
MAPS (CH 10.1)

Maps

1

Presentation for use with the textbook
1. Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014
2. Data Structures Abstraction and Design Using Java, 2nd Edition by Elliot B. Koffman & Paul A. T. Wolfgang, Wiley, 2010

MAPS
Maps

2

 A map models a searchable
 collection of key-value pairs (k,v),
 which we call entries

 Keys are required to be unique
 Maps are also known as associative arrays,

 entry’s key serves somewhat like an index into the map, in that it assists the
map in efficiently locating the associated entry.

 Unlike a standard array, a key of a map need not be numeric,
and is does not directly designate a position within the
structure.

 The Map is related to the Set, mathematically, a Map is a
set of ordered pairs whose elements are known as the key
and the value

 The main operations are for searching, inserting, and deleting
items

MAP PROPERTIES
 You can think of each key as a

“mapping” to a particular value
 Keys must be unique, but values

need not be unique
 Multiple entries with the same

key are not allowed
 A map provides efficient storage

and retrieval of information in a
table

 A map can have many-to-one
mapping: (B, Bill), (B2,
Bill)

{(J, Jane), (B, Bill),
(S, Sam), (B1, Bob),

(B2, Bill)}

Maps

3

DEFINITIONS

 A multimap is similar to a traditional map, in that it associates
values with keys; however, in a multimap the same key can be
mapped to multiple values.
 For example, the index of a book maps a given term to one or more

locations at which the term occurs.

 Hash tables (implemented by a Map or Set) store objects at
arbitrary locations and offer an average constant time for
insertion, removal, and searching

Maps

4

MAP JAVA HIERARCHY
Maps

5

JAVA INTERFACE HIERARCHY

Maps

6

http://docs.oracle.com/javase/7/docs/api/java/util/package-tree.html

JAVA CLASS HIERARCHY

Maps

7

http://docs.oracle.com/javase/7/docs/api/java/util/package-tree.html

MAPS AND THE MAP INTERFACE(CONT.)
 When information about an item is stored in a table, the informati

on should have a unique ID
 A unique ID may or may not be a number
 This unique ID is equivalent to a key
Type of item Key Value
University student Student ID number Student name, address, major,

grade point average

Online store customer E-mail address Customer name, address, cred
it card information, shopping c
art

Inventory item Part ID Description, quantity, manufac
turer, cost, price

The domain-name system
(DNS) maps

host name, such as
www.wiley.com,

Internet-Protocol (IP) address
such as 208.215.179.146.

Maps

8

http://www.wiley.com/

THE MAP ADT
Maps

9

 size(): Returns the number of entries in M.
 isEmpty(): Returns a boolean indicating whether M is empty.
 get(k): Returns the value v associated with key k, if such an entry exists;

otherwise returns null.
 put(k, v): If M does not have an entry with key equal to k, then adds entry

(k,v) to M and returns null; else, replaces with v the existing value of the
entry with key equal to k and returns the old value.

 remove(k): Removes from M the entry with key equal to k, and returns its
value; if M has no such entry, then returns null.

 keySet(): Returns an iterable collection containing all the keys stored inM.
 values(): Returns an iterable collection containing all the values of entries

stored in M (with repetition if multiple keys map to the same value).
 entrySet(): Returns an iterable collection containing all the key-value entries

in M.

map M supports the following methods:

MAPS IN THE JAVA.UTIL PACKAGE

 Some implementations of the java.util.Map interface
explicitly forbid use of a null value (and null keys, for
that matter).

 But the text book implementation allows operations
get(k), put(k, v), and remove(k) returns the existing
value associated with key k, if the map has such an
entry, and otherwise returns null.
 Introduces ambiguity in an application for which null is

allowed as a natural value associated with a key k.

Maps

10

MAP INTERFACE (CONT.)

 The following statements build
a Map object:

Map<String, String> aMap = new

HashMap<String, String>();

aMap.put("J", "Jane");
aMap.put("B", "Bill");
aMap.put("S", "Sam");
aMap.put("B1", "Bob");
aMap.put("B2", "Bill");

J

S

B1

B

B2

Jane

Sam

Bob

Bill

Maps

11

MAP INTERFACE (CONT.)

aMap.get("B1")

returns:

"Bob"

Maps

12

J

S

B1

B

B2

Jane

Sam

Bob

Bill

MAP INTERFACE (CONT.)

aMap.get("Bill")

returns:

null

("Bill" is a value, not a key)

Maps

13

J

S

B1

B

B2

Jane

Sam

Bob

Bill

EXAMPLE
Maps

14

APPLICATION: COUNTING WORD FREQUENCIES

 Problem: Counting the number of occurrences of words in a
document.

 Using Map as data structure: use words as keys and word counts as
values.
 ChainHashMap class

 Procedure:
 Scan through the input, considering adjacent alphabetic characters to be

words,
 convert words to lowercase.
 For each word found, retrieve its current frequency from the map using the

get method (unseen word having frequency zero.)
 (re)set its frequency to be one more to reflect the current occurrence of the

word.
 After processing the entire input, loop through the entrySet() of the map to

determine which word has the most occurrences.

Maps

15

IMPLEMENTATION CONSIDERATIONS FOR MAPS AND SETS

Maps

19

HIERARCHY OF MAP TYPES IN THE TEXTBOOK

Maps

20

SIMPLIFIED VERSION OF THE MAP ADT. INTERFACE
Maps

21

K designating the key
type;
V designating the
value type

Entry Interface

Map Interface

JAVA IMPLEMENTATION OF ABSTRACTMAP

Maps

22

• An implementation of the
isEmpty method, based upon
the presumed implementation
of the size method.

• A nested MapEntry class that
implements the public Entry
interface, while providing a
composite for storing key-value
entries in a map data structure.

JAVA IMPLEMENTATION OF ABSTRACTMAP (CONT.)

Maps

23

Concrete implementations of the keySet and values methods,
based upon an adaption to the entrySet method.

In this way, concrete map classes need only implement the entrySet
method to provide all three forms of iteration.

JAVA IMPLEMENTATION OF ABSTRACTMAP (CONT.)

Maps

24

A SIMPLE UNSORTED MAP IMPLEMENTATION:
UNSORTEDTABLEMAP

Maps

25

The use of the AbstractMap class with a very simple concrete
implementation of the map ADT that relies on storing key-value pairs
in arbitrary order within a Java ArrayList.

Private findIndex(key) method
that returns the

index at which such an entry is
found, or −1 if no such entry is
found by scanning the array to

determine whether an entry
with key equal to k exists.

UNSORTEDTABLEMAP

Maps

26

Private findIndex(key) method that returns the
index at which such an entry is found, or −1 if no such entry is found by

scanning the array to determine whether an entry with key equal to k exists.

UNSORTEDTABLEMAP (CONT.)
Maps

27

Unfortunately, the UnsortedTableMap class on the whole is not very efficient.
Fundamental methods, get(k), put(k, v), and remove(k), takes O(n) time in the
worst case because of the need to scan through the entire list when searching
for an existing entry.

UNSORTEDTABLEMAP (CONT.)

Maps

28

Why not use remove method of the ArrayList class?
 -> that would result in an unnecessary loop to shift all subsequent
entries to the left.
Because the map is unordered, we prefer to fill the vacated cell of the
array by relocating the last entry to that location.

UNSORTEDTABLEMAP (CONT.)

Maps

29

Remember that concrete implementations of the keySet and values methods
hasNext(), next() and remove(), are based upon entrySet method.

SORTED MAPS ADT

Maps

35

Sorted Maps allows inexact or
range searches of keys.

Application: Computer system that
maintains information about events
that have occurred (such as
financial transactions), with a time
stamp (key) marking the
occurrence of each event (value)

SORTED MAPS INTERFACE

Maps

36

Includes all behaviors of the standard map, plus the following methods:

• firstEntry(): Returns the entry with smallest key value (or null, if the
map is empty).

• lastEntry(): Returns the entry with largest key value (or null, if the
map is empty).

• ceilingEntry(k): Returns the entry with the least key value greater than
or equal to k (or null, if no such entry exists).

• floorEntry(k): Returns the entry with the greatest key value less than or
equal to k (or null, if no such entry exists).

• lowerEntry(k): Returns the entry with the greatest key value strictly
less than k (or null, if no such entry exists).

• higherEntry(k): Returns the entry with the least key value strictly
greater than k (or null if no such entry exists).

• subMap(k1, k2): Returns an iteration of all entries with key greater than
or equal to k1, but strictly less than k2.

SIMPLE IMPLEMENTATION OF A SORTED MAP

Maps

37

Sorted search table: Store the map’s entries in an array list A so that
they are in increasing order of their keys.

• the sorted search table has a space requirement that is O(n).
• array-based implementation allows us to use the binary search

algorithm for a variety of efficient operations.

SORTEDTABLEMAP IMPLEMENTATION (CONT.)

Maps

38

FINDINDEX METHOD

Maps

39

findIndex method uses the recursive binary search algorithm,
• returns the index of the leftmost entry in the search range

having key greater than or equal to k;
• if no entry in the search range has such a key, we return the

index just beyond the end of the search range.

⇒ If an entry has the target key, the search returns the index of

that entry. (Recall that keys are unique in a map.)
⇒ If the key is absent, the method returns the index at which a

new entry with that key would be inserted

SORTEDTABLEMAP IMPLEMENTATION (CONT.)

Maps

40

Size: O(1)

Get: O(logn)

Put: O(n);
O(logn) if map
has entry with

given key

Remove: O(n)

SORTEDTABLEMAP IMPLEMENTATION (CONT.)

Maps

41

firstEntry, lastEntry O(1)

ceilingEntry,
floorEntry,

O(logn)

SORTEDTABLEMAP IMPLEMENTATION (CONT.)

Maps

42

lowerEntry, higherEntry
O(logn)

SORTEDTABLEMAP IMPLEMENTATION (CONT.)

Maps

43

subMap: O(s+logn) where s items are reported:
• It begins with a binary search to find the first item within the range

(if any).
• After that, it executes a loop that takes O(1) time per iteration to

gather subsequent values until reaching the end of the range.

entrySet, keySet,
values: O(n)

ANALYSIS OF OUR SORTEDTABLEMAP

Maps

44

APPLICATIONS OF SORTED MAPS: FLIGHT DATABASES
Maps

45

Keys are Flight objects that contain fields corresponding to four parameters.
k = (origin, destination, date, time).
Value: Additional information about a flight, such as the flight number, the
number of seats still available in first (F) and coach (Y) class, the flight
duration, and the fare.

Searching for a flight requires inexact searching.
EX> Given a user query key k, we could call ceilingEntry(k) to return the
first flight between the desired cities, having a departure date and time
matching the desired query or later.
EX> With well-constructed keys, we could use subMap(k1, k2) to find all
flights within a given range of times. For example, if k1 = (ORD, PVD,
05May, 09:30), and k2 = (ORD, PVD, 05May, 20:00),

APPLICATIONS OF SORTED MAPS: MAXIMA SETS

Maps

46

Example problem: Allow one to query a car database to find the fastest car a
person can possibly afford by maintaining the set of maxima of a collection
of cost-performance pairs

key-value pair: (cost, speed)

Note: point p is strictly
better than points c, d,

and e, but may be better
or worse than points a, b,

f , g, and h,

we would like to
* add new pairs to this collection (new cars),
* query this collection for a given dollar
amount, d, to find the fastest car that costs no
more than d dollars.

MAINTAINING A MAXIMA SET WITH A SORTED MAP

Maps

47

A cost-performance pair (a, b) dominates pair (c, d) != (a, b)
if a ≤ c and b ≥ d, (first pair has no greater cost and at least as good
performance.) A pair (a,b) is called a maximum pair if it is not dominated by
any other pair.

store the set of maxima pairs in a sorted map

Implement operations
*add(c, p), which adds a new cost-performance entry (c, p),
*best(c), which returns the entry having best performance of those
with cost at most c.

MAINTAINING A MAXIMA SET WITH A SORTED MAP

Maps

48

MAINTAINING A MAXIMA SET WITH A SORTED MAP (CONT)

Maps

49

O(n) worst-case running time.

	Maps (Ch 10.1)
	Maps
	Map Properties
	Definitions
	Map Java Hierarchy
	Java Interface Hierarchy
	Java Class Hierarchy�
	Maps and the Map Interface(cont.)
	The Map ADT
	Maps in the java.util Package
	Map Interface (cont.)
	Map Interface (cont.)
	Map Interface (cont.)
	Example
	Application: Counting Word Frequencies
	Implementation Considerations for Maps and Sets
	hierarchy of map types In the textBook
	simplified version of the map ADT. interface
	Java implementation of AbstractMap
	Java implementation of AbstractMap (cont.)
	Java implementation of AbstractMap (cont.)
	A Simple Unsorted Map Implementation:�UnsortedTableMap
	UnsortedTableMap
	UnsortedTableMap (cont.)
	UnsortedTableMap (cont.)
	UnsortedTableMap (cont.)
	Sorted Maps ADT
	Sorted Maps Interface
	simple implementation of a sorted map
	SortedTableMap Implementation (cont.)
	FindIndex method
	SortedTableMap Implementation (cont.)
	SortedTableMap Implementation (cont.)
	SortedTableMap Implementation (cont.)
	SortedTableMap Implementation (cont.)
	Analysis of our SortedTableMap
	Applications of Sorted Maps: Flight Databases
	Applications of Sorted Maps: Maxima Sets
	Maintaining a Maxima Set with a Sorted Map
	Maintaining a Maxima Set with a Sorted Map
	Maintaining a Maxima Set with a Sorted Map (cont)

