
TREES

Presentation for use with the textbook Data Structures and Algorithms in Java, 6th
edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

1

Mammal

Dog Pig Cat

WHAT IS A TREE

 Trees consists of nodes with a

parent-child relation

 Trees also provide a natural or
ganization for data,
 Organization charts
 File systems
 Programming environment

s

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

2

In computer science, a tree is an abstract
model of hierarchical structure (a type of
nonlinear data structure)

TREE TERMINOLOGY

 Root: node without parent (A)
 Internal node: node with at least

one child (A, B, C, F)
 External node (a.k.a. leaf): node

without children (E, I, J, K, G, H, D)
 Ancestors of a node: parent,

grandparent, grand-grandparent,
etc.

 Descendant of a node: child,
grandchild, grand-grandchild, etc.

 Subtree: tree consisting of a node
and its descendants

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

3

 organization of a fictitious corporation.

TREE TERMINOLOGY CONT

 Siblings: two nodes that are children of the same
parent

 Depth of a node: number of ancestors
 Height of a tree: maximum depth of any node (3)
 Edge: a pair of nodes (u,v) such that u is the parent

of v, or vice versa.
 Path: a sequence of nodes such that any two

consecutive nodes in the sequence form an edge

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

4

FORMAL TREE DEFINITION

 Formally, we define a tree T as a set of nodes storing elements
such that the nodes have a parent-child relationship that
satisfies the following properties:
 If T is nonempty, it has a special node, called the root of T , that has no

parent.
 Each node v of T different from the root has a unique parent node w;

every node with parent w is a child of w.

 Note: a tree can be empty (no nodes)
=> Tree can be defined recursively such that a tree T is either empty or
consists of a node r, called the root of T, and a (possibly empty) set of
subtrees whose roots are the children of r.

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

5

ORDERED TREES

 A tree is ordered if there is a meaningful linear order among
the children of each node;
 An order is usually visualized by arranging siblings left to right, according

to their order.

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

6 An ordered tree associated with a book.

TREE ADT

 We use positions as an abstraction for a node of a tree
 A position object for a tree supports the method:

 getElement(): Returns the element stored at this position.

 Accessor methods for navigating through positions of a tree T
 root(): Returns the position of the root of the tree (or null if empty).
 parent(p): Returns the position of the parent of position p (or null if p is

the root).
 children(p): Returns an iterable collection containing the children of

position p (if any).
 numChildren(p): Returns the number of children of position p.

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

7

TREE ADT CONT.

 Query methods, which are often used with conditionals statements:
 isInternal(p): Returns true if position p has at least one child.
 isExternal(p): Returns true if position p does not have any children.
 isRoot(p): Returns true if position p is the root of the tree.

 General methods, unrelated to the specific structure of the tree:
 size(): Returns the number of positions (and hence elements) that are

contained in the tree.
 isEmpty(): Returns true if the tree does not contain any positions (and

thus no elements).
 iterator(): Returns an iterator for all elements in the tree (so that the tree

itself is Iterable).
 positions(): Returns an iterable collection of all positions of the tree.

 Additional update methods may be defined by data structures
implementing the Tree ADT. (Discussed later)

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

8

A TREE INTERFACE IN JAVA

Methods for a Tree interface:

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

9

Accessor
methods

Query
methods

General
method

s

AN ABSTRACTTREE BASE CLASS IN JAVA

 If a concrete implementation provides three fundamental
methods—root(), parent(p), and children(p)— all other behaviors
of the Tree interface can be derived within the AbstractTree
base class.

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

10

An initial implementation of the AbstractTree base class. (We add additional

functionality to this class as the chapter continues.)

COMPUTING DEPTH

 Let p be a position within tree T. The depth of p is the
number of ancestors of p, other than p itself.

 The depth of p can also be recursively defined as follows:
 If p is the root, then the depth of p is 0.
 Otherwise, the depth of p is one plus the depth of the parent of p.

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

11

COMPUTING HEIGHT

 We next define the height of a tree to be equal to the maximum
of the depths of its positions (or zero, if the tree is empty).

 If using the definition as is, the height computation become
inefficient:

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

12

Analysis:
Positions(p): can be implemented to run in O(n);
Because heightBad calls algorithm depth(p) on
each leaf of T , its running time is

O(n + ∑p∈L(dp + 1)),
where L is the set of leaf positions of T.
In the worst case, the sum ∑p∈L(dp +1) is
proportional to n2.
Thus, algorithm heightBad runs in O(n2) worst-
case time.

COMPUTING HEIGHT CONT

 Recursive definition to compute height.
 Define the height of a position p in a tree T as follows:

 If p is a leaf, then the height of p is 0.
 Otherwise, the height of p is one more than the maximum of the

heights of p’s children.

 The height of the root of a nonempty tree T, according to
the recursive definition, equals the maximum depth
among all leaves of tree T .

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

13

COMPUTING HEIGHT CONT
© 2014 Goodrich, Tamassia,

Goldwasser
Trees

14

O(n) worst-case time

 The overall height of a nonempty tree can be computed by sending the root of the
tree as a parameter.

 Assuming that children(p) executes in O(cp + 1) time, where cp denotes the
number of children of p. Algorithm height(p) spends O(cp +1) time at each
position p to compute the maximum, and its overall running time is

O(∑p(cp +1)) = O(n+∑p cp).

Let T be a tree with n positions, and let cp denote the number of children of a
position p of T. Then, summing over the positions of T, ∑pcp =n−1.

BINARY TREES
 A binary tree is an ordered tree with the following properties:

 Every node has at most two children.
 Each child node is labeled as being either a left child or a right child.
 A left child precedes a right child in the order of children of a node.

 The subtree rooted at a left or right child of an internal node v is
called a left subtree or right subtree, respectively, of v.

 A binary tree is proper (full) if each node has either zero or two
children.
 Every internal node has exactly two children.

 A binary tree that is not proper is improper
 Alternative recursive definition: a binary tree is either

 a tree consisting of a single node, or
 a tree whose root has an ordered pair of children, each of which is a binary

tree

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

15

BINARY TREES CONT. : ARITHMETIC EXPRESSION TREE
 Leaves are associated with

variables or constants
 Internal nodes are associated with

one of the operators +, −, ∗, and /
 Each node in such a tree has a

value associated with it.
 If a node is leaf, then its value is that

of its variable or constant.
 If a node is internal, then its value is

defined by applying its operation to
the values of its children.

 A typical arithmetic expression tree
is a proper binary tree,

 If allowed unary operators, like
negation (−), then tree is improper
binary

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

16

tree represents the expression
((((3+1)∗3)/((9−5)+2))−((3∗(7−4))+6))

The value associated with the internal node
labeled “/” is 2.

BINARY TREES CONT. : DECISION TREE

 Binary tree associated with a decision process
 internal nodes: questions with yes/no answer
 external nodes: decisions

 Example: dining decision

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

17

Want a fast meal?

How about coffee? On expense account?

Starbucks Chipotle Gracie’s Café Paragon

Yes No

Yes No Yes No

BINARY TREE ABSTRACT DATA TYPE

 Binary tree is a specialization of a tree that supports
three additional accessor methods:
 left(p): Returns the position of the left child of p (or null if p

has no left child).
 right(p): Returns the position of the right child of p (or null if

p has no right child).
 sibling(p): Returns the position of the sibling of p (or null if p

has no sibling).

 We again defer the definition and implementation of specialized update
methods for binary trees.

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

18

BINARY TREE ADT: BINARYTREE INTERFACE
© 2014 Goodrich, Tamassia,

Goldwasser
Trees

19

BINARY TREE ADT: ABSTRACTBINARYTREE BASE CLASS
© 2014 Goodrich, Tamassia,

Goldwasser
Trees

20

BINARY TREE ADT: ABSTRACTBINARYTREE BASE CLASS
© 2014 Goodrich, Tamassia,

Goldwasser
Trees

21

PROPERTIES OF PROPER BINARY TREES
© 2014 Goodrich, Tamassia,

Goldwasser
Trees

22

Proposition: Let T be a nonempty binary tree, and let n, nE , nI , and h
denote the number of nodes, number of external nodes, number of
internal nodes, and height of T , respectively. Then T has the following
properties:

1. h+1≤n≤2h+1−1
2. 1≤nE ≤2h

3. h≤nI ≤2h-1
4. log(n+1)−1 ≤ h ≤ n−1

Also, if T is proper, then T has the
following properties:

1. 2h+1≤n≤2h+1−1
2. h+1≤nE ≤2h

3. h≤nI ≤2h−1
4. log(n+1)−1 ≤ h ≤ (n−1)/2

 Relating Internal Nodes to External Nodes in a Proper
Binary Tree

 Proposition: In a nonempty proper binary tree T , with
nE external nodes and nI internal nodes, we have nE =
nI + 1.

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

23

LINKED STRUCTURE FOR BINARY TREES
© 2014 Goodrich, Tamassia,

Goldwasser
Trees

24

l inked structure, with a node that maintains references to the element
stored at a position p and to the nodes associated with the children and
parent of p.

OPERATIONS FOR UPDATING A LINKED BINARY TREE
 Means for changing the structure of content of a tree.
 Suggested update methods for a linked binary tree:

 addRoot(e): Creates a root for an empty tree, storing e as the element, and
returns the position of that root; an error occurs if the tree is not empty.

 addLeft(p, e): Creates a left child of position p, storing element e, and returns
the position of the new node; an error occurs if p already has a left child.

 addRight(p, e): Creates a right child of position p, storing element e, and returns
the position of the new node; an error occurs if p already has a right child.

 set(p, e): Replaces the element stored at position p with element e, and returns
the previously stored element.

 attach(p, T1, T2): Attaches the internal structure of trees T1 and T2 as the
respective left and right subtrees of leaf position p and resets T1 and T2 to
empty trees; an error condition occurs if p is not a leaf.

 remove(p): Removes the node at position p,replacing it with its child (if any), and
returns the element that had been stored at p; an error occurs if p has two
children.

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

25
Each can be implemented in O(1) worst-case time with our linked representation

JAVA
IMPLEMENTA
TION OF A
LINKED
BINARY TREE
STRUCTURE 1

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

26

nested Node class,
which implements

the Position

interface.

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

27

JAVA IMPLEMENTATION OF A LINKED BINARY TREE STRUCTURE 2
createNode: returns a new node instance.

This factory method pattern allowing us to
later subclass our tree in order to use a
specialized node type. (Discussed latter)

JAVA IMPLEMENTATION OF A LINKED BINARY TREE STRUCTURE 3
© 2014 Goodrich, Tamassia,

Goldwasser
Trees

28

JAVA IMPLEMENTATION OF A LINKED BINARY TREE STRUCTURE 4

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

29

JAVA IMPLEMENTATION OF A LINKED BINARY TREE STRUCTURE 5

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

30

JAVA IMPLEMENTATION OF A LINKED BINARY TREE STRUCTURE 6

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

31

JAVA IMPLEMENTATION OF A LINKED BINARY TREE STRUCTURE 7

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

32

JAVA
IMPLEMENT
ATION OF A
LINKED
BINARY
TREE
STRUCTURE
8

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

33

 remove(p): intentionally sets the
parent field of a deleted node to refer

to itself, in accordance with our
conventional representation of a

defunct node (as detected within the
validate method).

PERFORMANCE OF THE LINKED BINARY TREE IMPLEMENTATION

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

34

Running times for the methods of an n-node binary
tree implemented with a linked structure. The space

usage is O(n). dp is depth of node.

ARRAY-BASED REPRESENTATION OF A BINARY TREE

 Utilize the way of numbering the
positions of T.

 For every position p of T , let f(p)
be the of integer defined as
follows.
 If p is the root of T, then f(p)=0.
 If p is the left child of position q,

then f(p) = 2f(q)+1.
 If p is the right child of position q,

then f(p) = 2f(q)+2.
 f is known as level numbering of

the positions in a binary tree T ,
for it numbers the positions on
each level of T in increasing order
from left to right.

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

35

ARRAY-BASED REPRESENTATION OF A BINARY TREE 2
© 2014 Goodrich, Tamassia,

Goldwasser
Trees

36

an array-based structure A, with the
element at position p of T stored at

index f(p) of the array.

ARRAY-BASED REPRESENTATION OF A BINARY TREE 3

 Advantage:
 position p can be represented by the single integer f(p),
 position-based methods such as root, parent, left, and right can be

implemented using simple arithmetic operations on the number f(p).
 The left child of p has index 2f(p)+1,
 the right child of p has index 2f(p)+2,
 the parent of p has index ⌊(f (p) − 1)/2⌋.

 Disadvantage:
 space usage of an array-based representation depends greatly on the

shape of the tree;
 worst case space usage: N = 2n − 1 , where n is the number of nodes in T

 many update operations for trees cannot be efficiently supported.
 EX> removing a node and promoting its child takes O(n) time: the node and all

it’s descendants.

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

37

LINKED STRUCTURE FOR GENERAL TREES

 General trees have no a priori limit on the number of children t
hat a node may have

 each node store a single container of references to its children

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

38

container

LINKED STRUCTURE FOR GENERAL TREES 2
© 2014 Goodrich, Tamassia,

Goldwasser
Trees

39

DEPTH-FIRST TREE TRAVERSAL 1: PREORDER TRAVERSAL

 A traversal visits the nodes of a
tree in a systematic manner

 In a preorder traversal, a node is
visited before its descendants

 Application: print a structured
document

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

40

Algorithm preOrder(v)
visit(v)
for each child w of v
 preorder (w)

DEPTH-FIRST TREE TRAVERSAL 2: POSTORDER TRAVERSAL

 In a postorder traversal, a node
is visited after its descendants

 Application: compute space used
by files in a directory and its
subdirectories

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

41

Algorithm postOrder(v)
for each child w of v
 postOrder (w)
visit(v)

DEPTH-FIRST TREE TRAVERSAL 3: IN-ORDER (SYMMETRIC)
SEARCH

 In an in-order traversal a node is
visited after its left subtree and
before its right subtree

 Application: draw a binary tree
 x(v) = in-order rank of v
 y(v) = depth of v

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

42

Algorithm inOrder(v)
if left (v) ≠ null

inOrder (left (v))
visit(v)
if right(v) ≠ null

inOrder (right (v))

BREADTH-FIRST TREE TRAVERSAL

 Breadth-first traversal: traverses a tree so that we visit all
the positions at depth d before we visit the positions at
depth d+1.

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

43

Algorithm breadthfirst():
 Initialize queue Q to contain root()
 while Q not empty do
 p = Q.dequeue()
 perform the “visit” action for position p
 for each child c in children(p) do
 Q.enqueue(c)

BINARY SEARCH TREES

 Let S be a set whose unique elements have an order relation. A
binary search tree for S is a proper binary tree T such that, for
each internal position p of T:
 Position p stores an element of S, denoted as e(p).
 Elements stored in the left subtree of p (if any) are less than e(p).
 Elements stored in the right subtree of p (if any) are greater than e(p).

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

44

running time of searching in a
binary search tree T is

proportional
to the height of T.

IMPLEMENTING TREE TRAVERSALS IN JAVA
 We can implement the iterator() method by adapting an

iteration produced by the positions() method.

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

45

 We first need to choose tree traversal algorithms to implement
the positions() method.

 Ex>

IMPLEMENTING PREORDER TRAVERSALS IN JAVA
© 2014 Goodrich, Tamassia,

Goldwasser
Trees

46

 private preorderSubtree method allows us to parameterize the recursive
process with a specific position of the tree that serves as the root of a
subtree to traverse

 public preorder method: has the responsibility of creating an empty list for

the snapshot buffer, and invoking the recursive method at the root of the
tree

IMPLEMENTING POSTORDER TRAVERSALS IN JAVA

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

47

IMPLEMENTING IN-ORDER TRAVERSALS IN JAVA
 The inorder traversal algorithm, because it explicitly relies on the notion of a

left and right child of a node, only applies to binary trees. (define it in
AbstractBinaryTree class.)

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

48

IMPLEMENTING BREADTHFIRST TRAVERSALS IN JAVA
© 2014 Goodrich, Tamassia,

Goldwasser
Trees

49

APPLICATIONS OF TREE TRAVERSALS:
TABLE OF CONTENTS
 Preorder traversal of the tree can be used to produce a table of

contents for the document

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

50

unindented version indented version

unindented version

indented version

APPLICATIONS OF TREE TRAVERSALS:
EVALUATE ARITHMETIC EXPRESSIONS

 Specialization of a post-order
traversal
 recursive method returning

the value of a subtree
 when visiting an internal

node, combine the values of
the subtrees

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

51

Algorithm evalExpr(v)
if isExternal (v)

return v.element ()
else
 x ← evalExpr(left(v))
 y ← evalExpr(right(v))
 ◊ ← operator stored at v

return x ◊ y
+

× ×

− 2

5 1

3 2

APPLICATIONS OF TREE TRAVERSALS:
PRINT ARITHMETIC EXPRESSIONS

 Specialization of an in-order
traversal
 print operand or operator when

visiting node
 print “(“ before traversing left

subtree
 print “)“ after traversing right

subtree

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

52

Algorithm printExpression(v)
if left (v) ≠ null
 print(“(’’)

inOrder (left(v))
print(v.element ())
if right(v) ≠ null

inOrder (right(v))
 print (“)’’)

+

× ×

− 2

a 1

3 b

((2 × (a − 1)) + (3 × b))

EULER TOUR TRAVERSAL
 Euler tour traversal are generic traversal of a tree
 Includes a special cases the preorder, postorder and inorder travers

als
 Walk around the tree and visit each node three times:

 on the left (pre-visit)
 from below (in-visit)
 on the right (post-visit)

 Complexity of the walk is O(n),

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

53

+

×

− 2

5 1

3 2

L
B

R ×

“walk” around T,

EULER TOUR TRAVERSAL CONT.
© 2014 Goodrich, Tamassia,

Goldwasser
Trees

54

	Trees
	What is a Tree
	Tree Terminology
	Tree Terminology cont
	Formal Tree Definition
	Ordered Trees
	Tree ADT
	Tree ADT CONT.
	A Tree Interface in Java
	An AbstractTree Base Class in Java
	Computing Depth
	Computing Height
	Computing Height cont
	Computing Height cont
	Binary Trees
	Binary Trees cont. : arithmetic expression Tree
	Binary Trees cont. : Decision Tree
	Binary Tree Abstract Data Type
	Binary Tree ADT: BinaryTree Interface
	Binary Tree ADT: AbstractBinaryTree Base Class
	Binary Tree ADT: AbstractBinaryTree Base Class
	Properties of Proper Binary Trees
	Slide Number 23
	Linked Structure for Binary Trees
	Operations for Updating a Linked Binary Tree
	Java Implementation of a Linked Binary Tree Structure 1
	Java Implementation of a Linked Binary Tree Structure 2
	Java Implementation of a Linked Binary Tree Structure 3
	Java Implementation of a Linked Binary Tree Structure 4
	Java Implementation of a Linked Binary Tree Structure 5
	Java Implementation of a Linked Binary Tree Structure 6
	Java Implementation of a Linked Binary Tree Structure 7
	Java Implementation of a Linked Binary Tree Structure 8
	Performance of the Linked Binary Tree Implementation �
	Array-Based Representation of a Binary Tree
	Array-Based Representation of a Binary Tree 2
	Array-Based Representation of a Binary Tree 3
	Linked Structure for General Trees
	Linked Structure for General Trees 2
	Depth-first Tree Traversal 1: Preorder Traversal
	Depth-first Tree Traversal 2: Postorder Traversal
	Depth-first Tree Traversal 3: in-order (symmetric) search
	Breadth-First Tree Traversal
	Binary Search Trees
	Implementing Tree Traversals in Java
	Implementing Preorder Traversals in Java
	Implementing postorder Traversals in Java
	Implementing IN-order Traversals in Java
	Implementing Breadthfirst Traversals in Java
	Applications of Tree Traversals: �Table of Contents
	Applications of Tree Traversals: �Evaluate Arithmetic Expressions
	Applications of Tree Traversals: �Print Arithmetic Expressions
	Euler Tour Traversal
	Euler Tour Traversal cont.

