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WHAT IS A TREE
In computer science, a tree is an abstract
model of hierarchical structure (a type of
n0n|lneal’ data Structure) /user/rticourses/
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Figure 8.3: Tree representing a portion of a file system.
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TREE TERMINOLOGY )

Root: node without parent (A)
(Elm::tmmcsRUsj

Internal node: node with at least =
one child (A, B, C, F)

(R&D) s:ales) (Purchasmg)
External node (a.k.a. leaf ): node / ,l*: \
without children (E, I, J, K, G, H, D) (Dmm@ @mmmg
Ancestors of a node: parent,

grandparent, grand-grandparent,  (Guad) @ mﬂlc@ Overseas
etc. /
/

Descendant of a node: child, (Africa) (Burope) (Asia) (Australia)
grandchild, grand-grandchild, etc.

Subtree: tree consisting of a node
and its descendants

organization of a fictitious corporation.



TREE TERMINOLOGY CONT

Siblings: two nodes that are children of the same
parent

Depth of a node: number of ancestors
Height of a tree: maximum depth of any node (3)

Edge: a pair of nodes (u,v) such that u is the parent
of v, or vice versa.

Path: a sequence of nodes such that any two
consecutive nodes in the sequence form an edge



FORMAL TREE DEFINITION

Formally, we define a free T as a set of nodes storing elements
such that the nodes have a parent-childrelationship that
satisfies the following properties:

If Tis nonempty, it has a special node, called the rootof T, that has no

parent.
Each node v of T different from the root has a unique parentnode w;

every node with parent w is a child of w.

Note: a tree can be empty (no nodes)
=> Tree can be defined recursively such that a tree T is either empty or
consists of a node r, called the root of T, and a (possibly empty) set of

subtrees whose roots are the children of r.



ORDERED TREES

A tree is ordered if there is a meaningful linear order among
the children of each node;

An order is usually visualized by arranging siblings left to right, according
to their order.
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An ordered tree associated with a book.
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TREE ADT

We use positions as an abstraction for a node of a tree

A position object for a tree supports the method:
getElement(): Returns the element stored at this position.

Accessor methods for navigating through positions of a tree T
root(): Returns the position of the root of the tree (or null if empty).

parent(p): Returns the position of the parent of position p (or null if p is
the root).

children(p): Returns an iterable collection containing the children of
position p (if any).
numChildren(p): Returns the number of children of position p.



TREE ADT CONT.

Query methods, which are often used with conditionals statements:
isinternal(p): Returns true if position p has at least one child.
isExternal(p): Returns true if position p does not have any children.
iIsRoot(p): Returns true if position p is the root of the tree.

General methods, unrelated to the specific structure of the tree:

size(): Returns the number of positions (and hence elements) that are
contained in the tree.

ISEmpty(): Returns true if the tree does not contain any positions (and
thus no elements).

iterator(): Returns an iterator for all elements in the tree (so that the tree
itself is Iterable).

positions(): Returns an iterable collection of all positions of the tree.

Additional update methods may be defined by data structures
Implementing the Tree ADT. (Discussed later)




A TREE INTERFACE IN JAVA

Methods for a Tree interface:

]
2
3
4
5
6
7
8
9
10
11
12
13
14
15

/#% An interface for a tree where nodes can have an arbitrary number of children. %/

public interface Tree<E> extends lterable<E> {
Position<E> root();
Position<E> parent(Position<E> p) throws lllegalArgumentException;
Iterable<Position<E>> children(Position<E> p)

throws lllegalArgumentException;

int numChildren(Position<E> p) throws lllegalArgumentException;
boolean isInternal(Position<E> p) throws lllegal ArgumentException;
boolean isExternal(Position<E> p) throws lllegal ArgumentException;
boolean isRoot(Position<E> p) throws lllegalArgumentException;
int size();
boolean isEmpty( );

lterator<E> iterator();
[terable<Position<E>> positions( );

Accessor
methods

Query
methods

General
method
S



AN ABSTRACTTREE BASE CLASS IN JAVA

If @ concrete implementation provides three fundamental
methods—root(), parent(p), and children(p)— all other behaviors
of the Tree interface can be derived within the AbstractTree
base class.

1 /#% An abstract base class providing some functionality of the Tree interface. */
2 public abstract class AbstractTree<<E> implements Tree<E> {

3 public boolean isinternal(Position<E> p) { return numChildren(p) = 0; }

4 public boolean isExternal(Position<.E> p) { return numChildren(p) == 0; }

5  public boolean isRoot(Position<E> p) { return p == root(); }
6 public boolean isEmpty() { return size() == 0, }
T}

An initial implementation of the AbstractTree base class. (We add additional

functionality to this class as the chapter continues.)



COMPUTING DEPTH

Let p be a position within tree T. The depth of p is the
number of ancestors of p, other than p itself.

The depth of p can also be recursively defined as follows:

If p is the root, then the depth of p is O.
Otherwise, the depth of p is one plus the depth of the parent of p.

return 1 + depth(parent(p));

1 /#% Returns the number of levels separating Position p from the root. */
2 public int depth(Position<E> p) {

3 if (isRoot(p))

- return 0;

5 else

b

7

}



COMPUTING HEIGHT

0o =] On Lh o da Lad O e

We next define the hejght of a tree to be equal to the maximum
of the depths of its positions (or zero, if the tree is empty).

If using the definition as is, the height computation become

inefficient: .
Analysis:

Positions(p): can be implemented to run in O(n);
Because heightBad calls algorithm depth(p) on
each leaf of 7, its running time is
0N + 3 pe (0, + 1)),
where L is the set of leaf positions of 7.
h — Math.max(h, depth(p)): In the v_vorst case, the sum 2 ,(d,+1) is
proportional to 7.
return h; _ _ _
] Thus, algorithm heightBad runs in O(/7) worst-
case time.

/#% Returns the height of the tree. =/
private int heightBad() {
int h = 0
for (Position<E> p : positions( })
if (isExternal(p))



COMPUTING HEIGHT CONT

Recursive definition to compute height.

Define the hejght of a position p in a tree T as follows:

If p is a leaf, then the height of p is O.

Otherwise, the height of p is one more than the maximum of the
heights of p’s children.

The height of the root of a nonempty tree T, according to
the recursive definition, equals the maximum depth
among all leaves of tree T .



COMPUTING HEIGHT CONT

1 /+% Returns the height of the subtree rooted at Position p. */

2 public int height{Position<E> p) {

3 int h = 0; / base case if p is external
4 for (Position<E> c : children(p))

5 h = Math.max(h, 1 4+ height(c)); :

p, return h; O(n) worst-case time
7}

»  The overall height of a nonempty tree can be computed by sending the root of the
tree as a parameter.

Assuming that children(p) executes in O(c, + 1) time, where ¢, denotes the
number of children of p. Algorithm helghtﬁo ) spends O(c, +1) tlme at each
position p to compute the maximum, and its overall runnlng time is

O(2,(c, +1)) = O(n+2, ).

Let 7 be a tree with 17 positions, and let ¢, denote the number of children of a
position p of 7. Then, summing over the positions of 7, > ¢, =n—1.



BINARY TREES

A binary treeis an ordered tree with the following properties:
Every node has at most two children.
Each child node is labeled as being either a /left child or a right child.
A left child precedes a right child in the order of children of a node.

The subtree rooted at a left or right child of an internal node v is
called a /eft subtree or right subtree, respectively, of v.

A binary tree is proper (full) if each node has either zero or two
children.

Every internal node has exactly two children.
A binary tree that is not proper is improper

Alternative recursive definition: a binary tree is either
a tree consisting of a single node, or

a tree whose root has an ordered pair of children, each of which is a binary
tree



BINARY TREES CONT. : ARITHMETIC EXPRESSION TREE

Leaves are associated with
variables or constants

Internal nodes are associated with
one of the operators +, —, *, and / / u

Each node in such a tree has a . n . 6
value associated with it.

If a node is leaf, then its value is that u s — 2l B —

of its variable or constant. 31 11 31 I3 21 12

If a node is internal, then its value is

defined by applying its operation to

the values of its children. tree represents the expression
A typical arithmetic expression tree  ((((3+1)*3)/((9-5)+2))—-((3+(7-4))+6))
iS a proper binary tree, The value associated with the internal node

labeled “/” is 2.

If allowed unary operators, like
negation (—), then tree is improper
binary
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BINARY TREES CONT. : DECISION TREE olduasser

Binary tree associated with a decision process
Internal nodes: questions with yes/no answer
external nodes: decisions

Example: dining decision

[Want a fast meal?]

/Yes/\l\l\_o

How about coffee’7 On expense account’7

s i [sis] [cn




BINARY TREE ABSTRACT DATA TYPE

Binary tree is a specialization of a tree that supports
three additional accessor methods:
left(p): Returns the position of the left child of p (or null if p
has no left child).
right(p): Returns the position of the right child of p (or null if
p has no right child).
sibling(p): Returns the position of the sibling of p (or null if p
has no sibling).

We again defer the definition and implementation of specialized update
methods for binary trees.



BINARY TREE ADT: BINARYTREE INTERFACE

/#=x An interface for a binary tree, in which each node has at most two children. =/
public interface BinaryTree<E> extends Tree<E> {
/#%* Returns the Position of p's tert eniia {or null if no child exists). =/
Position<E> left(Position<E> p) throws lllegalArgumentException;
/#% Returns the Position of p's right child (or null if no child exists). =/
Position<E> right(Position<E:> p) throws lllegal ArgumentException;
/#* Returns the Paosition of p's sibling (or null if no sibling exists). */
Position<<E> sibling(Position<<E> p) throws lllegalArgumentException;

W00 =] On LA e L bd e

—_—



BINARY TREE ADT: ABSTRACTBINARYTREE BASE CLASS

1
2
3
4

/#* An abstract base class providing some functionality of the BinaryTree interface.*/
public abstract class AbstractBinaryTree<.E> extends AbstractTree<E>

implements BinaryTree<E> {
/++ Returns the Position of p's sibling (or null if no sibling exists). #/
public Position<E> sibling(Position<E> p) {
Position<E> parent = parent(p);

if (parent == null) return null; {// p must be the root
if (p == left(parent)) // pis a left child

return right(parent); // (right child might be null)
else // pis a right child

return left(parent); /[ (left child might be null)

}



BINARY TREE ADT: ABSTRACTBINARYTREE BASE CLASS

13 /+* Returns the number of children of Position p. */
14 public int numChildren(Position<E> p) {

15 int count=0;

16 if (left(p) '= null)
17 count-++-;

18 if (right(p) != null)
19 count---;

20 return count;

21 }

22 /++ Returns an iterable collection of the Positions representing p's children. =/
23 public Iterable<Position<E>> children(Position<E> p) {

24 List<Position<E>> snapshot = new ArraylList<>(2);, // max capacity of 2
25 if (left(p) !'= null)

26 snapshot.adcl(left(p));

27 if (right(p) != null)

28 snapshot.add(right(p));

29 return snapshot;

30}

31 )
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PROPERTIES OF PROPER BINARY TREES

Proposition: Let 7 be a nonempty binary tree, and let n, n-, n,, and h
denote the number of nodes, number of external nodes, number of
Internal nodes, and height of 7, respectively. Then 7 has the following
properties:

1. +1<n2mi—1

2. 1<n. <27 .
3. h<n, <2h-1

4. log(m+1)-1 < h< n-1

Also, if 7'is proper, then 7 has the
following properties:

1. 2m1<p<2/m1-1
2. h+1<n. <27

3. h<n, <21 : :
4, |0g(/7+1)—1 < h< (/7—1)/2 29




Relating Internal Nodes to External Nodes in a Proper
Binary Tree

Proposition: In a nonempty proper binary tree T, with
ng external nodes and n, internal nodes, we have ng =
n + 1.



LINKED STRUCTURE FOR BINARY TREES

linked structure, with a node that maintains references to the element
stored at a position p and to the nodes associated with the children and

parent of p. = ~ §
root T T
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parent wee / j'||' h\% \
I
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OPERATIONS FOR UPDATING A LINKED BINARY TREE

Means for changing the structure of content of a tree.

Suggested update methods for a linked binary tree:

addRoot(e): Creates a root for an empty tree, storing e as the element, and
returns the position of that root; an error occurs if the tree is not empty.

addLeft(p, e): Creates a left child of position p, storing element e, and returns
the position of the new node; an error occurs if p already has a left child.

addRight(p, e): Creates a right child of position p, storing element e, and returns
the position of the new node; an error occurs if p already has a right child.

set(p, e): Replaces the element stored at position p with element e, and returns
the previously stored element.

attach(p, 71, 72): Attaches the internal structure of trees T1 and T2 as the
respective left and right subtrees of leaf position p and resets T1 and T2 to
empty trees; an error condition occurs if p is not a leaf.

remove(p): Removes the node at position p,replacing it with its child (if any), and
returns the element that had been stored at p; an error occurs if p has two
children.

Each can be implemented in O(1) worst-case time with our linked representation



1 /#+=+ Concrete implementation of a binary tree using a node-based, linked structure. */
JAVA 2 public class LinkedBinaryTree<E>> extends AbstractBinaryTree<E> {
3
IM PLEM ENTA 4 - nested Node class -----—-----———-
5 protected static class Node<E> implements Position<E> {
TION OF A 6 private E element; [/ an element stored at this node
LIN KED 7 private Node<E> parent; // a reference to the parent.nod.e (if any)
8 private Node<E> left; [/ a reference to the left child (if any)
BINARY TR EE 9 private Node< E= right:_ _ [/ a referenc_e to the right child (if any)
10 /+* Constructs a node with the given element and neighbors. */
STRUCTURE 1 11 public Node(E e, Node<E> above, Node<E> leftChild, Node<E> rightChild) {
12 element = e;
13 parent = above;
14 left = leftChild:
15 right = rightChild;
nested Node class, }? b .
H H ) accessnr metnoos
T mpl_ernents 18 public E getElement() { return element; }
the Position 19 public Node<E> getParent() { return parent; }
: 20 public Node<E> getleft() { return left; }
interface. 21 public Node<E> getRight() { return right; }
22 // update methods
23 public void setElement(E e) { element = ¢; }
24 public void setParent(Node<E>> parentNode) { parent = parentNode; }

25 public void setLeft(Node<E> leftChild) { left = leftChild; }
26 public void setRight{Node<E> rightChild) { right = rightChild; }

27 } .I'III|'I|I """""" end of nested Node class ---———-——



JAVA IMPLEMENTATION OF A LINKED BINARY TREE STRUCTURE 2

LY
29
30
31
32
33
34
35
36
37
38
39
40)

createNode: returns a new node instance.
This factory method pattern allowing us to
later subclass our tree in order to use a
specialized node type. (Discussed latter)

/#% Factory function to create a new node storing element e. #/
protected Node<E> createNode(E e, Node<E> parent,
Node<E> left, Node<E:> right) {
return new Node<E:>(e, parent, left, right);

!

// LinkedBinaryTree instance variables
protected Node<E> root = null;
private int size = 0,

!/ root of the tree

i

!/ number of nodes in the tree

[

/| constructor
public LinkedBinaryTree() { } /[ constructs an empty binary tree
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41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

/[ nonpublic utility
/*+ Validates the position and returns it as a node. */
protected Node<E> validate(Position<E> p) throws lllegalArgumentException {
if (!(p instanceof Node))
throw new lllegalArgumentException("Not valid position type");
Node<E> node = (Node<E>) p; /| safe cast
if (node.getParent() == node) /[ our convention for defunct node
throw new lllegalArgumentException("p is ne lenger in the tree");
return node;

}

/[ accessor methods (not already implemented in AbstractBinaryTree)
/#x Returns the number of nodes in the tree. /
public int size() {

return size;

}

J/#* Returns the root Position of the tree (or null if tree is empty). */
public Position<E> root() {
return root;

}
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63
b
B35
b6
67
68
69
70
71
72
73
74
75
76
77
78
79

/#** Returns the Position of p's parent (or null if p is root). */
public Position<E:>> parent(Position<.E> p) throws lllegalArgumentException {
Node<E> node = validate(p);
return node.getParent( );
t
/#* Returns the Position of p's left child (or null if no child exists). */
public Position<E> left(Position<E> p) throws lllegalArgumentException {

Node<E> node = validate(p);
return node.getLeft();

}

/#* Returns the Position of p's right child (or null if no child exists). */
public Position<E:> right(Position<E> p) throws lllegal ArgumentException {
Node<E> node = validate(p):
return node.getRight( };

}
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80
&1
82
&3
84
85
86
87
HE
89
90
a1
92
93
94
95
96
97
98
99

1M

[/ update methods supported by this class
[#* Places element e at the root of an empty tree and returns its new Position. #/
public Position<E> addRoot(E e) throws lllegalStateException {

if (lisEmpty()) throw new lllegalStateException("Tree is not empty");

root = createNode(e, null, null, null);

size = 1;

return root;

}

[++ Creates a new left child of Position p storing element e; returns its Position. =/
public Position<E> addLeft(Position<Ex p, E e)
throws lllegalArgumentException {
Node<E> parent = validate(p);
if (parent.getlLeft() != null)
throw new lllegalArgumentException("p already has a left child"),

Node<E> child = createNode(e, parent, null, null);

parent.setLeft(child);

size;

return child;
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101 /#* Creates a new right child of Position p storing element e; returns its Position. #/
102 public Position<E> addRight(Position<E> p, E e)

103 throws |llegalArgumentException {

104 Node<E> parent = validate(p);

105 if (parent.getRight() != null)

106 throw new lllegalArgumentException("p already has a right child");
107 Node<E> child = createNode(e, parent, null, null);

108 parent.setRight(child);

109 sized;

110 return child:

111 }

112

113 /#+% Replaces the element at Position p with e and returns the replaced element. */
114 public E set{Position<E> p, E ) throws lllegalArgumentException {

115 Node<E> node = validate(p);

116 E temp = node.getElement( );

117 node.setElement(e);

118 return temp;

119}
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120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

[+ Attaches trees t1 and t2 as left and right subtrees of external p. */
public void attach(Position<E>> p, LinkedBinaryTree<E> t1,

)

LinkedBinaryTree<<E> t2) throws lllegal ArgumentException {

Node<E> node = validate(p);
if (isInternal(p)) throw new lllegalArgumentException("p must be a leaf"),
size += tl.size() + t2.size();
if ('tl.isEmpty()) { /[ attach tl as left subtree of node

t1.root.setParent(node);

node.setLeft(t1.root);

tl.root = null;

tl.size = 0;

if (1t2.isEmpty()) { /[ attach t2 as right subtree of node
t2.root.setParent(node);
node.setRight(t2.root);
t2.root = null;
tl.size = 0;

}
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139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

;.-"u Removes the node at Position p and replaces it with its child, if any. */
public E remove(Position<.E> p) throws lllegalArgumentException {

}

Node<E> node = validate(p);
if (numChildren(p) == 2)
throw new lllegalArgumentException("p has twe children"),
Node<E:> child = (node.getLeft() != null ? node.getLeft() : node.getRight() );
if (child != null)

child.setParent(node.getParent()); // child's grandparent becomes its parent
if (node == root)

root = child; // child becomes root
else {

Node<E> parent = node.getParent( );
if (node == parent.getLeft())
parent.setLeft(child);
else
parent.setRight(child);

remove(p): intentionally sets the
parent field of a deleted node to refer
to itself, in accordance with our

} conventional representation of a
size——: defunct node (as detected within the
E temp = node.getElement(); validate method).
node.setElement(null); // help garbage collection
node.setLeft(null);

node.setRight(null);

node.setParent(node); // our convention for defunct node

return temp;

164 } //---—----——end of LinkedBinaryTree class ----————



PERFORMANCE OF THE LINKED BINARY TREE IMPLEMENTATION

Method | Running Time

size, isEmpty | O(1)
root, parent, left, right, sibling, children, numChildren | O(1)
islnternal, isExternal, isRoot | O
addRoot, addLeft, addRight, set, attach, remove | O
0
(

depth(p)
height | O

Running times for the methods of an n7-node binary
tree implemented with a linked structure. The space
usage is O(n). d, is depth of node.



ARRAY-BASED REPRESENTATION OF A BINARY TREE

Utilize the way of numbering the
positions of T.

For every position p of T, let f(p)
be the of integer defined as
follows.
If p is the root of T, then A p)=0.
If p is the left child of position q,
then Ap) = 2Ag)+1.
If p is the right child of position q,
then Ap) = 2[g)+2.
fis known as /evel numbering of
the positions in a binary tree T, ®)
for it numbers the positions on
each level of T in increasing order
from left to right.

(a)




ARRAY-BASED REPRESENTATION OF A BINARY TREE 2

an array-based structure A, with the
element at position p of 7 stored at
index A p) of the array.

fl=l+|+]4]=]2[3]1 9|s

1 2 3 4 5 6 7 8 9 10 11 12 13 14



ARRAY-BASED REPRESENTATION OF A BINARY TREE 3

Advantage:
position p can be represented by the single integer f(p),
position-based methods such as root, parent, left, and right can be
implemented using simple arithmetic operations on the number f(p).
The left child of p has index 2f(p)+1,

the right child of p has index 2f(p)+2,
the parent of p has index |(f(p) — 1)/2].

Disadvantage:
space usage of an array-based representation depends greatly on the
shape of the tree;
worst case space usage: N = 2" - 1, where n is the number of nodes in T

many update operations for trees cannot be efficiently supported.

EX> removing a node and promoting its child takes O(n) time: the node and all
it’s descendants.



LINKED STRUCTURE FOR GENERAL TREES

1 E
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General trees have no a priori limit on the number of children t

hat a node may have

each node store a single container of references to its children



LINKED STRUCTURE FOR GENERAL TREES 2

Method

Running Time

size, isEmpty

o(1)

root, parent, isRoot, islnternal, isExternal

o(1)

numChildren(p)

O(1)

children(p)

O(c,+1)

depth(p)

O(d,+1)

height

O(n)
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DEPTH-FIRST TREE TRAVERSAL 1: PREORDER TRAVERSAL

A traversal visits the nodes of a
tree in a systematic manner

In a preorder traversal, a node is
visited before its descendants

Application: print a structured
document

| Paper

(i) (Asizact) (§ 1 2

(§ 1.1) G21)(22) (523

Algorithm preOrder(v)
ViSit(v)
for each child w of v
preorder (w)

@ References

40
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DEPTH-FIRST TREE TRAVERSAL 2: POSTORDER TRAVERSAL

Trees

In a postorder traversal, a node :
IS visited after its descendants Algonthm post_Order(v)
for each child w of v

Application: compute space used

by files in a directory and its postOrder (w)
subdirectories visit(v)
(Faper) =
Title ) (Abstract) (§ 1) § 2 (§3)

RVANRVAIN

§1.1) (8§12 §21)(8§2.2)(5§23) (§3.1) (832

(e A "
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DEPTH-FIRST TREE TRAVERSAL 3: IN-ORDER (SYMMETRFC) "'
SEARCH

In an in-order traversal a node is | Algorithm inOrder(v)
e afer et subee and | ittt (v %
Application: draw a binary tree INnOrder (left (v))

X(v) = in-order rank of v ViSit(V)

y(v) = depth of v if right(v) # null

® inOrder (right (v))
(1 (+)
(X) (+) (<) 6
olhERNSIAENEARS
3 1 9 3 7 4 42




BREADTH-FIRST TREE TRAVERSAL

Breadth-first traversal traverses a tree so that we visit all
the positions at depth d before we visit the positions at

depth d+1. Algorithm breadthfirst( ):
Initialize queue Q@ to contain root( )

while Q not empty do
p = Q.dequeue( )
perform the “visit” action for position p
1 for each child cin children(p) do

B : Q.enqueue(c)
2 e 3, ,/ T 4
X . .
Pl o K
0 0 X | X 0 X X X X X X X X
o] o] ¥ o]
o a i

8 : 11 12 13 14 15 16



BINARY SEARCH TREES

Let S be a set whose unique elements have an order relation. A
binary search tree for S is a proper binary tree T such that, for
each internal position p of T:

Position p stores an element of S, denoted as e(p).

Elements stored in the left subtree of p (if any) are less than e(p).

Elements stored in the right subtree of p (if any) are greater than e(p).

running time of searching in a
binary search tree T7is
proportional
to the height of 7.




IMPLEMENTING TREE TRAVERSALS IN JAVA
We can implement the iterator( ) method by adapting an
|terat|on produced by the positions( ) method.

[ [ - nested Elementlterator class ——-————-

—

2 /x ¢ This class adapts the iteration produced by positions() to return elements. %/
i private class Elementlterator implements lterator<E> {

4 Iterator< Position<E>> poslterator = positions( ).iterator( );

5 public boolean hasNext() { return poslterator.hasNext( ); }

6 public E next() { return poslterator.next().getElement(); } // return element!
7 public void remove() { poslterator.remove(); }

8}

9

10 /## Returns an iterator of the elements stored in the tree. #/

11 public lterator<E> iterator( ) { return new Elementlterator(); }

We first need to choose tree traversal algorithms to implement
the positions( ) method.

Ex> public Iterable<Position<Ez> positions( ) { return preorder( ); }



IMPLEMENTING PREORDER TRAVERSALS IN JAVA

private preorderSubtree method allows us to parameterize the recursive
process with a specific position of the tree that serves as the root of a

subtree to traverse

/#% Adds positions of the subtree rooted at Position p to the given snapshot. #/

1

2 private void preorderSubtree(Position< E= p, List<Position<E> > snapshot) {

3 snapshot.add(p); /[ for preorder, we add position p before exploring subtrees
4 for (Position<E= c : children(p))

5 preorderSubtree(c, snapshot);

6 }

public preorder method: has the responsibility of creating an empty list for
the snapshot buffer, and invoking the recursive method at the root of the

tree

/#% Returns an iterable collection of positions of the tree, reported in preorder. %/
public Iterable<Position<E= = preorder() {
List< Position<E= = snapshot = new ArrayList<=();
if (lisEmpty())
preorderSubtree(root( ), snapshot); [/ fill the snapshot recursively
return snapshot;

}

=] O LA s L 3 =



IMPLEMENTING POSTORDER TRAVERSALS IN JAVA

l /%% Adds positions of the subtree rooted at Position p to the given snapshot. #/

2 private void postorderSubtree(Position<E= p, List<Position<E== snapshot) {

3 for (Position<E= c : children(p))

4 postorderSubtree(c, snapshot);

5 snapshot.add(p); /[ for postorder, we add position p after exploring subtrees
6 }

7 /## Returns an iterable collection of positions of the tree, reported in postorder. #/
8  public lterable=Position<E=> postorder() {

9 List< Position<E== snapshot = new ArrayList<=();

10 if (lisEmpty())

11 postorderSubtree(root( ), snapshot); /[ fill the snapshot recursively

12 return snapshot;

1

P



IMPLEMENTING IN-ORDER TRAVERSALS IN JAVA

The inorder traversal algorithm, because it explicitly relies on the notion of a
left and right child of a node, only applies to binary trees. ( define it in
AbstractBinaryTree class.)

i /#% Adds positions of the subtree rooted at Position p to the given snapshot. %/

2 private void inorderSubtree(Position<E> p, List<Position<E=> snapshot) |

3 if (left(p) = null)

4 inorderSubtree(left(p), snapshot);

5 snapshot.add(p);

6 if (right(p) '= null)

7 inorderSubtree(right(p), snapshot);

8 |

9 /## Returns an iterable collection of positions of the tree, reported in inorder. #/

10 public lterable<Position<E>= inorder( ) {

11 List< Position< E= > snapshot = new Arraylist<=();

12 if (lisEmpty())

13 inorderSubtree(root( ), snapshot); /[ fill the snapshot recursively

14 return snapshot;

15 }

16 /#% Overrides positions to make inorder the default order for binary trees. %/
17 public lterable<Position<E=> positions( ) {

18 return inorder( );

19



IMPLEMENTING BREADTHFIRST TRAVERSALS IN JAVA

2 W0 0 =] O LA R L b =

11

/#% Returns an iterable collection of positions of the tree in breadth-first order. #/
public lterable<Position<E= = breadthfirst() {
List< Position< E>= snapshot = new ArrayList<=();

if (lisEmpty()) {
Queue<Position<E== fringe = new LinkedQueue==();

fringe. enqueue(root( )); /[ start with the root
while (fringe.isEmpty()) {
Position<E= p = fringe.dequeue( ); /[ remove from front of the queue
snapshot.add(p); /[ report this position
for (Position<E= c : children{p)})
fringe.enqueue(c); /[ add children to back of queue
}

}

return snapshot;

}



APPLICATIONS OF TREE TRAVERSALS:
TABLE OF CONTENTS

Preorder traversal of the tree can be used to produce a table of

contents for the document

Faper
Title
unindented version Abstract
§1
for (Position<E= p : T.preorder( )) 3t.1

| 1.2
System.out.printIn( p.getElement( )); gg

§2.1

indented version unindented version

/## Prints preorder representation of subtree of T rooted at p having depth d. %/
public static <E> void printPreorderlndent( Tree<<E>= T, Position<E= p, int d) {

=i

el

3 System.out.println(spaces(2#d) + p.getElement()); // indent based on d
4 for (Position<E= c : T.children{p))

5 printPreorderlndent(T, ¢, d+1); // child depth is d+1
6 }

Paper
Title
Abstract
g1

1.1
§1.2

§2
§2.1

indented version
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APPLICATIONS OF TREE TRAVERSALS: Goldwasser
EVALUATE ARITHMETIC EXPRESSIONS

Specialization of a post-order Algorithm evalExpr(v)
traversal If isExternal (v)
recursive method returning return v.element ()
the value of a subtree else
when visiting an internal X « evalExpr(left(v))

node, combine the values of

the subtrees y < evalExpr(right(v))

Q «— operator stored at v
return x ¢y

51
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APPLICATIONS OF TREE TRAVERSALS: Goldwasser
PRINT ARITHMETIC EXPRESSIONS

Specialization of an in-order

traversal Algorithm printExpression(v)
print operand or operator when if left (v) # null
visiting node print(“C ")
print “(" before traversing left INOrder (left(v))
subtree o print(v.element ())
Elzltr)]:rec)e after traversing right if right(v) # null

INOrder (right(v))
print ("))

(2 x(@a-1))+ (3 xDb))

52
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oldwasser
EULER TOUR TRAVERSAL °

Euler tour traversal are generic traversal of a tree

Includes a special cases the preorder, postorder and inorder travers
als

Walk around the tree and visit each node three times:
on the left (pre-visit)
from below (in-visit)
on the right (post-visit) . 4
Complexity of the walk is O(n),  __————-——~

e e —— — —
—_—— ~
—_——
—_—
—_—

- —
_——
-~

- 53



EULER TOUR TRAVERSAL CONT,

Algorithm eulerTour(T, p):

perform the “pre visit” action for position p
for each child ¢ in T .children(p) do

eulerTour(T, c) { recursively tour the subtree rooted at ¢ }
perform the “post visit™ action for position p

Algorithm eulerTourBinary(T, p):

perform the “pre visit” action for position p
if p has a left child /¢ then

eulerTourBinary(T, Ic) | recursively tour the left subtree of p }
perform the “in visit” action for position p
if p has a right child rc then

eulerTourBinary(T, rc) { recursively tour the right subtree of p }
perform the “post visit™ action for position p
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