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HASH TABLES 

 The goal of hash table is to be able to access an 
entry based on its key value, not its location 

 We want to be able to access an entry directly 
through its key value, rather than by having to 
determine its location first by searching for the key 
value in an array 

 Using a hash table enables us to retrieve an entry 
in constant time (on average, O(1)) 



HASH CODES AND INDEX CALCULATION 

 The basis of hashing is to transform the item’s key 
value into an integer value (its hash code) which is 
then transformed into a table index 



HASH CODES AND INDEX CALCULATION (CONT.) 

 However, what if all 65,536 
Unicode characters were 
allowed?   

 If you assume that on average 
100 characters were used,  
you could use a table of 200 
characters and compute the 
index by: 

 int index = unicode % 200 

 . . .  . . . 

65 A, 8 

66 B, 2 

67 C, 3 

68 D, 4 

69 E, 12 

70 F, 2 

71 G, 2 

72 H, 6 

73 I, 7 

74 J, 1 

75 K, 2 

 . . . . . . 



HASH FUNCTIONS AND HASH TABLES 

• Hash tables (implemented by a Map or Set) store objects at arbitrary locations and 
offer an average constant time for insertion, removal, and searching 

• It is one of the most efficient data structures for implementing a map, and the one 
that is used most in practice. 

 A hash function h maps keys of a given type to integers in a fixed interval [0, N – 1] 

 A hash table for a given key type consists of 
 Hash function h 
 Array (called table) of size N 

 When implementing a map with a hash table, the goal is to store item 
(k, o) at index i = h(k) 
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BASE DATA STRUCTURE OF HASH TABLE 

 bucket array: 
 each bucket may manage a collection of entries that are 

sent to a specific index by the hash function. (To save space, 
an empty bucket may be replaced by a null reference.)  
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EXAMPLE 

 design a hash table for a 
map storing entries as 
(SSN, Name), where SSN 
(social security number) is a 
nine-digit positive integer 

 Our hash table uses an 
array of size N = 10,000 and 
the hash function 
h(x) = last four digits of x 
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HASH FUNCTIONS 

 The goal of a hash function, h, is to map each key k to an 
integer in the range [0, N − 1], where N is the capacity of the 
bucket array for a hash table.  

 A hash function is usually specified as the composition of two 
functions: 
 Hash code (independent of hash table size – allow generic 

implementation): 
  h1: keys → integers 

 Compression function (dependent of hash table size): 
  h2: integers → [0, N - 1] 
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HASH CODES 

 H1: Take an arbitrary key k in our map and compute an integer 
that is called the hash code for k  

 The hash code need not be in the range [0, N − 1], and may even 
be negative.  

 We desire that the set of hash codes assigned to our keys should 
avoid collisions as much as possible.  
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 The hash code is applied 
first, and the compression 
function is applied next on 
the result, i.e.,  
 h(x) = h2(h1(x)) 



HASH CODES: BIT REPRESENTATION AS AN INTEGER  
 Integer cast: 

 Java relies on 32-bit hash 
codes 

 We reinterpret the bits of 
the key as an integer 

 Suitable for keys of length 
less than or equal to the 
number of bits of the 
integer type (e.g., byte, 
short, int and float in Java) 

 Component sum: 
 Partition the bits of the key 

into components of fixed 
length (e.g., 16 or 32 bits) and 
we sum (or exclusive-or) the 
components (ignoring 
overflows) 

 Suitable for numeric keys of 
fixed length greater than or 
equal to the number of bits of 
the integer type (e.g., long and 
& double in Java) 
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Both not good for character strings or other variable-length objects that can 
be viewed as tuples of the form (x0,x1,...,xn−1), where the order of the xi’s is 
significant. Ex> "stop", "tops", "pots", and "spot".  
 



POLYNOMIAL HASH CODES  

 Polynomial accumulation: 
 Partition the bits of the key into a 

sequence of components of fixed 
length (e.g., 8, 16 or 32 bits) 

 Evaluate the polynomial 
  
 
 where a!=1 is a nonzero 

constant, ignoring overflows 
 Especially suitable for strings  

 (33, 37, 39, and 41 are 
particularly good choices for a 
when working with character 
strings that are English words. ) 

 Polynomial p(a) can be 
evaluated in O(n) time using 
Horner’s rule: 
 The following polynomials are 

successively computed, each 
from the previous one in O(1) 
time 

  p0(a) = xn-1 
  pi (a) = xn-i-1 + axi-1(a) 

  (i = 1, 2, …, n -1) 
 We have p(a) = pn-1(a)  
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A polynomial hash code takes into consideration the positions of the xi’s 
by using multiplication by different powers as a way to spread out the 
influence of each component across the resulting hash code.  



CYCLIC-SHIFT HASH CODES  
 A variant of the polynomial hash code replaces 

multiplication by a with a cyclic shift of a partial 
sum by a certain number of bits.  
 Ex.> 5-bit cyclic shift of the 32-bit  
00111101100101101010100010101000 is achieved by 
taking the leftmost five bits and placing those on the rightmost 
side of the representation, resulting in  
10110010110101010001010100000111.  
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COMPRESSION FUNCTIONS 
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• Compression function maps integer hash code i into an 
integer in the range of [0, N-1]   
 

• A good compression function: probability any two different keys 
collide is 1/N.  
• If a hash function is chosen well, it should ensure that the 

probability of two different keys getting hashed to the same 
bucket is 1/N.  

 
• Methods: 

• Multiplication method 
• MAD method  

 



COMPRESSION FUNCTION: DIVISION METHOD  

 Function:  
h2 (i) = i mod N  (i: the hash code ) 

 The size N of the hash table is usually chosen to be a prime 
 Prime numbers are shown to helps “spread out” the distribution of hashed 

values.  
 Example:  if we insert keys with hash codes {200,205,210,215,220,...,600} 

into a bucket array of size 100, then each hash code will collide with three 
others. But if we use a bucket array of size 101, then there will be no collisions.  

 The reason has to do with number theory and is beyond the scope of this 
course 

 Choosing N to be a prime number is not always enough 
 If there is a repeated pattern of hash codes of the form pN + q for seve

ral different prime numbers, p, then there will still be collisions.  
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COMPRESSION FUNCTION: MAD METHOD  

 Multiply-Add-and-Divide (MAD) Method: 
     h2 (i) = [(ai + b) mod p] mod N 
 where N is the size of the hash table, p is a prime number larger than N, 

and a and b are integers chosen at random from the interval [0, p − 1], 
with a > 0.  

 MAD is chosen in order to eliminate repeated patterns in the 
set of hash codes and get us closer to having a “good” hash 
function  
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COLLISION-HANDLING SCHEMES  
 The main idea of a hash table is to take a bucket array, A, and 

a hash function, h, and use them to implement a map by 
storing each entry (k,v) in the “bucket” A[h(k)].  

 Even with a good hash function, collisions happen, i.e., two 
distinct keys, k1 and k2, such that h(k1) = h(k2).  

 Collisions  
 Prevents us from simply inserting a new entry (k,v) directly into the 

bucket A[h(k)]  
 Complicates our procedure for insertion, search, and deletion operations.  

 Collision handling schemes: 
 Separate Chaining 
 Open Addressing 

 Linear Probing and Variants of Linear Probing  
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CHAINING 

 Each table element references a linked list that contain
s all of the items that hash to the same table index 
 The linked list often is called a bucket 
 The approach sometimes is called bucket hashing 



COLLISION-HANDLING SCHEMES: SEPARATE CHAINING  

 Separate Chaining Scheme: have each bucket A[ j] store its own 
secondary container, holding all entries (k,v) such that h(k) = j.  
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A hash table of size 13, storing 10 
entries with integer keys, with 
collisions resolved by separate 

chaining. The compression function is 
h(k) = k mod 13. Values omitted.  

• Advantage: simple implementations 
of map operations 
 

• Disadvantage: requires the use of 
an auxiliary data structure to hold 
entries with colliding keys 



COLLISION-HANDLING SCHEMES: OPEN ADDRESSING  

 Open Addressing: store each entry directly in a table slot.  
 This approach saves space because no auxiliary structures are 

employed 
 Requires a bit more complexity to properly handle collisions.  

 Open addressing requires  
 Load factor is always at most 1  
 Entries are stored directly in the cells of the bucket array itself.  

 
 EX> Linear Probing and Its Variants  
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LOAD FACTOR 

 Assuming we use a good hash function to index the n 
entries of our map in a bucket array of capacity N, the 
expected size of a bucket is n/N. Therefore, if given a 
good hash function, the core map operations run in 
O(⌈n/N⌉). The ratio λ = n/N, called the load factor of 
the hash table, should be bounded by a small 
constant, preferably below 1. As long as λ is O(1), the 
core operations on the hash table run in O(1) 
expected time.  
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COLLISION-HANDLING SCHEMES:  LINEAR PROBING 

 Insertion scheme:  
 If we try to insert an entry (k, v) into a bucket A[ j] where j = h(k) 
 If A[j] is already occupied, then we next try A[(j+1) mod N].  
 If A[(j+1) mod N] is also occupied, then we try A[( j + 2) mod N ],  
 and so on, until we find an empty bucket that can accept the new entry.  
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COLLISION-HANDLING SCHEMES:  LINEAR PROBING (CONT.) 
 Implementation when searching for an existing key, the first step of 

all get, put, or remove operations, need modification.  
 Search Scheme: Starting from A[h(k)], examine consecutive slots, 

until either  
 An entry with an equal key is found or 
 An empty bucket is found.  
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H(k) = k mod 11 



HASH CODE INSERTION EXAMPLE 

Name hashCode() hashCode()%5 

"Tom" 84274 4 
"Dick" 2129869 4 
"Harry" 69496448 3 
"Sam" 82879 4 
"Pete" 2484038 3 

[0] 
[1] 
[2] 
[3] 
[4] 

Tom Dick Harry Sam Pete 

Tom 



HASH CODE INSERTION EXAMPLE (CONT.) 

Name hashCode() hashCode()%5 

"Tom" 84274 4 
"Dick" 2129869 4 
"Harry" 69496448 3 
"Sam" 82879 4 
"Pete" 2484038 3 

[0] 
[1] 
[2] 
[3] 
[4] Dick 

Dick Harry Sam Pete 

Tom 



HASH CODE INSERTION EXAMPLE (CONT.) 

Name hashCode() hashCode()%5 

"Tom" 84274 4 
"Dick" 2129869 4 
"Harry" 69496448 3 
"Sam" 82879 4 
"Pete" 2484038 3 

[0] 
[1] 
[2] 
[3] 
[4] Dick 

Harry Sam Pete 

Tom 

Dick 



HASH CODE INSERTION EXAMPLE (CONT.) 

Name hashCode() hashCode()%5 

"Tom" 84274 4 
"Dick" 2129869 4 
"Harry" 69496448 3 
"Sam" 82879 4 
"Pete" 2484038 3 

[0] 
[1] 
[2] 
[3] 
[4] 

Harry 

Harry Sam Pete 

Tom 

Dick 



HASH CODE INSERTION EXAMPLE (CONT.) 

Name hashCode() hashCode()%5 

"Tom" 84274 4 
"Dick" 2129869 4 
"Harry" 69496448 3 
"Sam" 82879 4 
"Pete" 2484038 3 

[0] 
[1] 
[2] 
[3] 
[4] 

Harry 
Sam 

Sam Pete 

Tom 

Dick 



HASH CODE INSERTION EXAMPLE (CONT.) 

Name hashCode() hashCode()%5 

"Tom" 84274 4 
"Dick" 2129869 4 
"Harry" 69496448 3 
"Sam" 82879 4 
"Pete" 2484038 3 

[0] 
[1] 
[2] 
[3] 
[4] 

Harry 
Sam 

Pete 

Tom 

Dick Sam 



HASH CODE INSERTION EXAMPLE (CONT.) 

Name hashCode() hashCode()%5 

"Tom" 84274 4 
"Dick" 2129869 4 
"Harry" 69496448 3 
"Sam" 82879 4 
"Pete" 2484038 3 

[0] 
[1] 
[2] 
[3] 
[4] 

Harry 

Sam 

Pete 

Tom 

Dick Sam 



HASH CODE INSERTION EXAMPLE (CONT.) 

Name hashCode() hashCode()%5 

"Tom" 84274 4 
"Dick" 2129869 4 
"Harry" 69496448 3 
"Sam" 82879 4 
"Pete" 2484038 3 

[0] 
[1] 
[2] 
[3] 
[4] 

Harry 

Sam 

Pete 

Tom 

Dick 

Pete 



HASH CODE INSERTION EXAMPLE (CONT.) 

Name hashCode() hashCode()%5 

"Tom" 84274 4 
"Dick" 2129869 4 
"Harry" 69496448 3 
"Sam" 82879 4 
"Pete" 2484038 3 

[0] 
[1] 
[2] 
[3] 
[4] 

Harry 

Sam 

Tom 

Dick 

Pete 



HASH CODE INSERTION EXAMPLE (CONT.) 

Name hashCode() hashCode()%5 

"Tom" 84274 4 
"Dick" 2129869 4 
"Harry" 69496448 3 
"Sam" 82879 4 
"Pete" 2484038 3 

[0] 
[1] 
[2] 
[3] 
[4] 

Harry 

Sam 

Tom 

Dick Pete 



HASH CODE INSERTION EXAMPLE (CONT.) 

Name hashCode() hashCode()%5 

"Tom" 84274 4 
"Dick" 2129869 4 
"Harry" 69496448 3 
"Sam" 82879 4 
"Pete" 2484038 3 

[0] 
[1] 
[2] 
[3] 
[4] 

Harry 

Sam 

Tom 

Dick 
Pete 



HASH CODE INSERTION EXAMPLE (CONT.) 

Name hashCode() hashCode()%5 

"Tom" 84274 4 
"Dick" 2129869 4 
"Harry" 69496448 3 
"Sam" 82879 4 
"Pete" 2484038 3 

[0] 
[1] 
[2] 
[3] 
[4] 

Harry 

Sam 

Tom 

Dick 
Pete 

Pete 

Retrieval of "Tom" or "Harry" takes one step, 
O(1) 

Because of collisions, retrieval of the others 
requires a linear search 



COLLISION-HANDLING SCHEMES:  LINEAR PROBING 

 Deletion Scheme:  
 Cannot simply remove a found entry from its slot in the array 

 
 
 
 
 

 Resolve by replacing a deleted entry with a special “defunct” 
sentinel object.  
 Modify search algorithm so that the search for a key k will skip over cells 

containing the defunct  
 The put should remember a defunct locations during the search for k, 

and put  the new entry (k,v), if no existing entry is found beyond it.  
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 EX> after the insertion of key 15, if the 
entry with key 37 were trivially deleted, 
a subsequent search for 15 would fail 
because that search would start by 
probing at index 4, then index 5, and 
then index 6, at which an empty cell is 
found.  

 



COLLISION-HANDLING SCHEMES:   
VARIANTS OF LINEAR PROBING 

 Linear probing tends to cluster the entries of a map into 
contiguous runs, which may even overlap causing searches to 
slow down considerably.  

 Avoiding Clustering with variant of Linear Probing:  
 Quadratic Probing: iteratively tries the buckets 
  A[(h(k)+ f(i)) mod N], for i = 0,1,2,..., where f(i) = i2, until 
finding an empty bucket.   
 Double Hashing: choose a secondary hash function, h′, and 

if h maps some key k to a bucket A[h(k)] that is already 
occupied (no clustering effect) 
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PROBLEMS WITH QUADRATIC PROBING 

 Quadratic probing strategy complicates the removal opera
tion. 

 It does avoid the kinds of clustering patterns that occur wi
th linear probing but still suffers from secondary clusterin
g 
 Secondary Clustering: set of filled array cells still has a nonunifor

m pattern, even if we assume that the original hash codes are dis
tributed uniformly.  

 Calculation of next index ((h(k)+ f(i)) mod N) is time-
consuming, involving multiplication, addition, and modulo 
division 



PROBLEMS WITH QUADRATIC PROBING (CONT.) 

 A more efficient way to calculate the next index ((h(k)+ f(i)) 
mod N) is: 

i += 2; 
index = (index + i) % table.length; 

 Examples: 
 If the initial value of i is -1, successive values of i will be 1, 3, 5, … 
 If the initial value of index is 5, successive value of index will be 6 

(= 5 + 1), 9 (= 5 + 1 + 3), 14 (= 5 + 1 + 3 + 5), … 
 The proof of the equality of these two calculation methods 

is based on the mathematical series: 
n2 = 1 + 3 + 5 + ... + 2n - 1 

 
 



PROBLEMS WITH QUADRATIC PROBING (CONT.) 

 A more serious problem is that not all table elements are 
examined when looking for an insertion index; this may 
mean that 
 an item can't be inserted even when the table is not full 
 the program will get stuck in an infinite loop searching for an empty 

slot 
 If the table size is a prime number and it is never more than 

half full, this won't happen 
 However, requiring a half empty table wastes a lot of 

memory 
 



DOUBLE HASHING 

 Open addressing strategy that does 
not cause clustering of the kind prod
uced by linear probing or the kind pr
oduced by quadratic probing  
 

 Double hashing uses a secondary hash 
function h’(k) and handles collisions by 
placing an item in the first available cel
l of the series 

 (h(k) + i*h’(k)) mod N 
      for i = 0,  1, … , N � 1 
 
 The table size N must be a prime to all

ow probing of all the cells 
 

 The secondary hash function 
h’(k) cannot have zero values 
 

 Common choice of compressio
n function for the secondary h
ash function:   
h'(k) = q − (k mod q) 

  for some prime q < N. 
 

 The possible values for h’(k) ar
e 
  1, 2, … , q 
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EXAMPLE OF DOUBLE HASHING 

 Consider a hash table s
toring integer keys that 
handles collision with d
ouble hashing 
 N = 13  
 h(k) = k mod 13  
 h’(k) = 7 − k mod 7  

 Insert keys 18, 41, 22, 
44, 59, 32, 31, 73, in t
his order 
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0 1 2 3 4 5 6 7 8 9 10 11 12 

31   41     18 32 59 73 22 44   
0 1 2 3 4 5 6 7 8 9 10 11 12 

(h(k) + i*h’(k)) mod N 



LOAD FACTOR AND EFFICIENCY  

 Ex> Separate chaining:  
 As λ gets very close to 1, the probability of a collision greatly 

increases 
 Collisions adds overhead to operations 

 Rely on linear-time list-based methods in buckets that have collision
s 

 Recommended load factor is λ < 0.9 for hash tables with se
parate chaining. (Java: λ < 0.75.)  
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In the hash table schemes described thus far, it is important 
that the load factor, λ = n/N, be kept below 1.  



LOAD FACTOR AND EFFICIENCY (CONT) 

 Open addressing: 
 If the load factor λ gets higher than 0.5, clusters of entries in 

the bucket array start to grow as well.  
 These clusters cause the probing strategies to “bounce arou

nd” the bucket array for a considerable amount of time befo
re they find an empty slot.  

 Suggested load factor is λ < 0.5 for an open addressing sch
eme with linear probing, and perhaps only a bit higher for ot
her open addressing schemes.  
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REHASHING AND EFFICIENCY  

 If an insertion causes the load factor of a hash table to go 
above the specified threshold 
 resize the table (to regain the specified load factor) and reinsert a

ll objects into this new table (Rehashing).  
 Rehashing:  

 Rehashing scatter the entries throughout the new bucket array.  
 Don’t need a new hash code.  
 Do need a new compression function  

 Takes into consideration the size of the new table. 
 It is a good requirement for the new array’s size to be a prime number a

pproximately double the previous size (amortized analysis) 
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HASH CODE INSERTION EXAMPLE (CONT.) 

Name hashCode() hashCode()%11 

"Tom" 84274 3 
"Dick" 2129869 5 
"Harry" 69496448 10 
"Sam" 82879 5 
"Pete" 2484038 7 

[0] 
[1] 
[2] 
[3] 
[4] 
[5] 
[6] 
[7] 
[8] 
[9] 

[10] 
[0] 
[1] 
[2] 
[3] 
[4] 

Harry 

Sam 

Tom 

Dick 

Pete 



HASH CODE INSERTION EXAMPLE (CONT.) 

Name hashCode() hashCode()%11 

"Tom" 84274 3 
"Dick" 2129869 5 
"Harry" 69496448 10 
"Sam" 82879 5 
"Pete" 2484038 7 

Tom 

[0] 
[1] 
[2] 
[3] 
[4] 

Dick 
Sam 
Pete 

[5] 
[6] 
[7] 
[8] 
[9] 

Harry [10] 

The best way to reduce the 
possibility of collision (and 

reduce linear search retrieval 
time because of collisions) is 

to increase the table size 

Only one 
collision 
occurred 



TRAVERSING A HASH TABLE 

 You cannot traverse a hash table in a meaningful way 
since the sequence of stored values is arbitrary 

Tom 

[0] 
[1] 
[2] 
[3] 
[4] 

Dick 
Sam 
Pete 

[5] 
[6] 
[7] 
[8] 
[9] 

Harry [10] 

[0] 
[1] 
[2] 
[3] 
[4] 

Harry 

Sam 

Tom 

Dick 

Pete 

Dick, Sam, Pete, Harry, Tom 

Tom, Dick, Sam,  
Pete, Harry 



EFFICIENCY OF HASH TABLES  

 Probabilistic basis of average-case analysis.  
 If our hash function is good, then we expect the entries to be unif

ormly distributed in the N cells of the bucket array. 
 Thus, to store n entries, the expected number of keys in a bucket 

would be ⌈n/N⌉, which is O(1) if n is O(N).  
 The costs associated with a periodic rehashing (needed after put 

or remove) can be accounted for separately, leading to an additio
nal O(1) amortized cost for put and remove.  

 In the worst case, a poor hash function could map every e
ntry to the same bucket. 
 Linear-time performance for the core operations 
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COMPARISON OF THE RUNNING TIMES  

 Comparison of the running times of the methods of a map realized by mean
s of an unsorted list or a hash table  
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JAVA HASH TABLE IMPLEMENTATION  
 



RECALL THE MAP ADT 
© 2014 Goodrich, Tamassia, 

Godlwasser 
Hash Tables 

53 

 size(), isEmpty() 
 get(k): if the map M has an entry with key k, return its associated 

value; else, return null  
 put(k, v): insert entry (k, v) into the map M; if key k is not already in M, 

then return null; else, return old value associated with k 
 remove(k): if the map M has an entry with key k, remove it from M and 

return its associated value; else, return null  
 entrySet(): return an iterable collection of the entries in M 
 keySet(): return an iterable collection of the keys in M 
 values(): return an iterator of the values in M 



ABSTRACTHASHMAP  

 It does not provide any concrete representation of a ta
ble of “buckets.”  
 Separate chaining: each bucket will be a secondary map.  
 Open addressing: there is no tangible container for each buc

ket; the “buckets” are effectively interleaved due to the prob
ing sequences.  
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ABSTRACTHASHMAP CLASS: ABSTRACT METHODS  
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Implementation depends on the collision handling schemes.  



ABSTRACTHASHMAP CLASS: CONCRETE METHODS  

 AbstractHashMap class provides: 
 hashValue(K key): Mathematical support in the form of a ha

sh compression function using a randomized Multiply-Add-a
nd- Divide (MAD) formula,  

 Resize(int newCap): Support for automatically resizing the u
nderlying hash table when the load factor reaches a certain 
threshold.  
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ABSTRACT HASH MAP IN JAVA 
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MAD:  h2 (i) = [(ai + b) mod p] mod N 
a: scale   b: shift  p: prime N: size_of_hash 



ABSTRACT HASH MAP IN JAVA, 2 
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MAD:  h2 (i) = [(ai + b) mod p] mod N 
a: scale   b: shift  p: prime N: size_of_hash 



MAP WITH SEPARATE CHAINING 

 To represent each bucket for separate chaining, we 
use an instance of the simpler UnsortedTableMap 
class.  

 Entire hash table is then represented as a fixed-
capacity array A of thevsecondary maps.  

 Each cell, A[h], is initially a null reference;  
 We only create a secondary map when an entry is first 

hashed to a particular bucket. 
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MAP WITH SEPARATE CHAINING 

Delegate operations to a list-based map at each cell of unsor
ted Map A[]: 

 
 

Algorithm get(k):   
return A[h(k)].get(k)   
 
Algorithm put(k,v):   
t = A[h(k)].put(k,v)   
if t = null then   {k is a new key} 
 n = n + 1  
return t 
 
Algorithm remove(k):   
t = A[h(k)].remove(k) 
if t ≠ null then            {k was found} 
 n = n - 1  
return t 
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MAP WITH SEPARATE CHAINING 

 Because we choose to leave table cells as null until a 
secondary map is needed, each of these fundamental 
operations must begin by checking to see if A[h] is null. 

 In the case of bucketPut, a new entry must be inserted, so 
we instantiate a new UnsortedTableMap for A[h] before 
continuing 

 In our AbstractHashMap framework, the subclass has the 
responsibility to properly maintain the instance variable n 
when an entry is newly inserted or deleted. 
 In our implementation, we determine the change in the overall 

size of the map, by determining if there is any change in the size 
of the relevant secondary map before and after an operation. 
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HASH TABLE WITH CHAINING:CHAINHASHMAP 
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HASH TABLE WITH CHAINING, 2: CHAINHASHMAP 
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MAP WITH SEPARATE CHAINING: ANALYSIS 

 Assuming load factor of n/N, each bucket has 
expected O(1) size, provided that n is O(N), 

 The expected running time of operations get, put, and 
remove for this map is O(1).  

 The entrySet method (and thus the related keySet and 
values) runs in O(n+N) time, as it loops through the 
length of the table (with length N) and through all 
buckets (which have cumulative lengths n). 
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LINEAR PROBING 

 Open addressing: the collidin
g item is placed in a different 
cell of the table 

 Linear probing: handles collisions 
by placing the colliding item in th
e next (circularly) available table 
cell 

 Each table cell inspected is referr
ed to as a “probe” 

 Colliding items lump together, ca
using future collisions to cause a 
longer sequence of probes 

 Example: 
 h(x) = x mod 13 
 Insert keys 18, 41, 22, 

44, 59, 32, 31, 73, in t
his order 
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0 1 2 3 4 5 6 7 8 9 10 11 12 

    41     18 44 59 32 22 31 73   
0 1 2 3 4 5 6 7 8 9 10 11 12 



SEARCH WITH LINEAR PROBING 

 Consider a hash table A 
that uses linear probing 

 get(k) 
 We start at cell h(k)  
 We probe consecutive 

locations until one of the 
following occurs 
 An item with key k is 

found, or 
 An empty cell is found, 

or 
 N cells have been 

unsuccessfully probed  
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Algorithm get(k)  
 i ← h(k) 
 p ← 0 
 repeat 
  c ← A[i] 
  if c = ∅ 
   return null 
   else if c.getKey () = k 
   return c.getValue() 
  else 
   i ← (i + 1) mod N 

  p ← p + 1 
until   p = N 

 return null 

 



UPDATES WITH LINEAR PROBING 

 To handle insertions and 
deletions, we introduce a 
special object, called 
DEFUNCT, which replaces 
deleted elements 

 remove(k) 
 We search for an entry with 

key k  
 If such an entry (k, o) is 

found, we replace it with the 
special item DEFUNCT and 
we return element o 

 Else, we return null 

 put(k, o) 
 We throw an exception if the 

table is full 
 We start at cell h(k)  
 We probe consecutive cells 

until one of the following 
occurs 
 A cell i is found that is either 

empty or stores DEFUNCT, 
or 

 N cells have been 
unsuccessfully probed 

 We store (k, o) in cell i 
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PROBE HASH MAP IN JAVA 
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PROBE HASH MAP IN JAVA, 2 
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PROBE HASH MAP IN JAVA, 2 
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PROBE HASH MAP IN JAVA, 3 
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PERFORMANCE OF OPEN ADDRESSING 
VERSUS CHAINING (CONT.) 



PERFORMANCE OF HASH TABLES VERSUS 
SORTED ARRAY AND BINARY SEARCH TREE 

 The number of comparisons required for a binary 
search of a sorted array is O(log n) 
 A sorted array of size 128 requires up to 7 probes (27 is 

128) which is more than for a hash table of any size 
that is 90% full 

 A binary search tree performs similarly 
 Insertion or removal  

 
 
    

 

hash table O(1) expected; worst case O(n) 

unsorted array O(n) 

binary search tree O(log n); worst case O(n) 



STORAGE REQUIREMENTS FOR HASH TABLES, SORTED AR
RAYS, AND TREES 

 The performance of hashing is superior to that of binar
y search of an array or a binary search tree, particularl
y if the load factor is less than 0.75 

 However, the lower the load factor, the more empty sto
rage cells 
 there are no empty cells in a sorted array 

 A binary search tree requires three references per nod
e (item, left subtree, right subtree), so more storage is 
required for a binary search tree than for a hash table 
with load factor 0.75 



STORAGE REQUIREMENTS FOR OPEN ADDRESSING AND C
HAINING 

 For open addressing, the number of references to items 
(key-value pairs) is n (the size of the table) 

 For chaining , the average number of nodes in a list is L 
(the load factor) and n is the number of table elements 
 Using the Java API LinkedList, there will be three references 

in each node (item, next, previous) 
 Using our own single linked list, we can reduce the 

references to two by eliminating the previous-element 
reference 

 Therefore, storage for n + 2L references is needed 
 
 



STORAGE REQUIREMENTS FOR OPEN ADDRESSING AND C
HAINING (CONT.) 

 Example:  
 Assume open addressing, 60,000 items in the hash table, 

and a load factor of 0.75 
 This requires a table of size 80,000 and results in an 

expected number of comparisons of 2.5 
 Calculating the table size n to get similar performance using 

chaining 
 2.5 = 1 + L/2 
 5.0 = 2 + L 
 3.0 = 60,000/n 
 n = 20,000 
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