
TREES

Presentation for use with the textbook Data Structures and Algorithms in Java, 6th
edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

1

Mammal

Dog Pig Cat

WHAT IS A TREE

 Trees consists of nodes with a

parent-child relation

 Trees also provide a natural or
ganization for data,
 Organization charts
 File systems
 Programming environment

s

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

2

In computer science, a tree is an abstract
model of hierarchical structure (a type of
nonlinear data structure)

TREE TERMINOLOGY

 Root: node without parent (A)
 Internal node: node with at least

one child (A, B, C, F)
 External node (a.k.a. leaf): node

without children (E, I, J, K, G, H, D)
 Ancestors of a node: parent,

grandparent, grand-grandparent,
etc.

 Descendant of a node: child,
grandchild, grand-grandchild, etc.

 Subtree: tree consisting of a node
and its descendants

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

3

 organization of a fictitious corporation.

TREE TERMINOLOGY CONT

 Siblings: two nodes that are children of the same
parent

 Depth of a node: number of ancestors
 Height of a tree: maximum depth of any node (3)
 Edge: a pair of nodes (u,v) such that u is the parent

of v, or vice versa.
 Path: a sequence of nodes such that any two

consecutive nodes in the sequence form an edge

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

4

FORMAL TREE DEFINITION

 Formally, we define a tree T as a set of nodes storing elements
such that the nodes have a parent-child relationship that
satisfies the following properties:
 If T is nonempty, it has a special node, called the root of T , that has no

parent.
 Each node v of T different from the root has a unique parent node w;

every node with parent w is a child of w.

 Note: a tree can be empty (no nodes)
=> Tree can be defined recursively such that a tree T is either empty or
consists of a node r, called the root of T, and a (possibly empty) set of
subtrees whose roots are the children of r.

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

5

ORDERED TREES

 A tree is ordered if there is a meaningful linear order among
the children of each node;
 An order is usually visualized by arranging siblings left to right, according

to their order.

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

6 An ordered tree associated with a book.

TREE ADT

 We use positions as an abstraction for a node of a tree
 A position object for a tree supports the method:

 getElement(): Returns the element stored at this position.

 Accessor methods for navigating through positions of a tree T
 root(): Returns the position of the root of the tree (or null if empty).
 parent(p): Returns the position of the parent of position p (or null if p is

the root).
 children(p): Returns an iterable collection containing the children of

position p (if any).
 numChildren(p): Returns the number of children of position p.

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

7

TREE ADT CONT.

 Query methods, which are often used with conditionals statements:
 isInternal(p): Returns true if position p has at least one child.
 isExternal(p): Returns true if position p does not have any children.
 isRoot(p): Returns true if position p is the root of the tree.

 General methods, unrelated to the specific structure of the tree:
 size(): Returns the number of positions (and hence elements) that are

contained in the tree.
 isEmpty(): Returns true if the tree does not contain any positions (and

thus no elements).
 iterator(): Returns an iterator for all elements in the tree (so that the tree

itself is Iterable).
 positions(): Returns an iterable collection of all positions of the tree.

 Additional update methods may be defined by data structures
implementing the Tree ADT. (Discussed later)

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

8

A TREE INTERFACE IN JAVA

Methods for a Tree interface:

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

9

Accessor
methods

Query
methods

General
method

s

AN ABSTRACTTREE BASE CLASS IN JAVA

 If a concrete implementation provides three fundamental
methods—root(), parent(p), and children(p)— all other behaviors
of the Tree interface can be derived within the AbstractTree
base class.

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

10

An initial implementation of the AbstractTree base class. (We add additional

functionality to this class as the chapter continues.)

COMPUTING DEPTH

 Let p be a position within tree T. The depth of p is the
number of ancestors of p, other than p itself.

 The depth of p can also be recursively defined as follows:
 If p is the root, then the depth of p is 0.
 Otherwise, the depth of p is one plus the depth of the parent of p.

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

11

COMPUTING HEIGHT

 We next define the height of a tree to be equal to the maximum
of the depths of its positions (or zero, if the tree is empty).

 If using the definition as is, the height computation become
inefficient:

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

12

Analysis:
Positions(p): can be implemented to run in O(n);
Because heightBad calls algorithm depth(p) on
each leaf of T , its running time is

O(n + ∑p∈L(dp + 1)),
where L is the set of leaf positions of T.
In the worst case, the sum ∑p∈L(dp +1) is
proportional to n2.
Thus, algorithm heightBad runs in O(n2) worst-
case time.

COMPUTING HEIGHT CONT

 Recursive definition to compute height.
 Define the height of a position p in a tree T as follows:

 If p is a leaf, then the height of p is 0.
 Otherwise, the height of p is one more than the maximum of the

heights of p’s children.

 The height of the root of a nonempty tree T, according to
the recursive definition, equals the maximum depth
among all leaves of tree T .

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

13

COMPUTING HEIGHT CONT
© 2014 Goodrich, Tamassia,

Goldwasser
Trees

14

O(n) worst-case time

 The overall height of a nonempty tree can be computed by sending the root of the
tree as a parameter.

 Assuming that children(p) executes in O(cp + 1) time, where cp denotes the
number of children of p. Algorithm height(p) spends O(cp +1) time at each
position p to compute the maximum, and its overall running time is

O(∑p(cp +1)) = O(n+∑p cp).

Let T be a tree with n positions, and let cp denote the number of children of a
position p of T. Then, summing over the positions of T, ∑pcp =n−1.

BINARY TREES
 A binary tree is an ordered tree with the following properties:

 Every node has at most two children.
 Each child node is labeled as being either a left child or a right child.
 A left child precedes a right child in the order of children of a node.

 The subtree rooted at a left or right child of an internal node v is
called a left subtree or right subtree, respectively, of v.

 A binary tree is proper (full) if each node has either zero or two
children.
 Every internal node has exactly two children.

 A binary tree that is not proper is improper
 Alternative recursive definition: a binary tree is either

 a tree consisting of a single node, or
 a tree whose root has an ordered pair of children, each of which is a binary

tree

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

15

BINARY TREES CONT. : ARITHMETIC EXPRESSION TREE
 Leaves are associated with

variables or constants
 Internal nodes are associated with

one of the operators +, −, ∗, and /
 Each node in such a tree has a

value associated with it.
 If a node is leaf, then its value is that

of its variable or constant.
 If a node is internal, then its value is

defined by applying its operation to
the values of its children.

 A typical arithmetic expression tree
is a proper binary tree,

 If allowed unary operators, like
negation (−), then tree is improper
binary

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

16

tree represents the expression
((((3+1)∗3)/((9−5)+2))−((3∗(7−4))+6))

The value associated with the internal node
labeled “/” is 2.

BINARY TREES CONT. : DECISION TREE

 Binary tree associated with a decision process
 internal nodes: questions with yes/no answer
 external nodes: decisions

 Example: dining decision

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

17

Want a fast meal?

How about coffee? On expense account?

Starbucks Chipotle Gracie’s Café Paragon

Yes No

Yes No Yes No

BINARY TREE ABSTRACT DATA TYPE

 Binary tree is a specialization of a tree that supports
three additional accessor methods:
 left(p): Returns the position of the left child of p (or null if p

has no left child).
 right(p): Returns the position of the right child of p (or null if

p has no right child).
 sibling(p): Returns the position of the sibling of p (or null if p

has no sibling).

 We again defer the definition and implementation of specialized update
methods for binary trees.

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

18

BINARY TREE ADT: BINARYTREE INTERFACE
© 2014 Goodrich, Tamassia,

Goldwasser
Trees

19

BINARY TREE ADT: ABSTRACTBINARYTREE BASE CLASS
© 2014 Goodrich, Tamassia,

Goldwasser
Trees

20

BINARY TREE ADT: ABSTRACTBINARYTREE BASE CLASS
© 2014 Goodrich, Tamassia,

Goldwasser
Trees

21

PROPERTIES OF PROPER BINARY TREES
© 2014 Goodrich, Tamassia,

Goldwasser
Trees

22

Proposition: Let T be a nonempty binary tree, and let n, nE , nI , and h
denote the number of nodes, number of external nodes, number of
internal nodes, and height of T , respectively. Then T has the following
properties:

1. h+1≤n≤2h+1−1
2. 1≤nE ≤2h

3. h≤nI ≤2h-1
4. log(n+1)−1 ≤ h ≤ n−1

Also, if T is proper, then T has the
following properties:

1. 2h+1≤n≤2h+1−1
2. h+1≤nE ≤2h

3. h≤nI ≤2h−1
4. log(n+1)−1 ≤ h ≤ (n−1)/2

 Relating Internal Nodes to External Nodes in a Proper
Binary Tree

 Proposition: In a nonempty proper binary tree T , with
nE external nodes and nI internal nodes, we have nE =
nI + 1.

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

23

LINKED STRUCTURE FOR BINARY TREES
© 2014 Goodrich, Tamassia,

Goldwasser
Trees

24

l inked structure, with a node that maintains references to the element
stored at a position p and to the nodes associated with the children and
parent of p.

OPERATIONS FOR UPDATING A LINKED BINARY TREE
 Means for changing the structure of content of a tree.
 Suggested update methods for a linked binary tree:

 addRoot(e): Creates a root for an empty tree, storing e as the element, and
returns the position of that root; an error occurs if the tree is not empty.

 addLeft(p, e): Creates a left child of position p, storing element e, and returns
the position of the new node; an error occurs if p already has a left child.

 addRight(p, e): Creates a right child of position p, storing element e, and returns
the position of the new node; an error occurs if p already has a right child.

 set(p, e): Replaces the element stored at position p with element e, and returns
the previously stored element.

 attach(p, T1, T2): Attaches the internal structure of trees T1 and T2 as the
respective left and right subtrees of leaf position p and resets T1 and T2 to
empty trees; an error condition occurs if p is not a leaf.

 remove(p): Removes the node at position p,replacing it with its child (if any), and
returns the element that had been stored at p; an error occurs if p has two
children.

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

25
Each can be implemented in O(1) worst-case time with our linked representation

JAVA
IMPLEMENTA
TION OF A
LINKED
BINARY TREE
STRUCTURE 1

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

26

nested Node class,
which implements

the Position

interface.

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

27

JAVA IMPLEMENTATION OF A LINKED BINARY TREE STRUCTURE 2
createNode: returns a new node instance.

This factory method pattern allowing us to
later subclass our tree in order to use a
specialized node type. (Discussed latter)

JAVA IMPLEMENTATION OF A LINKED BINARY TREE STRUCTURE 3
© 2014 Goodrich, Tamassia,

Goldwasser
Trees

28

JAVA IMPLEMENTATION OF A LINKED BINARY TREE STRUCTURE 4

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

29

JAVA IMPLEMENTATION OF A LINKED BINARY TREE STRUCTURE 5

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

30

JAVA IMPLEMENTATION OF A LINKED BINARY TREE STRUCTURE 6

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

31

JAVA IMPLEMENTATION OF A LINKED BINARY TREE STRUCTURE 7

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

32

JAVA
IMPLEMENT
ATION OF A
LINKED
BINARY
TREE
STRUCTURE
8

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

33

 remove(p): intentionally sets the
parent field of a deleted node to refer

to itself, in accordance with our
conventional representation of a

defunct node (as detected within the
validate method).

PERFORMANCE OF THE LINKED BINARY TREE IMPLEMENTATION

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

34

Running times for the methods of an n-node binary
tree implemented with a linked structure. The space

usage is O(n). dp is depth of node.

ARRAY-BASED REPRESENTATION OF A BINARY TREE

 Utilize the way of numbering the
positions of T.

 For every position p of T , let f(p)
be the of integer defined as
follows.
 If p is the root of T, then f(p)=0.
 If p is the left child of position q,

then f(p) = 2f(q)+1.
 If p is the right child of position q,

then f(p) = 2f(q)+2.
 f is known as level numbering of

the positions in a binary tree T ,
for it numbers the positions on
each level of T in increasing order
from left to right.

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

35

ARRAY-BASED REPRESENTATION OF A BINARY TREE 2
© 2014 Goodrich, Tamassia,

Goldwasser
Trees

36

an array-based structure A, with the
element at position p of T stored at

index f(p) of the array.

ARRAY-BASED REPRESENTATION OF A BINARY TREE 3

 Advantage:
 position p can be represented by the single integer f(p),
 position-based methods such as root, parent, left, and right can be

implemented using simple arithmetic operations on the number f(p).
 The left child of p has index 2f(p)+1,
 the right child of p has index 2f(p)+2,
 the parent of p has index ⌊(f (p) − 1)/2⌋.

 Disadvantage:
 space usage of an array-based representation depends greatly on the

shape of the tree;
 worst case space usage: N = 2n − 1 , where n is the number of nodes in T

 many update operations for trees cannot be efficiently supported.
 EX> removing a node and promoting its child takes O(n) time: the node and all

it’s descendants.

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

37

LINKED STRUCTURE FOR GENERAL TREES

 General trees have no a priori limit on the number of children t
hat a node may have

 each node store a single container of references to its children

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

38

container

LINKED STRUCTURE FOR GENERAL TREES 2
© 2014 Goodrich, Tamassia,

Goldwasser
Trees

39

DEPTH-FIRST TREE TRAVERSAL 1: PREORDER TRAVERSAL

 A traversal visits the nodes of a
tree in a systematic manner

 In a preorder traversal, a node is
visited before its descendants

 Application: print a structured
document

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

40

Algorithm preOrder(v)
visit(v)
for each child w of v
 preorder (w)

DEPTH-FIRST TREE TRAVERSAL 2: POSTORDER TRAVERSAL

 In a postorder traversal, a node
is visited after its descendants

 Application: compute space used
by files in a directory and its
subdirectories

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

41

Algorithm postOrder(v)
for each child w of v
 postOrder (w)
visit(v)

DEPTH-FIRST TREE TRAVERSAL 3: IN-ORDER (SYMMETRIC)
SEARCH

 In an in-order traversal a node is
visited after its left subtree and
before its right subtree

 Application: draw a binary tree
 x(v) = in-order rank of v
 y(v) = depth of v

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

42

Algorithm inOrder(v)
if left (v) ≠ null

inOrder (left (v))
visit(v)
if right(v) ≠ null

inOrder (right (v))

BREADTH-FIRST TREE TRAVERSAL

 Breadth-first traversal: traverses a tree so that we visit all
the positions at depth d before we visit the positions at
depth d+1.

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

43

Algorithm breadthfirst():
 Initialize queue Q to contain root()
 while Q not empty do
 p = Q.dequeue()
 perform the “visit” action for position p
 for each child c in children(p) do
 Q.enqueue(c)

BINARY SEARCH TREES

 Let S be a set whose unique elements have an order relation. A
binary search tree for S is a proper binary tree T such that, for
each internal position p of T:
 Position p stores an element of S, denoted as e(p).
 Elements stored in the left subtree of p (if any) are less than e(p).
 Elements stored in the right subtree of p (if any) are greater than e(p).

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

44

running time of searching in a
binary search tree T is

proportional
to the height of T.

IMPLEMENTING TREE TRAVERSALS IN JAVA
 We can implement the iterator() method by adapting an

iteration produced by the positions() method.

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

45

 We first need to choose tree traversal algorithms to implement
the positions() method.

 Ex>

IMPLEMENTING PREORDER TRAVERSALS IN JAVA
© 2014 Goodrich, Tamassia,

Goldwasser
Trees

46

 private preorderSubtree method allows us to parameterize the recursive
process with a specific position of the tree that serves as the root of a
subtree to traverse

 public preorder method: has the responsibility of creating an empty list for

the snapshot buffer, and invoking the recursive method at the root of the
tree

IMPLEMENTING POSTORDER TRAVERSALS IN JAVA

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

47

IMPLEMENTING IN-ORDER TRAVERSALS IN JAVA
 The inorder traversal algorithm, because it explicitly relies on the notion of a

left and right child of a node, only applies to binary trees. (define it in
AbstractBinaryTree class.)

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

48

IMPLEMENTING BREADTHFIRST TRAVERSALS IN JAVA
© 2014 Goodrich, Tamassia,

Goldwasser
Trees

49

APPLICATIONS OF TREE TRAVERSALS:
TABLE OF CONTENTS
 Preorder traversal of the tree can be used to produce a table of

contents for the document

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

50

unindented version indented version

unindented version

indented version

APPLICATIONS OF TREE TRAVERSALS:
EVALUATE ARITHMETIC EXPRESSIONS

 Specialization of a post-order
traversal
 recursive method returning

the value of a subtree
 when visiting an internal

node, combine the values of
the subtrees

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

51

Algorithm evalExpr(v)
if isExternal (v)

return v.element ()
else
 x ← evalExpr(left(v))
 y ← evalExpr(right(v))
 ◊ ← operator stored at v

return x ◊ y
+

× ×

− 2

5 1

3 2

APPLICATIONS OF TREE TRAVERSALS:
PRINT ARITHMETIC EXPRESSIONS

 Specialization of an in-order
traversal
 print operand or operator when

visiting node
 print “(“ before traversing left

subtree
 print “)“ after traversing right

subtree

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

52

Algorithm printExpression(v)
if left (v) ≠ null
 print(“(’’)

inOrder (left(v))
print(v.element ())
if right(v) ≠ null

inOrder (right(v))
 print (“)’’)

+

× ×

− 2

a 1

3 b

((2 × (a − 1)) + (3 × b))

EULER TOUR TRAVERSAL
 Euler tour traversal are generic traversal of a tree
 Includes a special cases the preorder, postorder and inorder travers

als
 Walk around the tree and visit each node three times:

 on the left (pre-visit)
 from below (in-visit)
 on the right (post-visit)

 Complexity of the walk is O(n),

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

53

+

×

− 2

5 1

3 2

L
B

R ×

“walk” around T,

EULER TOUR TRAVERSAL CONT.
© 2014 Goodrich, Tamassia,

Goldwasser
Trees

54

	Trees
	What is a Tree
	Tree Terminology
	Tree Terminology cont
	Formal Tree Definition
	Ordered Trees
	Tree ADT
	Tree ADT CONT.
	A Tree Interface in Java
	An AbstractTree Base Class in Java
	Computing Depth
	Computing Height
	Computing Height cont
	Computing Height cont
	Binary Trees
	Binary Trees cont. : arithmetic expression Tree
	Binary Trees cont. : Decision Tree
	Binary Tree Abstract Data Type
	Binary Tree ADT: BinaryTree Interface
	Binary Tree ADT: AbstractBinaryTree Base Class
	Binary Tree ADT: AbstractBinaryTree Base Class
	Properties of Proper Binary Trees
	Slide Number 23
	Linked Structure for Binary Trees
	Operations for Updating a Linked Binary Tree
	Java Implementation of a Linked Binary Tree Structure 1
	Java Implementation of a Linked Binary Tree Structure 2
	Java Implementation of a Linked Binary Tree Structure 3
	Java Implementation of a Linked Binary Tree Structure 4
	Java Implementation of a Linked Binary Tree Structure 5
	Java Implementation of a Linked Binary Tree Structure 6
	Java Implementation of a Linked Binary Tree Structure 7
	Java Implementation of a Linked Binary Tree Structure 8
	Performance of the Linked Binary Tree Implementation �
	Array-Based Representation of a Binary Tree
	Array-Based Representation of a Binary Tree 2
	Array-Based Representation of a Binary Tree 3
	Linked Structure for General Trees
	Linked Structure for General Trees 2
	Depth-first Tree Traversal 1: Preorder Traversal
	Depth-first Tree Traversal 2: Postorder Traversal
	Depth-first Tree Traversal 3: in-order (symmetric) search
	Breadth-First Tree Traversal
	Binary Search Trees
	Implementing Tree Traversals in Java
	Implementing Preorder Traversals in Java
	Implementing postorder Traversals in Java
	Implementing IN-order Traversals in Java
	Implementing Breadthfirst Traversals in Java
	Applications of Tree Traversals: �Table of Contents
	Applications of Tree Traversals: �Evaluate Arithmetic Expressions
	Applications of Tree Traversals: �Print Arithmetic Expressions
	Euler Tour Traversal
	Euler Tour Traversal cont.

