tree 



IMPLEMENTING POSTORDER TRAVERSALS IN JAVA 
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IMPLEMENTING IN-ORDER TRAVERSALS IN JAVA 
 The inorder traversal algorithm, because it explicitly relies on the notion of a 

left and right child of a node, only applies to binary trees. ( define it in 
AbstractBinaryTree class.) 
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IMPLEMENTING BREADTHFIRST TRAVERSALS IN JAVA 
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APPLICATIONS OF TREE TRAVERSALS:  
TABLE OF CONTENTS 
 Preorder traversal of the tree can be used to produce a table of 

contents for the document 

© 2014 Goodrich, Tamassia, 
Goldwasser 

Trees 

50 

unindented version indented version 

unindented version 

indented version 



APPLICATIONS OF TREE TRAVERSALS:  
EVALUATE ARITHMETIC EXPRESSIONS 

 Specialization of a post-order 
traversal 
 recursive method returning 

the value of a subtree 
 when visiting an internal 

node, combine the values of 
the subtrees 
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Algorithm evalExpr(v) 
if isExternal (v) 

return v.element () 
else 
 x ← evalExpr(left(v)) 
 y ← evalExpr(right(v)) 
 ◊ ← operator stored at v 

return x ◊ y 
+ 

× × 

− 2 

5 1 

3 2 



APPLICATIONS OF TREE TRAVERSALS:  
PRINT ARITHMETIC EXPRESSIONS 

 Specialization of an in-order 
traversal 
 print operand or operator when 

visiting node 
 print “(“ before traversing left 

subtree 
 print “)“ after traversing right 

subtree 
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Algorithm printExpression(v) 
if left (v) ≠ null 
 print(“(’’) 

inOrder (left(v)) 
print(v.element ()) 
if right(v) ≠ null 

inOrder (right(v)) 
 print (“)’’) 

+ 

× × 

− 2 

a 1 

3 b 

((2 × (a − 1)) + (3 × b)) 



EULER TOUR TRAVERSAL 
 Euler tour traversal are generic traversal of a tree 
 Includes a special cases the preorder, postorder and inorder travers

als 
 Walk around the tree and visit each node three times: 

 on the left (pre-visit) 
 from below (in-visit) 
 on the right (post-visit) 

 Complexity of the walk is O(n), 
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+ 

× 

− 2 

5 1 

3 2 

L 
B 

R × 

“walk” around T, 



EULER TOUR TRAVERSAL CONT. 
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