
STACKS

Presentation for use with the textbook
1. Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014
2. Data Structures Abstraction and Design Using Java, 2nd Edition by Elliot B. Koffman & Paul A. T. Wolfgang, Wiley, 2010

© 2014 Goodrich, Tamassia,
Goldwasser

Stacks

1

ABSTRACT DATA TYPES (ADTS)

 An abstract data
type (ADT) is an
abstraction of a
data structure

 An ADT specifies:
 Data stored
 Operations on the

data
 Error conditions

associated with
operations

 Example: ADT modeling a
simple stock trading system
 The data stored are buy/sell

orders
 The operations supported are

 order buy(stock, shares, price)
 order sell(stock, shares, price)
 void cancel(order)

 Error conditions:
 Buy/sell a nonexistent stock
 Cancel a nonexistent order

© 2014 Goodrich, Tamassia,
Goldwasser

Stacks

2

STACK ABSTRACT DATA TYPE

 A stack is one of the most commonly used data
structures in computer science

 A stack can be compared to a Pez dispenser
 Only the top item can be accessed
 You can extract only one item at a time

 The top element in the stack is the last added to the
stack (most recently)

 The stack’s storage policy is Last-In, First-Out, or LIFO

© 2014 Goodrich, Tamassia,
Goldwasser

Stacks

3

 Main stack operations:
 push(object): inserts an element
 object pop(): removes and returns the last inserted

element

 Auxiliary stack operations:
 object top(): returns the last inserted element without

removing it
 integer size(): returns the number of elements stored
 boolean isEmpty(): indicates whether no elements are

stored

© 2014 Goodrich, Tamassia,
Goldwasser

Stacks

4

A STACK OF STRINGS

 “Rich” is the oldest element on the stack and “Jonathan” is the
youngest (Figure a)

 String last = names.top(); stores a reference to
“Jonathan” in last

 String temp = names.pop(); removes “Jonathan” and
stores a reference to it in temp (Figure b)

 names.push(“Philip”); pushes “Philip” onto the stack
(Figure c)

© 2014 Goodrich, Tamassia,
Goldwasser

Stacks

5

STACK INTERFACE IN JAVA

 Java interface corresponding
to our Stack ADT

 Assumes null is returned
from top() and pop() when
stack is empty

 Different from the built-in
Java class java.util.Stack

© 2014 Goodrich, Tamassia,
Goldwasser

Stacks

6

public interface Stack<E> {

 int size();

 boolean isEmpty();

 E top();

 void push(E element);

 E pop();
}

ANOTHER EXAMPLE
© 2014 Goodrich, Tamassia,

Goldwasser
Stacks

7

EXCEPTIONS VS. RETURNING NULL

 Attempting the execution of
an operation of an ADT may
sometimes cause an error
condition

 Java supports a general
abstraction for errors, called
exception

 An exception is said to be
“thrown” by an operation
that cannot be properly
executed

 In our Stack ADT, we do
not use exceptions

 Instead, we allow
operations pop and top to
be performed even if the
stack is empty

 For an empty stack, pop
and top simply return null

© 2014 Goodrich, Tamassia,
Goldwasser

Stacks

8

APPLICATIONS OF STACKS

 Direct applications
 Page-visited history in a Web browser
 Undo sequence in a text editor
 Chain of method calls in the Java Virtual Machine

 Indirect applications

 Auxiliary data structure for algorithms
 Component of other data structures

© 2014 Goodrich, Tamassia,
Goldwasser

Stacks

9

ARRAY-BASED STACK

 A simple way of
implementing the Stack
ADT uses an array

 We add elements from
left to right

 A variable (t) keeps
track of the index of
the top element

© 2014 Goodrich, Tamassia,
Goldwasser

Stacks

12

Algorithm size()
 return t + 1

Algorithm pop()
 if isEmpty() then
 return null
 else
 t ← t − 1
 return S[t + 1]

Bottom Top

ARRAY-BASED STACK (CONT.)

 The array storing the sta
ck elements may become
full

 A push operation will the
n throw a FullStackExcep
tion
 Limitation of the array-ba

sed implementation
 Not intrinsic to the Stack

ADT

© 2014 Goodrich, Tamassia,
Goldwasser

Stacks

13

S
0 1 2 t

…

Algorithm push(o)
 if t = S.length − 1 then
 throw IllegalStateException
 else
 t ← t + 1
 S[t] ← o

IMPLEMENTING A STACK USING AN ARRAY

ArrayStack

 theData =
topOfStack = -1

Object[]

[0] = null
[1] = null
[2] = null
[3] = null
[4] = null
[5] = null
[6] = null
[7] = null
[8] = null
[9] = null

0

Character

value = 'J'

1

Character

value = 'a'

Character

value = 'v'

2

Character

value = 'a'

3

ARRAY-
BASED
STACK IN
JAVA

© 2014 Goodrich, Tamassia,
Goldwasser

Stacks

15

ARRAY-BASED STACK IN JAVA
© 2014 Goodrich, Tamassia,

Goldwasser
Stacks

16

public class ArrayStack<E>
 implements Stack<E> {

 // holds the stack elements
 private E[] S;

 // index to top element
 private int top = -1;

 // constructor
 public ArrayStack(int capacity) {
 S = (E[]) new Object[capacity]);
 }

 public E pop() {
 if isEmpty()
 return null;
 E temp = S[top];
 // facilitate garbage collection:
 S[top] = null;
 top = top – 1;
 return temp;
 }

… (other methods of Stack interface)

EXAMPLE USE IN JAVA
© 2014 Goodrich, Tamassia,

Goldwasser
Stacks

17

public class Tester {

 // … other methods
 public intReverse(Integer a[]) {
 Stack<Integer> s;
 s = new ArrayStack<Integer>();

 … (code to reverse array a) …
 }

 public floatReverse(Float f[]) {
 Stack<Float> s;
 s = new ArrayStack<Float>();

 … (code to reverse array f) …
 }

PERFORMANCE & LIMITATIONS OF ARRAY-BASED STACK

 Performance
 Let n be the number of elements in
 the stack
 The space used is O(n)
 Each operation runs in time O(1)

 Limitations

 The maximum size of the stack must be defined a
priori and cannot be changed (fixed size array)

 Trying to push a new element into a full stack causes
an implementation-specific exception

© 2014 Goodrich, Tamassia,
Goldwasser

18

Stacks

IMPLEMENTING A STACK WITH A SINGLY LINKED LIST

 The linked-list approach has memory usage that is
always proportional to the number of actual elements
currently in the stack, and without an arbitrary
capacity limit

 Q: What the best choice for the top of the stack: the
front or back of the list?
 With the top of the stack stored at the front of the list, all

methods execute in constant time.

© 2014 Goodrich, Tamassia,
Goldwasser

Stacks

19

IMPLEMENTING A STACK AS A LINKED DATA STRUCTURE

 We can also implement a stack using a linked list of nodes

It is easiest to insert
and delete from the

head of a list

push inserts a node
at the head and pop
deletes the node at

the head

when the list is empty,
pop returns null

THE ADAPTER DESIGN PATTERN

 We want to effectively modify an existing class so that
its methods match those of a related, but different,
class or interface.

 Define a new class in such a way that it contains an

instance of the existing class as a hidden field, and
then to implement each method of the new class
using methods of this hidden instance variable.

© 2014 Goodrich, Tamassia,
Goldwasser

Stacks

21

ADAPTING SINGLE LINKED LIST ON STACK ADT

 We will adapt SinglyLinkedList class of Section 3.2.1 to define a
new LinkedStack class

© 2014 Goodrich, Tamassia,
Goldwasser

Stacks

22

SinglyLinkedList is named list as
a private field, and uses the
following correspondences:

EXAMPLE: REVERSING AN ARRAY USING A STACK

A stack can be used as a general toll to reverse a data sequence.

© 2014 Goodrich, Tamassia,
Goldwasser

Stacks

23

reversing the elements
of an array.

EXAMPLE: MATCHING PARENTHESES AND HTML TAGS

 Consider arithmetic expressions that may contain
various pairs of grouping symbols:
 Parentheses: “(” and “)”
 Braces: “{” and “}”
 Brackets: “[” and “]”

© 2014 Goodrich, Tamassia,
Goldwasser

Stacks

24

[(5+x)−(y+z)

BALANCED PARENTHESES (CONT.)

Expression:

balanced : true
index : 0

(w * [x + y] / z)

1 4 5 6 7 8 9 10 3 2 0

w x + y] / z) [* (((

Data Structures Abstraction and Design Using Java, 2nd Edition
by Elliot B. Koffman & Paul A. T. Wolfgang, Wiley, 2010

BALANCED PARENTHESES (CONT.)

Expression:

balanced : true
index : 1

(w * [x + y] / z)

1 4 5 6 7 8 9 10 3 2 0

w x + y] / z) [* (((

Data Structures Abstraction and Design Using Java, 2nd Edition
by Elliot B. Koffman & Paul A. T. Wolfgang, Wiley, 2010

BALANCED PARENTHESES (CONT.)

Expression:

balanced : true
index : 2

(w * [x + y] / z)

1 4 5 6 7 8 9 10 3 2 0

w x + y] / z) [* (((

Data Structures Abstraction and Design Using Java, 2nd Edition
by Elliot B. Koffman & Paul A. T. Wolfgang, Wiley, 2010

BALANCED PARENTHESES (CONT.)

Expression:

balanced : true
index : 3

(w * [x + y] / z)

1 4 5 6 7 8 9 10 3 2 0

w x + y] / z) [* (

(

([[(

Data Structures Abstraction and Design Using Java, 2nd Edition
by Elliot B. Koffman & Paul A. T. Wolfgang, Wiley, 2010

BALANCED PARENTHESES (CONT.)

Expression:

balanced : true
index : 4

(w * [x + y] / z)

1 4 5 6 7 8 9 10 3 2 0

w x + y] / z) [* (

(

([

Data Structures Abstraction and Design Using Java, 2nd Edition
by Elliot B. Koffman & Paul A. T. Wolfgang, Wiley, 2010

BALANCED PARENTHESES (CONT.)

Expression:

balanced : true
index : 5

(w * [x + y] / z)

1 4 5 6 7 8 9 10 3 2 0

w x + y] / z) [* (

(

([

Data Structures Abstraction and Design Using Java, 2nd Edition
by Elliot B. Koffman & Paul A. T. Wolfgang, Wiley, 2010

BALANCED PARENTHESES (CONT.)

Expression:

balanced : true
index : 6

(w * [x + y] / z)

1 4 5 6 7 8 9 10 3 2 0

w x + y] / z) [* (

(

([

Data Structures Abstraction and Design Using Java, 2nd Edition
by Elliot B. Koffman & Paul A. T. Wolfgang, Wiley, 2010

BALANCED PARENTHESES (CONT.)

Expression:

balanced : true
index : 7

(w * [x + y] / z)

1 4 5 6 7 8 9 10 3 2 0

w x + y] / z) [* (

(

([(

Matches!
Balanced still true

Data Structures Abstraction and Design Using Java, 2nd Edition
by Elliot B. Koffman & Paul A. T. Wolfgang, Wiley, 2010

BALANCED PARENTHESES (CONT.)

Expression:

balanced : true
index : 8

(w * [x + y] / z)

1 4 5 6 7 8 9 10 3 2 0

w x + y] / z) [* (((

Data Structures Abstraction and Design Using Java, 2nd Edition
by Elliot B. Koffman & Paul A. T. Wolfgang, Wiley, 2010

BALANCED PARENTHESES (CONT.)

Expression:

balanced : true
index : 9

(w * [x + y] / z)

1 4 5 6 7 8 9 10 3 2 0

w x + y] / z) [* (((

Data Structures Abstraction and Design Using Java, 2nd Edition
by Elliot B. Koffman & Paul A. T. Wolfgang, Wiley, 2010

BALANCED PARENTHESES (CONT.)

Expression:

balanced : true
index : 10

(w * [x + y] / z)

1 4 5 6 7 8 9 10 3 2 0

w x + y] / z) [* (((

Matches!
Balanced still true

Data Structures Abstraction and Design Using Java, 2nd Edition
by Elliot B. Koffman & Paul A. T. Wolfgang, Wiley, 2010

PARENTHESIS MATCHING IN AN ARITHMETIC EXPRESSION
© 2014 Goodrich, Tamassia,

Goldwasser
Stacks

36

HTML TAG MATCHING

<body>
<center>
<h1> The Little Boat </h1>
</center>
<p> The storm tossed the little
boat like a cheap sneaker in an
old washing machine. The three
drunken fishermen were used to
such treatment, of course, but
not the tree salesman, who even as
a stowaway now felt that he
had overpaid for the voyage. </p>

 Will the salesman die?
 What color is the boat?
 And what about Naomi?

</body>

The Little Boat

The storm tossed the little boat
like a cheap sneaker in an old
washing machine. The three
drunken fishermen were used to
such treatment, of course, but not
the tree salesman, who even as
a stowaway now felt that he had
overpaid for the voyage.

1. Will the salesman die?
2. What color is the boat?
3. And what about Naomi?

© 2014 Goodrich, Tamassia,
Goldwasser

Stacks

37

 For fully-correct HTML, each <name> should pair with a matching </name>

HTML TAG MATCHING (JAVA)
© 2014 Goodrich, Tamassia,

Goldwasser
Stacks

38

ADDITIONAL STACK APPLICATIONS

 Postfix and infix notation
 Expressions normally are written in infix form, but
 it easier to evaluate an expression in postfix form since

there is no need to group sub-expressions in
parentheses or worry about operator precedence

Data Structures Abstraction and Design Using Java, 2nd Edition
by Elliot B. Koffman & Paul A. T. Wolfgang, Wiley, 2010

EVALUATING POSTFIX EXPRESSIONS

 Write a class that evaluates a postfix expression
 Use the space character as a delimiter between

tokens

Data Structures Abstraction and Design Using Java, 2nd Edition
by Elliot B. Koffman & Paul A. T. Wolfgang, Wiley, 2010

EVALUATING POSTFIX EXPRESSIONS (CONT.)

 1. create an empty stack of integers
 2. while there are more tokens
 3. get the next token
 4. if the first character of the token is a digit
 5. push the token on the stack
 6. else if the token is an operator
 7. pop the right operand off the stack
 8. pop the left operand off the stack
 9. evaluate the operation
10. push the result onto the stack
11. pop the stack and return the result

7 - 20 *
4

4 4

Data Structures Abstraction and Design Using Java, 2nd Edition
by Elliot B. Koffman & Paul A. T. Wolfgang, Wiley, 2010

Stack of integers

EVALUATING POSTFIX EXPRESSIONS (CONT.)

 1. create an empty stack of integers
 2. while there are more tokens
 3. get the next token
 4. if the first character of the token is a digit
 5. push the token on the stack
 6. else if the token is an operator
 7. pop the right operand off the stack
 8. pop the left operand off the stack
 9. evaluate the operation
10. push the result onto the stack
11. pop the stack and return the result

7 - 20 *
4

4 4 7
7

4

Data Structures Abstraction and Design Using Java, 2nd Edition
by Elliot B. Koffman & Paul A. T. Wolfgang, Wiley, 2010

EVALUATING POSTFIX EXPRESSIONS (CONT.)

 1. create an empty stack of integers
 2. while there are more tokens
 3. get the next token
 4. if the first character of the token is a digit
 5. push the token on the stack
 6. else if the token is an operator
 7. pop the right operand off the stack
 8. pop the left operand off the stack
 9. evaluate the operation
10. push the result onto the stack
11. pop the stack and return the result

7 - 20 * 4 4 7
7

4

4 * 7

Data Structures Abstraction and Design Using Java, 2nd Edition
by Elliot B. Koffman & Paul A. T. Wolfgang, Wiley, 2010

EVALUATING POSTFIX EXPRESSIONS (CONT.)

 1. create an empty stack of integers
 2. while there are more tokens
 3. get the next token
 4. if the first character of the token is a digit
 5. push the token on the stack
 6. else if the token is an operator
 7. pop the right operand off the stack
 8. pop the left operand off the stack
 9. evaluate the operation
10. push the result onto the stack
11. pop the stack and return the result

7 - 20 * 4 4 7 28
28

Data Structures Abstraction and Design Using Java, 2nd Edition
by Elliot B. Koffman & Paul A. T. Wolfgang, Wiley, 2010

EVALUATING POSTFIX EXPRESSIONS (CONT.)

 1. create an empty stack of integers
 2. while there are more tokens
 3. get the next token
 4. if the first character of the token is a digit
 5. push the token on the stack
 6. else if the token is an operator
 7. pop the right operand off the stack
 8. pop the left operand off the stack
 9. evaluate the operation
10. push the result onto the stack
11. pop the stack and return the result

7 - 20 * 4 4 7
28

20
20

28

Data Structures Abstraction and Design Using Java, 2nd Edition
by Elliot B. Koffman & Paul A. T. Wolfgang, Wiley, 2010

EVALUATING POSTFIX EXPRESSIONS (CONT.)

 1. create an empty stack of integers
 2. while there are more tokens
 3. get the next token
 4. if the first character of the token is a digit
 5. push the token on the stack
 6. else if the token is an operator
 7. pop the right operand off the stack
 8. pop the left operand off the stack
 9. evaluate the operation
10. push the result onto the stack
11. pop the stack and return the result

7 - 20 * 4 4 7
20

28

28 - 20

Data Structures Abstraction and Design Using Java, 2nd Edition
by Elliot B. Koffman & Paul A. T. Wolfgang, Wiley, 2010

EVALUATING POSTFIX EXPRESSIONS (CONT.)

 1. create an empty stack of integers
 2. while there are more tokens
 3. get the next token
 4. if the first character of the token is a digit
 5. push the token on the stack
 6. else if the token is an operator
 7. pop the right operand off the stack
 8. pop the left operand off the stack
 9. evaluate the operation
10. push the result onto the stack
11. pop the stack and return the result

7 - 20 * 4 4 7 8
8

Data Structures Abstraction and Design Using Java, 2nd Edition
by Elliot B. Koffman & Paul A. T. Wolfgang, Wiley, 2010

EVALUATING POSTFIX EXPRESSIONS (CONT.)

 1. create an empty stack of integers
 2. while there are more tokens
 3. get the next token
 4. if the first character of the token is a digit
 5. push the token on the stack
 6. else if the token is an operator
 7. pop the right operand off the stack
 8. pop the left operand off the stack
 9. evaluate the operation
10. push the result onto the stack
11. pop the stack and return the result

7 - 20 * 4 4 7
8

Data Structures Abstraction and Design Using Java, 2nd Edition
by Elliot B. Koffman & Paul A. T. Wolfgang, Wiley, 2010

CONVERTING FROM INFIX TO POSTFIX

 Convert infix expressions to postfix expressions
 Assume:

 Expressions consists of only spaces, operands, and operators
 Space is a delimiter character
 All operands that are identifiers begin with a letter or underscore
 All operands that are numbers begin with a digit

Data Structures Abstraction and Design Using Java, 2nd Edition
by Elliot B. Koffman & Paul A. T. Wolfgang, Wiley, 2010

CONVERTING FROM INFIX TO POSTFIX (CONT.)

57

 Example: convert
 w – 5.1 / sum * 2
 to its postfix form
 w 5.1 sum / 2 * -

Data Structures Abstraction and Design Using Java, 2nd Edition
by Elliot B. Koffman & Paul A. T. Wolfgang, Wiley, 2010

CONVERTING FROM INFIX TO POSTFIX (CONT.)
Data Structures Abstraction and Design Using Java, 2nd Edition
by Elliot B. Koffman & Paul A. T. Wolfgang, Wiley, 2010

CONVERTING FROM INFIX TO POSTFIX (CONT.)
Data Structures Abstraction and Design Using Java, 2nd Edition
by Elliot B. Koffman & Paul A. T. Wolfgang, Wiley, 2010

CONVERTING FROM INFIX TO POSTFIX (CONT.)
Data Structures Abstraction and Design Using Java, 2nd Edition
by Elliot B. Koffman & Paul A. T. Wolfgang, Wiley, 2010

INPUT: w – 5.1 / sum * 2

CONVERTING FROM INFIX TO POSTFIX (CONT.)
Data Structures Abstraction and Design Using Java, 2nd Edition
by Elliot B. Koffman & Paul A. T. Wolfgang, Wiley, 2010

CONVERTING EXPRESSIONS WITH PARENTHESES

 The ability to convert expressions with
parentheses is an important (and necessary)
addition

 Modify processOperator to push each
opening parenthesis onto the stack as soon as it
is scanned

 When a closing parenthesis is encountered, pop
off operators until the opening parenthesis is
encountered

Data Structures Abstraction and Design Using Java, 2nd Edition
by Elliot B. Koffman & Paul A. T. Wolfgang, Wiley, 2010

	Stacks
	Abstract Data Types (ADTs)
	Stack Abstract Data Type
	Slide Number 4
	A Stack of Strings
	Stack Interface in Java
	Another Example
	Exceptions vs. Returning Null
	Applications of Stacks
	Array-based Stack
	Array-based Stack (cont.)
	Implementing a Stack Using an Array
	Array-based Stack in Java
	Array-based Stack in Java
	Example Use in Java
	Performance & Limitations of Array-based Stack
	Implementing a Stack with a Singly Linked List
	Implementing a Stack as a Linked Data Structure
	The adapter design pattern
	Adapting Single Linked List on stack ADT
	Example: Reversing an Array Using a Stack
	Example: Matching Parentheses and HTML Tags
	Balanced Parentheses (cont.)
	Balanced Parentheses (cont.)
	Balanced Parentheses (cont.)
	Balanced Parentheses (cont.)
	Balanced Parentheses (cont.)
	Balanced Parentheses (cont.)
	Balanced Parentheses (cont.)
	Balanced Parentheses (cont.)
	Balanced Parentheses (cont.)
	Balanced Parentheses (cont.)
	Balanced Parentheses (cont.)
	Parenthesis Matching in an arithmetic expression
	HTML Tag Matching
	HTML Tag Matching (Java)
	Additional Stack Applications
	Evaluating Postfix Expressions
	Evaluating Postfix Expressions (cont.)
	Evaluating Postfix Expressions (cont.)
	Evaluating Postfix Expressions (cont.)
	Evaluating Postfix Expressions (cont.)
	Evaluating Postfix Expressions (cont.)
	Evaluating Postfix Expressions (cont.)
	Evaluating Postfix Expressions (cont.)
	Evaluating Postfix Expressions (cont.)
	Converting from Infix to Postfix
	Converting from Infix to Postfix (cont.)
	Converting from Infix to Postfix (cont.)
	Converting from Infix to Postfix (cont.)
	Converting from Infix to Postfix (cont.)
	Converting from Infix to Postfix (cont.)
	Converting Expressions with Parentheses

