
HASH TABLES: (CH10.2)

© 2014 Goodrich, Tamassia,
Godlwasser

Hash Tables

1

∅

∅

0
1
2
3
4 451-229-0004

981-101-0002
025-612-0001

Presentation for use with the textbook
1. Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014
2. Data Structures Abstraction and Design Using Java, 2nd Edition by Elliot B. Koffman & Paul A. T. Wolfgang, Wiley, 2010

HASH TABLES

 The goal of hash table is to be able to access an
entry based on its key value, not its location

 We want to be able to access an entry directly
through its key value, rather than by having to
determine its location first by searching for the key
value in an array

 Using a hash table enables us to retrieve an entry
in constant time (on average, O(1))

HASH CODES AND INDEX CALCULATION

 The basis of hashing is to transform the item’s key
value into an integer value (its hash code) which is
then transformed into a table index

HASH CODES AND INDEX CALCULATION (CONT.)

 However, what if all 65,536
Unicode characters were
allowed?

 If you assume that on average
100 characters were used,
you could use a table of 200
characters and compute the
index by:

 int index = unicode % 200

65 A, 8

66 B, 2

67 C, 3

68 D, 4

69 E, 12

70 F, 2

71 G, 2

72 H, 6

73 I, 7

74 J, 1

75 K, 2

HASH FUNCTIONS AND HASH TABLES

• Hash tables (implemented by a Map or Set) store objects at arbitrary locations and
offer an average constant time for insertion, removal, and searching

• It is one of the most efficient data structures for implementing a map, and the one
that is used most in practice.

 A hash function h maps keys of a given type to integers in a fixed interval [0, N – 1]

 A hash table for a given key type consists of
 Hash function h
 Array (called table) of size N

 When implementing a map with a hash table, the goal is to store item
(k, o) at index i = h(k)

© 2014 Goodrich, Tamassia,
Godlwasser

Hash Tables

7

BASE DATA STRUCTURE OF HASH TABLE

 bucket array:
 each bucket may manage a collection of entries that are

sent to a specific index by the hash function. (To save space,
an empty bucket may be replaced by a null reference.)

© 2014 Goodrich, Tamassia,
Godlwasser

Hash Tables

8

EXAMPLE

 design a hash table for a
map storing entries as
(SSN, Name), where SSN
(social security number) is a
nine-digit positive integer

 Our hash table uses an
array of size N = 10,000 and
the hash function
h(x) = last four digits of x

© 2014 Goodrich, Tamassia,
Godlwasser

Hash Tables

9

∅

∅

∅

∅

0
1
2
3
4

9997
9998
9999

…

451-229-0004

981-101-0002

200-751-9998

025-612-0001

HASH FUNCTIONS

 The goal of a hash function, h, is to map each key k to an
integer in the range [0, N − 1], where N is the capacity of the
bucket array for a hash table.

 A hash function is usually specified as the composition of two
functions:
 Hash code (independent of hash table size – allow generic

implementation):
 h1: keys → integers

 Compression function (dependent of hash table size):
 h2: integers → [0, N - 1]

© 2014 Goodrich, Tamassia,
Godlwasser

Hash Tables

10

HASH CODES

 H1: Take an arbitrary key k in our map and compute an integer
that is called the hash code for k

 The hash code need not be in the range [0, N − 1], and may even
be negative.

 We desire that the set of hash codes assigned to our keys should
avoid collisions as much as possible.

© 2014 Goodrich, Tamassia,
Godlwasser

Hash Tables

11

 The hash code is applied
first, and the compression
function is applied next on
the result, i.e.,
 h(x) = h2(h1(x))

HASH CODES: BIT REPRESENTATION AS AN INTEGER
 Integer cast:

 Java relies on 32-bit hash
codes

 We reinterpret the bits of
the key as an integer

 Suitable for keys of length
less than or equal to the
number of bits of the
integer type (e.g., byte,
short, int and float in Java)

 Component sum:
 Partition the bits of the key

into components of fixed
length (e.g., 16 or 32 bits) and
we sum (or exclusive-or) the
components (ignoring
overflows)

 Suitable for numeric keys of
fixed length greater than or
equal to the number of bits of
the integer type (e.g., long and
& double in Java)

© 2014 Goodrich, Tamassia,
Godlwasser

Hash Tables

12

Both not good for character strings or other variable-length objects that can
be viewed as tuples of the form (x0,x1,...,xn−1), where the order of the xi’s is
significant. Ex> "stop", "tops", "pots", and "spot".

POLYNOMIAL HASH CODES

 Polynomial accumulation:
 Partition the bits of the key into a

sequence of components of fixed
length (e.g., 8, 16 or 32 bits)

 Evaluate the polynomial

 where a!=1 is a nonzero

constant, ignoring overflows
 Especially suitable for strings

 (33, 37, 39, and 41 are
particularly good choices for a
when working with character
strings that are English words.)

 Polynomial p(a) can be
evaluated in O(n) time using
Horner’s rule:
 The following polynomials are

successively computed, each
from the previous one in O(1)
time

 p0(a) = xn-1
 pi (a) = xn-i-1 + axi-1(a)

 (i = 1, 2, …, n -1)
 We have p(a) = pn-1(a)

© 2014 Goodrich, Tamassia,
Godlwasser

Hash Tables

13

A polynomial hash code takes into consideration the positions of the xi’s
by using multiplication by different powers as a way to spread out the
influence of each component across the resulting hash code.

CYCLIC-SHIFT HASH CODES
 A variant of the polynomial hash code replaces

multiplication by a with a cyclic shift of a partial
sum by a certain number of bits.
 Ex.> 5-bit cyclic shift of the 32-bit
00111101100101101010100010101000 is achieved by
taking the leftmost five bits and placing those on the rightmost
side of the representation, resulting in
10110010110101010001010100000111.

© 2014 Goodrich, Tamassia,
Godlwasser

Hash Tables

14

COMPRESSION FUNCTIONS
© 2014 Goodrich, Tamassia,

Godlwasser
Hash Tables

15

• Compression function maps integer hash code i into an
integer in the range of [0, N-1]

• A good compression function: probability any two different keys
collide is 1/N.
• If a hash function is chosen well, it should ensure that the

probability of two different keys getting hashed to the same
bucket is 1/N.

• Methods:

• Multiplication method
• MAD method

COMPRESSION FUNCTION: DIVISION METHOD

 Function:
h2 (i) = i mod N (i: the hash code)

 The size N of the hash table is usually chosen to be a prime
 Prime numbers are shown to helps “spread out” the distribution of hashed

values.
 Example: if we insert keys with hash codes {200,205,210,215,220,...,600}

into a bucket array of size 100, then each hash code will collide with three
others. But if we use a bucket array of size 101, then there will be no collisions.

 The reason has to do with number theory and is beyond the scope of this
course

 Choosing N to be a prime number is not always enough
 If there is a repeated pattern of hash codes of the form pN + q for seve

ral different prime numbers, p, then there will still be collisions.

© 2014 Goodrich, Tamassia,
Godlwasser

Hash Tables

16

COMPRESSION FUNCTION: MAD METHOD

 Multiply-Add-and-Divide (MAD) Method:
 h2 (i) = [(ai + b) mod p] mod N
 where N is the size of the hash table, p is a prime number larger than N,

and a and b are integers chosen at random from the interval [0, p − 1],
with a > 0.

 MAD is chosen in order to eliminate repeated patterns in the
set of hash codes and get us closer to having a “good” hash
function

© 2014 Goodrich, Tamassia,
Godlwasser

Hash Tables

17

COLLISION-HANDLING SCHEMES
 The main idea of a hash table is to take a bucket array, A, and

a hash function, h, and use them to implement a map by
storing each entry (k,v) in the “bucket” A[h(k)].

 Even with a good hash function, collisions happen, i.e., two
distinct keys, k1 and k2, such that h(k1) = h(k2).

 Collisions
 Prevents us from simply inserting a new entry (k,v) directly into the

bucket A[h(k)]
 Complicates our procedure for insertion, search, and deletion operations.

 Collision handling schemes:
 Separate Chaining
 Open Addressing

 Linear Probing and Variants of Linear Probing

© 2014 Goodrich, Tamassia,
Godlwasser

Hash Tables

18

CHAINING

 Each table element references a linked list that contain
s all of the items that hash to the same table index
 The linked list often is called a bucket
 The approach sometimes is called bucket hashing

COLLISION-HANDLING SCHEMES: SEPARATE CHAINING

 Separate Chaining Scheme: have each bucket A[j] store its own
secondary container, holding all entries (k,v) such that h(k) = j.

© 2014 Goodrich, Tamassia,
Godlwasser

Hash Tables

20

A hash table of size 13, storing 10
entries with integer keys, with
collisions resolved by separate

chaining. The compression function is
h(k) = k mod 13. Values omitted.

• Advantage: simple implementations
of map operations

• Disadvantage: requires the use of
an auxiliary data structure to hold
entries with colliding keys

COLLISION-HANDLING SCHEMES: OPEN ADDRESSING

 Open Addressing: store each entry directly in a table slot.
 This approach saves space because no auxiliary structures are

employed
 Requires a bit more complexity to properly handle collisions.

 Open addressing requires
 Load factor is always at most 1
 Entries are stored directly in the cells of the bucket array itself.

 EX> Linear Probing and Its Variants

© 2014 Goodrich, Tamassia,
Godlwasser

Hash Tables

21

LOAD FACTOR

 Assuming we use a good hash function to index the n
entries of our map in a bucket array of capacity N, the
expected size of a bucket is n/N. Therefore, if given a
good hash function, the core map operations run in
O(⌈n/N⌉). The ratio λ = n/N, called the load factor of
the hash table, should be bounded by a small
constant, preferably below 1. As long as λ is O(1), the
core operations on the hash table run in O(1)
expected time.

© 2014 Goodrich, Tamassia,
Godlwasser

Hash Tables

22

COLLISION-HANDLING SCHEMES: LINEAR PROBING

 Insertion scheme:
 If we try to insert an entry (k, v) into a bucket A[j] where j = h(k)
 If A[j] is already occupied, then we next try A[(j+1) mod N].
 If A[(j+1) mod N] is also occupied, then we try A[(j + 2) mod N],
 and so on, until we find an empty bucket that can accept the new entry.

© 2014 Goodrich, Tamassia,
Godlwasser

Hash Tables

23

COLLISION-HANDLING SCHEMES: LINEAR PROBING (CONT.)
 Implementation when searching for an existing key, the first step of

all get, put, or remove operations, need modification.
 Search Scheme: Starting from A[h(k)], examine consecutive slots,

until either
 An entry with an equal key is found or
 An empty bucket is found.

© 2014 Goodrich, Tamassia,
Godlwasser

Hash Tables

24

H(k) = k mod 11

HASH CODE INSERTION EXAMPLE

Name hashCode() hashCode()%5

"Tom" 84274 4
"Dick" 2129869 4
"Harry" 69496448 3
"Sam" 82879 4
"Pete" 2484038 3

[0]
[1]
[2]
[3]
[4]

Tom Dick Harry Sam Pete

Tom

HASH CODE INSERTION EXAMPLE (CONT.)

Name hashCode() hashCode()%5

"Tom" 84274 4
"Dick" 2129869 4
"Harry" 69496448 3
"Sam" 82879 4
"Pete" 2484038 3

[0]
[1]
[2]
[3]
[4] Dick

Dick Harry Sam Pete

Tom

HASH CODE INSERTION EXAMPLE (CONT.)

Name hashCode() hashCode()%5

"Tom" 84274 4
"Dick" 2129869 4
"Harry" 69496448 3
"Sam" 82879 4
"Pete" 2484038 3

[0]
[1]
[2]
[3]
[4] Dick

Harry Sam Pete

Tom

Dick

HASH CODE INSERTION EXAMPLE (CONT.)

Name hashCode() hashCode()%5

"Tom" 84274 4
"Dick" 2129869 4
"Harry" 69496448 3
"Sam" 82879 4
"Pete" 2484038 3

[0]
[1]
[2]
[3]
[4]

Harry

Harry Sam Pete

Tom

Dick

HASH CODE INSERTION EXAMPLE (CONT.)

Name hashCode() hashCode()%5

"Tom" 84274 4
"Dick" 2129869 4
"Harry" 69496448 3
"Sam" 82879 4
"Pete" 2484038 3

[0]
[1]
[2]
[3]
[4]

Harry
Sam

Sam Pete

Tom

Dick

HASH CODE INSERTION EXAMPLE (CONT.)

Name hashCode() hashCode()%5

"Tom" 84274 4
"Dick" 2129869 4
"Harry" 69496448 3
"Sam" 82879 4
"Pete" 2484038 3

[0]
[1]
[2]
[3]
[4]

Harry
Sam

Pete

Tom

Dick Sam

HASH CODE INSERTION EXAMPLE (CONT.)

Name hashCode() hashCode()%5

"Tom" 84274 4
"Dick" 2129869 4
"Harry" 69496448 3
"Sam" 82879 4
"Pete" 2484038 3

[0]
[1]
[2]
[3]
[4]

Harry

Sam

Pete

Tom

Dick Sam

HASH CODE INSERTION EXAMPLE (CONT.)

Name hashCode() hashCode()%5

"Tom" 84274 4
"Dick" 2129869 4
"Harry" 69496448 3
"Sam" 82879 4
"Pete" 2484038 3

[0]
[1]
[2]
[3]
[4]

Harry

Sam

Pete

Tom

Dick

Pete

HASH CODE INSERTION EXAMPLE (CONT.)

Name hashCode() hashCode()%5

"Tom" 84274 4
"Dick" 2129869 4
"Harry" 69496448 3
"Sam" 82879 4
"Pete" 2484038 3

[0]
[1]
[2]
[3]
[4]

Harry

Sam

Tom

Dick

Pete

HASH CODE INSERTION EXAMPLE (CONT.)

Name hashCode() hashCode()%5

"Tom" 84274 4
"Dick" 2129869 4
"Harry" 69496448 3
"Sam" 82879 4
"Pete" 2484038 3

[0]
[1]
[2]
[3]
[4]

Harry

Sam

Tom

Dick Pete

HASH CODE INSERTION EXAMPLE (CONT.)

Name hashCode() hashCode()%5

"Tom" 84274 4
"Dick" 2129869 4
"Harry" 69496448 3
"Sam" 82879 4
"Pete" 2484038 3

[0]
[1]
[2]
[3]
[4]

Harry

Sam

Tom

Dick
Pete

HASH CODE INSERTION EXAMPLE (CONT.)

Name hashCode() hashCode()%5

"Tom" 84274 4
"Dick" 2129869 4
"Harry" 69496448 3
"Sam" 82879 4
"Pete" 2484038 3

[0]
[1]
[2]
[3]
[4]

Harry

Sam

Tom

Dick
Pete

Pete

Retrieval of "Tom" or "Harry" takes one step,
O(1)

Because of collisions, retrieval of the others
requires a linear search

COLLISION-HANDLING SCHEMES: LINEAR PROBING

 Deletion Scheme:
 Cannot simply remove a found entry from its slot in the array

 Resolve by replacing a deleted entry with a special “defunct”
sentinel object.
 Modify search algorithm so that the search for a key k will skip over cells

containing the defunct
 The put should remember a defunct locations during the search for k,

and put the new entry (k,v), if no existing entry is found beyond it.

© 2014 Goodrich, Tamassia,
Godlwasser

Hash Tables

37

 EX> after the insertion of key 15, if the
entry with key 37 were trivially deleted,
a subsequent search for 15 would fail
because that search would start by
probing at index 4, then index 5, and
then index 6, at which an empty cell is
found.

COLLISION-HANDLING SCHEMES:
VARIANTS OF LINEAR PROBING

 Linear probing tends to cluster the entries of a map into
contiguous runs, which may even overlap causing searches to
slow down considerably.

 Avoiding Clustering with variant of Linear Probing:
 Quadratic Probing: iteratively tries the buckets
 A[(h(k)+ f(i)) mod N], for i = 0,1,2,..., where f(i) = i2, until
finding an empty bucket.
 Double Hashing: choose a secondary hash function, h′, and

if h maps some key k to a bucket A[h(k)] that is already
occupied (no clustering effect)

© 2014 Goodrich, Tamassia,
Godlwasser

Hash Tables

38

PROBLEMS WITH QUADRATIC PROBING

 Quadratic probing strategy complicates the removal opera
tion.

 It does avoid the kinds of clustering patterns that occur wi
th linear probing but still suffers from secondary clusterin
g
 Secondary Clustering: set of filled array cells still has a nonunifor

m pattern, even if we assume that the original hash codes are dis
tributed uniformly.

 Calculation of next index ((h(k)+ f(i)) mod N) is time-
consuming, involving multiplication, addition, and modulo
division

PROBLEMS WITH QUADRATIC PROBING (CONT.)

 A more efficient way to calculate the next index ((h(k)+ f(i))
mod N) is:

i += 2;
index = (index + i) % table.length;

 Examples:
 If the initial value of i is -1, successive values of i will be 1, 3, 5, …
 If the initial value of index is 5, successive value of index will be 6

(= 5 + 1), 9 (= 5 + 1 + 3), 14 (= 5 + 1 + 3 + 5), …
 The proof of the equality of these two calculation methods

is based on the mathematical series:
n2 = 1 + 3 + 5 + ... + 2n - 1

PROBLEMS WITH QUADRATIC PROBING (CONT.)

 A more serious problem is that not all table elements are
examined when looking for an insertion index; this may
mean that
 an item can't be inserted even when the table is not full
 the program will get stuck in an infinite loop searching for an empty

slot
 If the table size is a prime number and it is never more than

half full, this won't happen
 However, requiring a half empty table wastes a lot of

memory

DOUBLE HASHING

 Open addressing strategy that does
not cause clustering of the kind prod
uced by linear probing or the kind pr
oduced by quadratic probing

 Double hashing uses a secondary hash
function h’(k) and handles collisions by
placing an item in the first available cel
l of the series

 (h(k) + i*h’(k)) mod N
 for i = 0, 1, … , N � 1

 The table size N must be a prime to all

ow probing of all the cells

 The secondary hash function
h’(k) cannot have zero values

 Common choice of compressio
n function for the secondary h
ash function:
h'(k) = q − (k mod q)

 for some prime q < N.

 The possible values for h’(k) ar
e
 1, 2, … , q

© 2014 Goodrich, Tamassia,
Godlwasser

Hash Tables

42

EXAMPLE OF DOUBLE HASHING

 Consider a hash table s
toring integer keys that
handles collision with d
ouble hashing
 N = 13
 h(k) = k mod 13
 h’(k) = 7 − k mod 7

 Insert keys 18, 41, 22,
44, 59, 32, 31, 73, in t
his order

© 2014 Goodrich, Tamassia,
Godlwasser

Hash Tables

43

0 1 2 3 4 5 6 7 8 9 10 11 12

31 41 18 32 59 73 22 44
0 1 2 3 4 5 6 7 8 9 10 11 12

(h(k) + i*h’(k)) mod N

LOAD FACTOR AND EFFICIENCY

 Ex> Separate chaining:
 As λ gets very close to 1, the probability of a collision greatly

increases
 Collisions adds overhead to operations

 Rely on linear-time list-based methods in buckets that have collision
s

 Recommended load factor is λ < 0.9 for hash tables with se
parate chaining. (Java: λ < 0.75.)

© 2014 Goodrich, Tamassia,
Godlwasser

Hash Tables

44

In the hash table schemes described thus far, it is important
that the load factor, λ = n/N, be kept below 1.

LOAD FACTOR AND EFFICIENCY (CONT)

 Open addressing:
 If the load factor λ gets higher than 0.5, clusters of entries in

the bucket array start to grow as well.
 These clusters cause the probing strategies to “bounce arou

nd” the bucket array for a considerable amount of time befo
re they find an empty slot.

 Suggested load factor is λ < 0.5 for an open addressing sch
eme with linear probing, and perhaps only a bit higher for ot
her open addressing schemes.

© 2014 Goodrich, Tamassia,
Godlwasser

Hash Tables

45

REHASHING AND EFFICIENCY

 If an insertion causes the load factor of a hash table to go
above the specified threshold
 resize the table (to regain the specified load factor) and reinsert a

ll objects into this new table (Rehashing).
 Rehashing:

 Rehashing scatter the entries throughout the new bucket array.
 Don’t need a new hash code.
 Do need a new compression function

 Takes into consideration the size of the new table.
 It is a good requirement for the new array’s size to be a prime number a

pproximately double the previous size (amortized analysis)

© 2014 Goodrich, Tamassia,
Godlwasser

Hash Tables

46

HASH CODE INSERTION EXAMPLE (CONT.)

Name hashCode() hashCode()%11

"Tom" 84274 3
"Dick" 2129869 5
"Harry" 69496448 10
"Sam" 82879 5
"Pete" 2484038 7

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]

[10]
[0]
[1]
[2]
[3]
[4]

Harry

Sam

Tom

Dick

Pete

HASH CODE INSERTION EXAMPLE (CONT.)

Name hashCode() hashCode()%11

"Tom" 84274 3
"Dick" 2129869 5
"Harry" 69496448 10
"Sam" 82879 5
"Pete" 2484038 7

Tom

[0]
[1]
[2]
[3]
[4]

Dick
Sam
Pete

[5]
[6]
[7]
[8]
[9]

Harry [10]

The best way to reduce the
possibility of collision (and

reduce linear search retrieval
time because of collisions) is

to increase the table size

Only one
collision
occurred

TRAVERSING A HASH TABLE

 You cannot traverse a hash table in a meaningful way
since the sequence of stored values is arbitrary

Tom

[0]
[1]
[2]
[3]
[4]

Dick
Sam
Pete

[5]
[6]
[7]
[8]
[9]

Harry [10]

[0]
[1]
[2]
[3]
[4]

Harry

Sam

Tom

Dick

Pete

Dick, Sam, Pete, Harry, Tom

Tom, Dick, Sam,
Pete, Harry

EFFICIENCY OF HASH TABLES

 Probabilistic basis of average-case analysis.
 If our hash function is good, then we expect the entries to be unif

ormly distributed in the N cells of the bucket array.
 Thus, to store n entries, the expected number of keys in a bucket

would be ⌈n/N⌉, which is O(1) if n is O(N).
 The costs associated with a periodic rehashing (needed after put

or remove) can be accounted for separately, leading to an additio
nal O(1) amortized cost for put and remove.

 In the worst case, a poor hash function could map every e
ntry to the same bucket.
 Linear-time performance for the core operations

© 2014 Goodrich, Tamassia,
Godlwasser

Hash Tables

50

COMPARISON OF THE RUNNING TIMES

 Comparison of the running times of the methods of a map realized by mean
s of an unsorted list or a hash table

© 2014 Goodrich, Tamassia,
Godlwasser

Hash Tables

51

© 2014 Goodrich, Tamassia,
Godlwasser

Hash Tables

52

JAVA HASH TABLE IMPLEMENTATION

RECALL THE MAP ADT
© 2014 Goodrich, Tamassia,

Godlwasser
Hash Tables

53

 size(), isEmpty()
 get(k): if the map M has an entry with key k, return its associated

value; else, return null
 put(k, v): insert entry (k, v) into the map M; if key k is not already in M,

then return null; else, return old value associated with k
 remove(k): if the map M has an entry with key k, remove it from M and

return its associated value; else, return null
 entrySet(): return an iterable collection of the entries in M
 keySet(): return an iterable collection of the keys in M
 values(): return an iterator of the values in M

ABSTRACTHASHMAP

 It does not provide any concrete representation of a ta
ble of “buckets.”
 Separate chaining: each bucket will be a secondary map.
 Open addressing: there is no tangible container for each buc

ket; the “buckets” are effectively interleaved due to the prob
ing sequences.

© 2014 Goodrich, Tamassia,
Godlwasser

Hash Tables

54

ABSTRACTHASHMAP CLASS: ABSTRACT METHODS
© 2014 Goodrich, Tamassia,

Godlwasser
Hash Tables

55

Implementation depends on the collision handling schemes.

ABSTRACTHASHMAP CLASS: CONCRETE METHODS

 AbstractHashMap class provides:
 hashValue(K key): Mathematical support in the form of a ha

sh compression function using a randomized Multiply-Add-a
nd- Divide (MAD) formula,

 Resize(int newCap): Support for automatically resizing the u
nderlying hash table when the load factor reaches a certain
threshold.

© 2014 Goodrich, Tamassia,
Godlwasser

Hash Tables

56

ABSTRACT HASH MAP IN JAVA
© 2014 Goodrich, Tamassia,

Godlwasser
Hash Tables

57

MAD: h2 (i) = [(ai + b) mod p] mod N
a: scale b: shift p: prime N: size_of_hash

ABSTRACT HASH MAP IN JAVA, 2
© 2014 Goodrich, Tamassia,

Godlwasser
Hash Tables

58

MAD: h2 (i) = [(ai + b) mod p] mod N
a: scale b: shift p: prime N: size_of_hash

MAP WITH SEPARATE CHAINING

 To represent each bucket for separate chaining, we
use an instance of the simpler UnsortedTableMap
class.

 Entire hash table is then represented as a fixed-
capacity array A of thevsecondary maps.

 Each cell, A[h], is initially a null reference;
 We only create a secondary map when an entry is first

hashed to a particular bucket.

© 2014 Goodrich, Tamassia,
Godlwasser

Hash Tables

59

MAP WITH SEPARATE CHAINING

Delegate operations to a list-based map at each cell of unsor
ted Map A[]:

Algorithm get(k):
return A[h(k)].get(k)

Algorithm put(k,v):
t = A[h(k)].put(k,v)
if t = null then {k is a new key}
 n = n + 1
return t

Algorithm remove(k):
t = A[h(k)].remove(k)
if t ≠ null then {k was found}
 n = n - 1
return t

© 2014 Goodrich, Tamassia,
Godlwasser

Hash Tables

60

MAP WITH SEPARATE CHAINING

 Because we choose to leave table cells as null until a
secondary map is needed, each of these fundamental
operations must begin by checking to see if A[h] is null.

 In the case of bucketPut, a new entry must be inserted, so
we instantiate a new UnsortedTableMap for A[h] before
continuing

 In our AbstractHashMap framework, the subclass has the
responsibility to properly maintain the instance variable n
when an entry is newly inserted or deleted.
 In our implementation, we determine the change in the overall

size of the map, by determining if there is any change in the size
of the relevant secondary map before and after an operation.

© 2014 Goodrich, Tamassia,
Godlwasser

Hash Tables

61

HASH TABLE WITH CHAINING:CHAINHASHMAP
© 2014 Goodrich, Tamassia,

Godlwasser
Hash Tables

62

HASH TABLE WITH CHAINING, 2: CHAINHASHMAP
© 2014 Goodrich, Tamassia,

Godlwasser
Hash Tables

63

MAP WITH SEPARATE CHAINING: ANALYSIS

 Assuming load factor of n/N, each bucket has
expected O(1) size, provided that n is O(N),

 The expected running time of operations get, put, and
remove for this map is O(1).

 The entrySet method (and thus the related keySet and
values) runs in O(n+N) time, as it loops through the
length of the table (with length N) and through all
buckets (which have cumulative lengths n).

© 2014 Goodrich, Tamassia,
Godlwasser

Hash Tables

64

LINEAR PROBING

 Open addressing: the collidin
g item is placed in a different
cell of the table

 Linear probing: handles collisions
by placing the colliding item in th
e next (circularly) available table
cell

 Each table cell inspected is referr
ed to as a “probe”

 Colliding items lump together, ca
using future collisions to cause a
longer sequence of probes

 Example:
 h(x) = x mod 13
 Insert keys 18, 41, 22,

44, 59, 32, 31, 73, in t
his order

© 2014 Goodrich, Tamassia,
Godlwasser

Hash Tables

65

0 1 2 3 4 5 6 7 8 9 10 11 12

 41 18 44 59 32 22 31 73
0 1 2 3 4 5 6 7 8 9 10 11 12

SEARCH WITH LINEAR PROBING

 Consider a hash table A
that uses linear probing

 get(k)
 We start at cell h(k)
 We probe consecutive

locations until one of the
following occurs
 An item with key k is

found, or
 An empty cell is found,

or
 N cells have been

unsuccessfully probed

© 2014 Goodrich, Tamassia,
Godlwasser

Hash Tables

66

Algorithm get(k)
 i ← h(k)
 p ← 0
 repeat
 c ← A[i]
 if c = ∅
 return null
 else if c.getKey () = k
 return c.getValue()
 else
 i ← (i + 1) mod N

 p ← p + 1
until p = N

 return null

UPDATES WITH LINEAR PROBING

 To handle insertions and
deletions, we introduce a
special object, called
DEFUNCT, which replaces
deleted elements

 remove(k)
 We search for an entry with

key k
 If such an entry (k, o) is

found, we replace it with the
special item DEFUNCT and
we return element o

 Else, we return null

 put(k, o)
 We throw an exception if the

table is full
 We start at cell h(k)
 We probe consecutive cells

until one of the following
occurs
 A cell i is found that is either

empty or stores DEFUNCT,
or

 N cells have been
unsuccessfully probed

 We store (k, o) in cell i

© 2014 Goodrich, Tamassia,
Godlwasser

Hash Tables

67

PROBE HASH MAP IN JAVA
© 2014 Goodrich, Tamassia,

Godlwasser
Hash Tables

68

PROBE HASH MAP IN JAVA, 2
© 2014 Goodrich, Tamassia,

Godlwasser
Hash Tables

69

PROBE HASH MAP IN JAVA, 2
© 2014 Goodrich, Tamassia,

Godlwasser
Hash Tables

70

PROBE HASH MAP IN JAVA, 3
© 2014 Goodrich, Tamassia,

Godlwasser
Hash Tables

71

PERFORMANCE OF OPEN ADDRESSING
VERSUS CHAINING (CONT.)

PERFORMANCE OF HASH TABLES VERSUS
SORTED ARRAY AND BINARY SEARCH TREE

 The number of comparisons required for a binary
search of a sorted array is O(log n)
 A sorted array of size 128 requires up to 7 probes (27 is

128) which is more than for a hash table of any size
that is 90% full

 A binary search tree performs similarly
 Insertion or removal

hash table O(1) expected; worst case O(n)

unsorted array O(n)

binary search tree O(log n); worst case O(n)

STORAGE REQUIREMENTS FOR HASH TABLES, SORTED AR
RAYS, AND TREES

 The performance of hashing is superior to that of binar
y search of an array or a binary search tree, particularl
y if the load factor is less than 0.75

 However, the lower the load factor, the more empty sto
rage cells
 there are no empty cells in a sorted array

 A binary search tree requires three references per nod
e (item, left subtree, right subtree), so more storage is
required for a binary search tree than for a hash table
with load factor 0.75

STORAGE REQUIREMENTS FOR OPEN ADDRESSING AND C
HAINING

 For open addressing, the number of references to items
(key-value pairs) is n (the size of the table)

 For chaining , the average number of nodes in a list is L
(the load factor) and n is the number of table elements
 Using the Java API LinkedList, there will be three references

in each node (item, next, previous)
 Using our own single linked list, we can reduce the

references to two by eliminating the previous-element
reference

 Therefore, storage for n + 2L references is needed

STORAGE REQUIREMENTS FOR OPEN ADDRESSING AND C
HAINING (CONT.)

 Example:
 Assume open addressing, 60,000 items in the hash table,

and a load factor of 0.75
 This requires a table of size 80,000 and results in an

expected number of comparisons of 2.5
 Calculating the table size n to get similar performance using

chaining
 2.5 = 1 + L/2
 5.0 = 2 + L
 3.0 = 60,000/n
 n = 20,000

	Hash Tables: (cH10.2)
	Hash Tables
	Hash Codes and Index Calculation
	Hash Codes and Index Calculation (cont.)
	Hash Functions and Hash Tables
	Base Data structure of Hash Table
	Example
	Hash Functions
	Hash Codes
	Hash Codes: Bit Representation as an Integer
	Polynomial Hash Codes
	Cyclic-Shift Hash Codes
	Compression Functions
	Compression Function: Division Method
	Compression Function: MAD Method
	Collision-Handling Schemes
	Chaining
	Collision-Handling Schemes: Separate Chaining
	Collision-Handling Schemes: Open Addressing
	Load Factor
	Collision-Handling Schemes: Linear Probing
	Collision-Handling Schemes: Linear Probing (cont.)
	Hash Code Insertion Example
	Hash Code Insertion Example (cont.)
	Hash Code Insertion Example (cont.)
	Hash Code Insertion Example (cont.)
	Hash Code Insertion Example (cont.)
	Hash Code Insertion Example (cont.)
	Hash Code Insertion Example (cont.)
	Hash Code Insertion Example (cont.)
	Hash Code Insertion Example (cont.)
	Hash Code Insertion Example (cont.)
	Hash Code Insertion Example (cont.)
	Hash Code Insertion Example (cont.)
	Collision-Handling Schemes: Linear Probing
	Collision-Handling Schemes: �Variants of Linear Probing
	Problems with Quadratic Probing
	Problems with Quadratic Probing (cont.)
	Problems with Quadratic Probing (cont.)
	Double Hashing
	Example of Double Hashing
	Load Factor and Efficiency
	Load Factor and Efficiency (cont)
	Rehashing and efficiency
	Hash Code Insertion Example (cont.)
	Hash Code Insertion Example (cont.)
	Traversing a Hash Table
	Efficiency of Hash Tables
	Comparison of the running times
	Java Hash Table Implementation �
	Recall the Map ADT
	AbstractHashMap
	AbstractHashMap class: abstract methods
	AbstractHashMap class: Concrete methods
	Abstract Hash Map in Java
	Abstract Hash Map in Java, 2
	Map with Separate Chaining
	Map with Separate Chaining
	Map with Separate Chaining
	Hash Table with Chaining:ChainHashMap
	Hash Table with Chaining, 2: ChainHashMap
	Map with Separate Chaining: Analysis
	Linear Probing
	Search with Linear Probing
	Updates with Linear Probing
	Probe Hash Map in Java
	Probe Hash Map in Java, 2
	Probe Hash Map in Java, 2
	Probe Hash Map in Java, 3
	Performance of Open Addressing versus Chaining (cont.)
	Performance of Hash Tables versus Sorted Array and Binary Search Tree
	Storage Requirements for Hash Tables, Sorted Arrays, and Trees
	Storage Requirements for Open Addressing and Chaining
	Storage Requirements for Open Addressing and Chaining (cont.)

