© 2014 Goodrich, Tamassia, Goldwasser

RECURSION (CH 5)

A pattern for solving algorithm design problems

Presentation for use with the textbook Data Structures and Algorithms in Java, $6^{\text {th }}$ edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014

THE RECURSION PATTERN EXAMPLE

* Recursion: when a method calls itself
* Classic example - the factorial function:

$$
n!=1 \cdot 2 \cdot 3 \cdot \cdots \cdot(n-1) \cdot n
$$

* Recursive definition:

$$
f(n)=\left\{\begin{array}{cc}
1 & \text { if } n=0 \\
n \cdot f(n-1) & \text { else }
\end{array}\right.
$$

* As a J ava method:

```
public static int factorial(int n) throws IllegalArgumentException {
    if (n<0)
        throw new IllegalArgumentException(); // argument must be nonnegative
    else if ( }\textrm{n}==0
        return 1; // base case
    else
        return n * factorial(n-1); // recursive case
}
```


CONTENT OF A RECURSIVE METHOD

* Base case(s)
+ Values of the input variables for which we perform no recursive calls are called base cases (there should be at least one base case).
+ Every possible chain of recursive calls must eventually reach a base case.
Recursive calls
+ Calls to the current method.
+ Each recursive call should be defined so that it makes progress towards a base case.

VISUALIZING RECURSION

* Recursion trace
+ A box for each recursive call
+ An arrow from each caller to callee
+ An arrow from each callee to caller showing return value

* Example

VISUALIZING BINARY SEARCH

* We consider three cases:
+ If the target equals data[mid], then we have found the target.
+ If target < data[mid], then we recur on the first half of the sequence.
+ If target > data[mid], then we recur on the second half of the sequence.

INPUT: Values stored in sorted order within an array (sequence is sorted and

indexable,)

OUTPUT: Location of the target value.

BINARY SEARCH

Search for an integer in an ordered list

```
/**
    * Returns true if the target value is found in the indicated portion of the data array.
    * This search only considers the array portion from data[low] to data[high] inclusive.
    */
public static boolean binarySearch(int[ ] data, int target, int low, int high) {
    if (low > high)
        return false; // interval empty; no match
    else {
        int mid = (low + high) / 2;
        if (target == data[mid])
            return true; // found a match
            else if (target < data[mid])
            return binarySearch(data, target, low, mid - 1); // recur left of the middle
        else
            return binarySearch(data, target, mid + 1, high); // recur right of the middle
    }
}
```


ANALYZING BINARY SEARCH

* Runs in $\mathrm{O}(\log \mathrm{n})$ time.

+ The remaining portion of the list is of size high - low + 1
+ After one comparison, this becomes one of the following:

$$
\begin{gathered}
(\text { mid }-1)-\text { low }+1=\left\lfloor\frac{\text { low }+ \text { high }}{2}\right\rfloor-\text { low } \leq \frac{\text { high }- \text { low }+1}{2} \\
\text { high }-(\text { mid }+1)+1=\text { high }-\left\lfloor\frac{\text { low }+ \text { high }}{2}\right\rfloor \leq \frac{\text { high }- \text { low }+1}{2} .
\end{gathered}
$$

+ Thus, each recursive call divides the search region in half; hence, there can be at most $\log \mathrm{n}$ levels

TYPES OF RECURSION

Linear recursion : If a recursive call starts at most one other.

* Binary recursion: If a recursive call may start two others.
* Multiple recursion:" If a recursive call may start three or more others.

Terminology reflects the structure of the recursion trace, not the asymptotic analysis of the running time.

LINEAR RECURSION

- Test for base cases
- Begin by testing for a set of base cases (there should be at least one).
- Every possible chain of recursive calls must eventually reach a base case, and the handling of each base case should not use recursion.
- Recur once
- Perform a single recursive call
- This step may have a test that decides which of several possible recursive calls to make, but it should ultimately make just one of these calls
- Define each possible recursive call so that it makes progress towards a base case.

EXAMPLE OF LINEAR RECURSI ON

Algorithm linearSum(A, n):

Input:

Array, A, of integers
I nteger n such that
$0 \leq n \leq|A|$
Output:
Sum of the first n integers in A.

```
/** Returns the sum of the first n integers of the
public static int linearSum(int[ ] data, int n) {
    if ( }\textrm{n}==0
        return 0;
    else
        return linearSum(data, n-1) + data[n-1];
}
```

Recursion trace of linearSum(data, 5) called on array data $=[4,3,6,2,8]$

REVERSING AN ARRAY

Problem: Reverse the n elements of an array, so that the first element becomes the last, the second element becomes second to the last, and
so on.

```
Algorithm reverseArray(A, i, j):
Input: An array A and nonnegative
    integer indices \(i\) and \(j\)
Output: The reversal of the elements in
    A starting at index \(i\) and ending at
if \(\mathrm{i}<\mathrm{j}\) then
return
Algorithm reverseArray(A, i, j): Input: An array A and nonnegative integer indices \(i\) and \(j\)
Output: The reversal of the elements in A starting at index \(i\) and ending at
if \(\mathrm{i}<\mathrm{j}\) then
```

```
    Swap A[i] and A[ j] 
```

```
    Swap A[i] and A[ j] 
```

```
return
```


5	3	6	2	7	8	9	4

5	9	6	2	7	8	3	4

5	9	8	2	7	6	3	4

5	9	8	7	2	6	3	4

Terminates after a total of ($1+$ floor $\left(\frac{n}{2}\right)$) recursive calls. Because each call involves a constant amount of work, the entire process runs in $O(n)$ time.

DEFINING ARGUMENTS FOR RECURSION

* In creating recursive methods, it is important to define the methods in ways that facilitate recursion.
* This sometimes requires we define additional parameters that are passed to the method.
* For example, we defined the array reversal method as reverseArray(A, i, j), not reverseArray(A)

```
/** Reverses the contents of subarray data[low] through data[high] inclusive. */
public static void reverseArray(int[ ] data, int low, int high) \{
    if (low < high) \{ // if at least two elements in subarray
        int temp = data[low]; // swap data[low] and data[high]
        data[low] = data[high];
        data[high] = temp;
        reverseArray(data, low +1 , high -1 ); // recur on the rest
    \}
\}
```


RECURSIVE ALGORITHMS FOR COMPUTING POWERS

Problem: Raise a number x to an arbitrary nonnegative integer n.

* The power function, power $(x, n)=x^{n}$, can be defined recursively:

$$
\operatorname{power}(x, n)=\left\{\begin{array}{cc|cc}
1 & \text { if } n=0 & 2 & \text { public static double power }(\text { double } x, \text { int } n)\{ \\
3 & \text { if }(\mathrm{n}==0) \\
x \cdot \operatorname{power}(x, n-1) & \text { else } & 4 & \text { return } 1 ; \\
& & 5 \text { else } \\
& 6 & \text { return } x * \operatorname{power}(x, \mathrm{n}-1) \text {; } \\
7 & \}
\end{array}\right.
$$

* This leads to an power function that runs in $O(n)$ time (for we make n recursive calls)
* We can do better than this, however

RECURSIVE SQUARING

OBSERVATION: We consider the expression $\left(x^{k}\right)^{2}$, where $k=$ floor $\left(\frac{n}{2}\right)$.
When n is odd, floor $\left(\frac{n}{2}\right)=\frac{n-1}{2},\left(x^{k}\right)^{2}=x^{n-1}$ and therefore $x^{n}=\left(x^{k}\right)^{2} * x$. When n is even, $\operatorname{floor}\left(\frac{n}{2}\right)=\frac{n}{2} \quad$ and therefore $\left(x^{k}\right)^{2}=\left(x^{\frac{n}{2}}\right)^{2}=x^{n}$.

* We can derive a more efficient linearly recursive algorithm by using repeated squaring:

$$
\operatorname{power}(x, n)= \begin{cases}1 & \text { if } n=0 \\ \left(\operatorname{power}\left(x,\left\lfloor\frac{n}{2}\right\rfloor\right)\right)^{2} \cdot x & \text { if } n>0 \text { is odd } \\ \left(\operatorname{power}\left(x,\left\lfloor\frac{n}{2}\right\rfloor\right)\right)^{2} & \text { if } n>0 \text { is even }\end{cases}
$$

For example,

$$
\begin{aligned}
& 2^{4}=2^{(4 / 2) 2}=\left(2^{4 / 2}\right)^{2}=\left(2^{2}\right)^{2}=4^{2}=16 \\
& 2^{5}=2^{1+(4 / 2) 2}=2\left(2^{4 / 2}\right)^{2}=2\left(2^{2}\right)^{2}=2\left(4^{2}\right)=32 \\
& 2^{6}=2^{(6 / 2) 2}=\left(2^{6 / 2}\right)^{2}=\left(2^{3}\right)^{2}=8^{2}=64 \\
& 2^{7}=2^{1+(6 / 2) 2}=2\left(2^{6 / 2}\right)^{2}=2\left(2^{3}\right)^{2}=2\left(8^{2}\right)=128
\end{aligned}
$$

RECURSIVE SQUARING METHOD

O (logn) recursive calls.

Algorithm $\operatorname{Power(x,n):~}$
I nput: A number x and integer $\mathrm{n}=0$
Output: The value x^{n}
if $\mathrm{n}=0 \quad$ then
return 1
if n is odd then
$y=\operatorname{Powe}(x,(n, 1) / 2)$
return $x \cdot y$
else
$y=\operatorname{Power}(x, n / 2)$
return $y \cdot y$
Each time we make a recursive call we halve the value of n; hence, we make $\log n$ recursive calls. That is, this method runs in $O(\log n)$ time.
It is important that we use a variable twice
here rather than calling the method twice.

RECURSIVE SQUARING METHOD

Example: power(2,13)
2 public static double power(double x, int n) \{ if $(\mathrm{n}==0$) return 1;
else \{ double partial $=$ power($\mathrm{x}, \mathrm{n} / 2$); double result $=$ partial $*$ partial;
if $(\mathrm{n} \% 2==1)$
result * $=x_{\text {; }}$ return result;
\}
\}

BINARY RECURSION

Binary recursion occurs whenever there are two recursive calls for each non-base case.
Example from before: the drawInterval method for drawing ticks on an English ruler.

EXAMPLE; RRAWING ENGLISH RULER

* Print the ticks and numbers like an English ruler:

1-inch ruler with major tick length 5;

USING RECURSION

drawl nterval(length)
I nput: length of a 'tick'
Output: ruler with tick of the given length in the middle and smaller rulers on either side

RECURSIVE DRAWING METHOD

Output

* The drawing method is based on the following recursive definition
An interval with a central tick length $\mathrm{L} \geq 1$ consists of:
+ An interval with a central tick length L-1
+ An single tick of length L
+ An interval with a central tick length L-1

Recursion

```
/** Draws an English ruler for the given number of inches and major tick length. */
public static void drawRuler(int nlnches, int majorLength) {
    drawLine(majorLength, 0);
            // draw inch 0 line and label
    for (int j = 1; j <= nlnches; j++) {
        drawlnterval(majorLength - 1); // draw interior ticks for inch
        drawLine(majorLength,j); // draw inch j line and label
    }
}
private static void drawlnterval(int centralLength) {
    if (centralLength >= 1) {
        // otherwise,do-nothing
        drawInterval(centralLength - 1);
                            // recursively drawtop interval
        drawLine(centralLength);
        //draw center tick line (without label)
        drawlnterval(centralLength - 1); // recursively draw bottom interval
    }
}
private static void drawLine(int tickLength, int tickLabel) {
    for (int j = 0; j < tickLength; j++)
        System.out.print("-");
    if (tickLabel >= 0)
        System.out.print(" " + tickLabel);
    System.out.print("\n");
}
/** Draws a line with the given tick length (but no label). */
private static void drawLine(int tickLength) {
    drawLine(tickLength, -1);
}
```


ANOTHER BINARY RECURSIVE METHOD

* Problem: Add all the numbers in an integer array A
* Solution strategy: Recursively compute the sum of the first half, and the sum of the second half, and add those sums together.

Example trace:

Algorithm BinarySum (A, i, n):
I nput: An array A and integers i and n
Output: The sum of the n integers in A starting at index i
if $\mathrm{n}=1$ then return $A[i]$
return BinarySum(A, i, n/ 2) +
BinarySum(A, $\mathrm{i}+\mathrm{n} / 2, \mathrm{n} / 2$)

Rinanısım(nata \cap 8)
Space: binarySum uses O(logn) amount of additional space, which is a big improvement over the $O(n)$ space used by the linearSum method.
Time : However, the running time of is $O(n)$.

MULTIPLE RECURSION

Multiple recursion : a process in which a method may make more than two recursive calls.

* Motivating example: summation puzzles
$\times p o t+p a n=b i b$
$\times d o g+c a t=p i g$
\times boy + girl $=$ baby

To solve such a puzzle, we need to assign a unique digit (that is, $0,1, . . ., 9$) to each letter in the equation, in order to make the equation true.

* Multiple recursion:
+ makes potentially many recursive calls
+ not just one or two

ALGORITHM FOR MULTIPLE RECURSION

If the number of possible configurations is not too large, however, we can use a computer to simply enumerate all the possibilities and test each one.

Algorithm PuzzleSolve (k, S, U) :

Input: An integer k, sequence S, and set U
Output: An enumeration of all k-length extensions to S using elements in U
without repetitions
for each e in U do
Add e to the end of S
Remove e from U
$\{e$ is now being used $\}$
if $k==1$ then
Test whether S is a configuration that solves the puzzle
if S solves the puzzle then add S to output \{a solution \}
else
PuzzleSolve $(k-1, S, U)$
\{a recursive call $\}$
Remove e from the end of S
Add e back to U

Recursion trace for an execution of PuzzleSolve($3, S, U$), where S is empty and $U=\{a, b, c\}$.

PITFALLS OF RECURSION

Recursion can easily be misused in various ways.

ELEMENT UNIQUENESS PROBLEM, REVISITED

RROBLEM: Given an array with n elements, are all the elements of that collection are distinct from each other?

```
public static boolean unique1(int[ ] data) {
    int n= data.length;
    for(int j=0; j < n-1; j++)
        for (int k=j+1;k<n;k++) O(n')
            if (data[j] == data[k])
                return false;
    return true;
                    brute force method
```

```
public static boolean unique2(int[ ] data)
    int \(\mathrm{n}=\) data.length;
    int[ ] temp = Arrays.copyOf(data, n);
    Arrays.sort(temp);
    for (int \(\mathrm{j}=0 ; \mathrm{j}<\mathrm{n}-1 ; \mathrm{j}++\) )
        if \((\) temp \([j]==\) temp \([j+1]\) )
                            O(nlogn)
            return false;
    return true:
\}
```

/** Returns true if there are no duplicate values from data[low] through data[high].*/
public static boolean unique3(int[] data, int low, int high) {
if (low >= high) return true; // at most one item
else if (!unique3(data, low, high-1)) return false;
// duplicate in first n-1
O(2n)
else if (!unique3(data, low+1, high)) return false; // duplicate in last n-1
else return (data[low] != data[high]);
// do first and last differ?
Recursive unique3 for testing element uniqueness

```

\section*{ANALYSIS OF RECURSIVE UNIQUE3}

\section*{unique3 is a terribly inefficient use of recursion!!}

Let \(n\) denote the number of entries under consideration:
\[
n=1+\text { high }- \text { low }
\]

Base case ( \(n=1\) ): running time of unique3 is \(\alpha(1)\) since there are no recursive calls and the nonrecursive part of each call uses \(\alpha\) (1) time.
General case ( \(n>1\) ): a single call to unique3 for a problem of size \(n\) may result in two recursive calls on problems of size \(n-1\), and so on. Thus, in the worst case, the total number of method calls is given by the geometric summation:
\[
1+2+4+\cdots+2^{n-1}=2^{n}-1=O\left(2^{n}\right)
\]

\section*{COMPUTING FIBONACCI NUMBERS}

Fibonacci numbers are defined recursively:
\[
\begin{aligned}
& F_{0}=0 \\
& F_{1}=1 \\
& F_{i}=F_{i-1}+F_{i-2} \quad \text { for } i>1 .
\end{aligned}
\]
```

/** Returns the nth Fibonacci number (inefficiently). */
public static long fibonacciBad(int n) {
if (}\textrm{n}<=1\mathrm{)
return n;
else
return fibonacciBad(n-2) + fibonacciBad(n-1);
}

```

\section*{Recursive algorithm (inefficiently):}
```

Algorithm BinaryFib(k):
Input: Nonnegative integer k
Output: The k th Fibonacci
number F_{k}
if $k=1$ then
return k
else
return BinaryFib $(k-1)+$
BinaryFib(k-2)

```
* Let \(n_{k}\) be the number of recursive calls by BinaryFib(k)
\[
\begin{aligned}
& +n_{0}=1 \\
& +n_{1}=1 \\
& +n_{2}=n_{1}+n_{0}+1=1+1+1=3 \\
& +n_{3}=n_{2}+n_{1}+1=3+1+1=5 \\
& +n_{4}=n_{3}+n_{2}+1=5+3+1=9 \\
& +n_{5}=n_{4}+n_{3}+1=9+5+1=15 \\
& +n_{6}=n_{5}+n_{4}+1=15+9+1=25 \\
& +n_{7}=n_{6}+n_{5}+1=25+15+1=41 \\
& +n_{8}=n_{7}+n_{6}+1=41+25+1=67
\end{aligned}
\]
* Note that \(n_{k}\) at least doubles every other time
* That is, \(n_{k}>2^{k / 2}\). It is exponential!

\section*{A BETTER FIBONACCI ALGORITHM}

Use linear recursion instead
Algorithm LinearFibonacci(k):
I nput: A nonnegative integer k
Output: Pair of Fibonacci numbers \(\left(F_{k}, F_{k-1}\right)\)
if \(k=1\) then return (k, 0)

Each invocation
1) makes only one recursive call and
2) decreases the argument \(n\) by 1.
else
\((\mathrm{i}, \mathrm{j})=\) LinearFibonacci \((\mathrm{k}-1)\)
return ( \(\mathrm{i}+\mathrm{j}, \mathrm{i}\) )
```

/** Returns array containing the pair of Fibonacci numbers, F(n) and F(n-1). */
public static long[] fibonacciGood(int n) {
if (}\textrm{n}<=1\mathrm{) {
runs in O(n) time.
long[] answer = {n, 0};
return answer;
} else {
long[] temp = fibonacciGood(n - 1);
// returns {F}\mp@subsup{F}{n-1}{},\mp@subsup{F}{n-2}{}
long[] answer = {temp[0] + temp[1], temp[0]};
// we want {F
return answer;
}
}

```
```

