RECURSION (CH 5)

A pattern for solving algorithm design problems

Recursion: when a method calls itself.

Classic example – the factorial function:
\[n! = 1 \cdot 2 \cdot 3 \cdot \cdots \cdot (n-1) \cdot n \]

Recursive definition:
\[
f(n) = \begin{cases}
1 & \text{if } n = 0 \\
 n \cdot f(n-1) & \text{else}
\end{cases}
\]

As a Java method:
```java
public static int factorial(int n) throws IllegalArgumentException {
    if (n < 0)
        throw new IllegalArgumentException(); // argument must be nonnegative
    else if (n == 0)
        return 1; // base case
    else
        return n * factorial(n-1); // recursive case
}
```
CONTENT OF A RECURSIVE METHOD

- Base case(s)
 - Values of the input variables for which we perform no recursive calls are called base cases (there should be at least one base case).
 - Every possible chain of recursive calls must eventually reach a base case.

- Recursive calls
 - Calls to the current method.
 - Each recursive call should be defined so that it makes progress towards a base case.
Recursion trace

- A box for each recursive call
- An arrow from each caller to callee
- An arrow from each callee to caller showing return value

Example

```
recursiveFactorial(4)
  call
recursiveFactorial(3)
    call
recursiveFactorial(2)
      call
recursiveFactorial(1)
        call
recursiveFactorial(0)
          return 1

return 1*1 = 1
return 2*1 = 2
return 3*2 = 6
return 4*6 = 24
```

final answer
VISUALIZING BINARY SEARCH

- We consider three cases:
 - If the target equals \(\text{data[mid]} \), then we have found the target.
 - If \(\text{target} < \text{data[mid]} \), then we recur on the first half of the sequence.
 - If \(\text{target} > \text{data[mid]} \), then we recur on the second half of the sequence.

INPUT: Values stored in sorted order within an array (sequence is *sorted* and *indexable*).
OUTPUT: Location of the target value.
BINARY SEARCH

Search for an integer in an ordered list

```java
/**
 * Returns true if the target value is found in the indicated portion of the data array.
 * This search only considers the array portion from data[low] to data[high] inclusive.
 */

public static boolean binarySearch(int[] data, int target, int low, int high) {
    if (low > high) {
        return false; // interval empty; no match
    } else {
        int mid = (low + high) / 2;
        if (target == data[mid]) {
            return true; // found a match
        } else if (target < data[mid]) {
            return binarySearch(data, target, low, mid - 1); // recur left of the middle
        } else {
            return binarySearch(data, target, mid + 1, high); // recur right of the middle
        }
    }
}```
Runs in $O(\log n)$ time.

- The remaining portion of the list is of size $\text{high} - \text{low} + 1$.
- After one comparison, this becomes one of the following:

\[
(mid - 1) - \text{low} + 1 = \left\lfloor \frac{\text{low} + \text{high}}{2} \right\rfloor - \text{low} \leq \frac{\text{high} - \text{low} + 1}{2}
\]

\[
\text{high} - (mid + 1) + 1 = \text{high} - \left\lfloor \frac{\text{low} + \text{high}}{2} \right\rfloor \leq \frac{\text{high} - \text{low} + 1}{2}.
\]

- Thus, each recursive call divides the search region in half; hence, there can be at most $\log n$ levels.
TYPES OF RECURSION

- **Linear recursion**: If a recursive call starts at most one other.

- **Binary recursion**: If a recursive call may start two others.

- **Multiple recursion**: If a recursive call may start three or more others.

Terminology reflects the structure of the recursion trace, not the asymptotic analysis of the running time.
LINEAR RECURSION

- Test for base cases
  - Begin by testing for a set of base cases (there should be at least one).
  - Every possible chain of recursive calls must eventually reach a base case, and the handling of each base case should not use recursion.

- Recur once
  - Perform a single recursive call
  - This step may have a test that decides which of several possible recursive calls to make, but it should ultimately make just one of these calls
  - Define each possible recursive call so that it makes progress towards a base case.
Algorithm `linearSum(A, n)`:

Input:
- Array, `A`, of integers
- Integer `n` such that `0 ≤ n ≤ |A|`

Output:
- Sum of the first `n` integers in `A`.

Recursion trace of `linearSum(data, 5)` called on array `data = [4, 3, 6, 2, 8]`

```
1 /* Returns the sum of the first n integers of the */
2 public static int linearSum(int[] data, int n) {
3 if (n == 0) {
4 return 0;
5 } else {
6 return linearSum(data, n-1) + data[n-1];
7 }
```
REVERSING AN ARRAY

Problem: Reverse the $n$ elements of an array, so that the first element becomes the last, the second element becomes second to the last, and so on.

Algorithm reverseArray(A, i, j):
Input: An array A and nonnegative integer indices i and j
Output: The reversal of the elements in A starting at index i and ending at

if i < j then
    Swap A[i] and A[j]
    reverseArray(A, i + 1, j - 1)
return

Terminates after a total of $(1 + \lfloor \frac{n}{2} \rfloor)$ recursive calls. Because each call involves a constant amount of work, the entire process runs in $O(n)$ time.
DEFINING ARGUMENTS FOR RECURSION

- In creating recursive methods, it is important to define the methods in ways that facilitate recursion.
- This sometimes requires we define additional parameters that are passed to the method.
- For example, we defined the array reversal method as `reverseArray(A, i, j)`, not `reverseArray(A)`

```java
/** Reverses the contents of subarray data[low] through data[high] inclusive. */
public static void reverseArray(int[] data, int low, int high) {
 if (low < high) {
 int temp = data[low];
 data[low] = data[high];
 data[high] = temp;
 reverseArray(data, low + 1, high - 1); // recur on the rest
 }
}
```
Problem: Raise a number $x$ to an arbitrary nonnegative integer $n$.

- The power function, $\text{power}(x,n) = x^n$, can be defined recursively:

$$\text{power}(x,n) = \begin{cases} 1 & \text{if } n = 0 \\ x \cdot \text{power}(x,n-1) & \text{else} \end{cases}$$

- This leads to an power function that runs in $O(n)$ time (for we make $n$ recursive calls)
- We can do better than this, however
RECURSIVE SQUAREING

OBSERVATION: We consider the expression \((x^k)^2\), where \(k = \text{floor}(\frac{n}{2})\).

When \(n\) is odd, \(\text{floor}(\frac{n}{2}) = \frac{n-1}{2}\), \((x^k)^2 = x^{n-1}\) and therefore \(x^n = (x^k)^2 \ast x\).

When \(n\) is even, \(\text{floor}(\frac{n}{2}) = \frac{n}{2}\) and therefore \((x^k)^2 = (x^{\frac{n}{2}})^2 = x^n\).

\(\checkmark\) We can derive a more efficient linearly recursive algorithm by using repeated squaring:

\[
\text{power}(x,n) = \begin{cases} 
1 & \text{if } n = 0 \\
\left(\text{power}(x, \left\lfloor \frac{n}{2} \right\rfloor)\right)^2 \cdot x & \text{if } n > 0 \text{ is odd} \\
\left(\text{power}(x, \left\lfloor \frac{n}{2} \right\rfloor)\right)^2 & \text{if } n > 0 \text{ is even}
\end{cases}
\]

\(\checkmark\) For example,

\[
\begin{align*}
2^4 &= 2^{(4/2)^2} = (2^{4/2})^2 = (2^2)^2 = 4^2 = 16 \\
2^5 &= 2^{1+(4/2)^2} = 2(2^{4/2})^2 = 2(2^2)^2 = 2(4^2) = 32 \\
2^6 &= 2^{(6/2)^2} = (2^{6/2})^2 = (2^3)^2 = 8^2 = 64 \\
2^7 &= 2^{1+(6/2)^2} = 2(2^{6/2})^2 = 2(2^3)^2 = 2(8^2) = 128
\end{align*}
\]
**Algorithm** Power(x, n):

**Input:** A number x and integer n = 0

**Output:** The value $x^n$

if $n = 0$ then
  return 1

if $n$ is odd then
  $y = \text{Power}(x, (n - 1)/2)$
  return $x \cdot y \cdot y$

else
  $y = \text{Power}(x, n/2)$
  return $y \cdot y$

Each time we make a recursive call we halve the value of $n$; hence, we make $\log n$ recursive calls. That is, this method runs in $O(\log n)$ time.

It is important that we use a variable twice here rather than calling the method twice.
Example: power(2, 13)

```java
public static double power(double x, int n) {
 if (n == 0) {
 return 1;
 } else {
 double partial = power(x, n/2);
 double result = partial * partial;
 if (n % 2 == 1) {
 result *= x;
 }
 return result;
 }
}
```
Binary recursion occurs whenever there are two recursive calls for each non-base case.

Example from before: the `drawInterval` method for drawing ticks on an English ruler.
## Example: Drawing English Ruler

Print the ticks and numbers like an English ruler:

- **1-inch ruler with major tick length 5:**

- **2-inch ruler with major tick length 4:**

- **3-inch ruler with major tick length 3:**
**USING RECURSION**

**drawInterval**(length)

*Input*: length of a ‘tick’

*Output*: ruler with tick of the given length in the middle and smaller rulers on either side

```plaintext
if(length > 0) then
 drawInterval(length - 1)
 draw line of the given length
 drawInterval(length - 1)
```
The drawing method is based on the following recursive definition:

- An interval with a central tick length \( L > 1 \) consists of:
  - An interval with a central tick length \( L-1 \)
  - An single tick of length \( L \)
  - An interval with a central tick length \( L-1 \)

(Previous pattern repeats)
Recursion

A recursive method for drawing ticks on an English ruler

```java
/** Draws an English ruler for the given number of inches and major tick length. */
public static void drawRuler(int nInches, int majorLength) {
 drawLine(majorLength, 0); // draw inch 0 line and label
 for (int j = 1; j <= nInches; j++) {
 drawInterval(majorLength - 1); // draw interior ticks for inch
 drawLine(majorLength, j); // draw inch j line and label
 }
}

private static void drawInterval(int centralLength) {
 if (centralLength >= 1) { // otherwise, do nothing
 drawInterval(centralLength - 1); // recursively draw top interval
 drawLine(centralLength); // draw center tick line (without label)
 drawInterval(centralLength - 1); // recursively draw bottom interval
 }
}

private static void drawLine(int tickLength, int tickLabel) {
 for (int j = 0; j < tickLength; j++)
 System.out.print("-");
 if (tickLabel >= 0)
 System.out.print(" " + tickLabel);
 System.out.println("\n");
}
/** Draws a line with the given tick length (but no label). */
private static void drawLine(int tickLength) {
 drawLine(tickLength, -1);
}
```

Note the two recursive calls
**Problem**: Add all the numbers in an integer array A

**Solution strategy**: Recursively compute the sum of the first half, and the sum of the second half, and add those sums together.

**Algorithm** `BinarySum(A, i, n)`:

- **Input**: An array A and integers i and n
- **Output**: The sum of the n integers in A starting at index i

```
if n = 1 then
 return A[i]

return BinarySum(A, i, n/2) + BinarySum(A, i + n/2, n/2)
```

**Example trace**: `BinarySum(data, 0, 8)`

**Space**: `binarySum` uses $O(\log n)$ amount of additional space, which is a big improvement over the $O(n)$ space used by the `linearSum` method.

**Time**: However, the running time of is $O(n)$. 
**Multiple recursion**: a process in which a method may make more than two recursive calls.

- **Motivating example: summation puzzles**
  - \(pot + pan = bib\)
  - \(dog + cat = pig\)
  - \(boy + girl = baby\)

To solve such a puzzle, we need to assign a unique digit (that is, 0, 1, \ldots, 9) to each letter in the equation, in order to make the equation true.

- **Multiple recursion**:
  - makes potentially many recursive calls
  - not just one or two
If the number of possible configurations is not too large, however, we can use a computer to simply enumerate all the possibilities and test each one.

Algorithm PuzzleSolve\( (k, S, U) \):

**Input:** An integer \( k \), sequence \( S \), and set \( U \)

**Output:** An enumeration of all \( k \)-length extensions to \( S \) using elements in \( U \) without repetitions

for each \( e \) in \( U \) do
- Add \( e \) to the end of \( S \)
- Remove \( e \) from \( U \)
- if \( k == 1 \) then
  - Test whether \( S \) is a configuration that solves the puzzle
  - if \( S \) solves the puzzle then
    - add \( S \) to output \( \{ e \text{ is now being used} \} \)
  - else
    - PuzzleSolve\( (k - 1, S, U) \) \( \{ \text{a recursive call} \} \)
    - Remove \( e \) from the end of \( S \)
    - Add \( e \) back to \( U \) \( \{ e \text{ is now considered as unused} \} \)
Recursion trace for an execution of \texttt{PuzzleSolve(3, S, U)}, where \( S \) is empty and \( U = \{a, b, c\} \).
cbb + ba = abc
799 + 98 = 997

a, b, c stand for 7, 8, 9; not necessarily in that order

might be able to stop sooner
Recursion can easily be misused in various ways.
ELEMENT UNIQUENESS PROBLEM, REVISITED

PROBLEM: Given an array with $n$ elements, are all the elements of that collection are distinct from each other?

1. **Brute Force Method**
   ```java
 public static boolean unique1(int[] data) {
 int n = data.length;
 for (int j=0; j < n-1; j++)
 for (int k=j+1; k < n; k++)
 if (data[j] == data[k])
 return false;
 return true;
 }
 ``

 Time Complexity: $O(n^2)$

2. **Sorting Based**
   ```java
   public static boolean unique2(int[] data) {
       int n = data.length;
       int[] temp = Arrays.copyOf(data, n);
       Arrays.sort(temp);
       for (int j=0; j < n-1; j++)
           if (temp[j] == temp[j+1])
               return false;
       return true;
   }
   ``

   Time Complexity: $O(n \log n)$

3. **Recursive Unique3**
   ```java
 public static boolean unique3(int[] data, int low, int high) {
 if (low >= high) return true; // at most one item
 else if (!unique3(data, low, high-1)) return false; // duplicate in first n-1
 else if (!unique3(data, low+1, high)) return false; // duplicate in last n-1
 else return (data[low] != data[high]); // do first and last differ?
 }
 ``

 Time Complexity: $O(2^n)$

Recursive unique3 for testing element uniqueness
ANALYSIS OF RECURSIVE UNIQUE3

unique3 is a terribly inefficient use of recursion!!

Let \(n \) denote the number of entries under consideration:
\[
 n = 1 + \text{high} - \text{low}
\]

Base case (\(n = 1 \)): running time of unique3 is \(\Theta(1) \) since there are no recursive calls and the nonrecursive part of each call uses \(\Theta(1) \) time.

General case (\(n > 1 \)): a single call to unique3 for a problem of size \(n \) may result in two recursive calls on problems of size \(n-1 \), and so on. Thus, in the worst case, the total number of method calls is given by the geometric summation:
\[
1 + 2 + 4 + \cdots + 2^{n-1} = 2^n - 1 = \Theta(2^n)
\]
Fibonacci numbers are defined recursively:

\[
F_0 = 0 \\
F_1 = 1 \\
F_i = F_{i-1} + F_{i-2} \quad \text{for } i > 1.
\]

Recursive algorithm (inefficiently):

Algorithm \text{BinaryFib}(k):

\begin{itemize}
 \item \textbf{Input:} Nonnegative integer \(k\)
 \item \textbf{Output:} The \(k\)th Fibonacci number \(F_k\)
\end{itemize}

\begin{itemize}
 \item if \(k = 1\) then
 \item \hspace{1em} return \(k\)
 \item else
 \item \hspace{1em} return \text{BinaryFib}(k-1) + \text{BinaryFib}(k-2)
\end{itemize}
Let n_k be the number of recursive calls by BinaryFib(k)

- $n_0 = 1$
- $n_1 = 1$
- $n_2 = n_1 + n_0 + 1 = 1 + 1 + 1 = 3$
- $n_3 = n_2 + n_1 + 1 = 3 + 1 + 1 = 5$
- $n_4 = n_3 + n_2 + 1 = 5 + 3 + 1 = 9$
- $n_5 = n_4 + n_3 + 1 = 9 + 5 + 1 = 15$
- $n_6 = n_5 + n_4 + 1 = 15 + 9 + 1 = 25$
- $n_7 = n_6 + n_5 + 1 = 25 + 15 + 1 = 41$
- $n_8 = n_7 + n_6 + 1 = 41 + 25 + 1 = 67$.

Note that n_k at least doubles every other time.

That is, $n_k > 2^{k/2}$. It is exponential!
A BETTER FIBONACCI ALGORITHM

Use linear recursion instead

Algorithm LinearFibonacci(k):
 Input: A nonnegative integer k
 Output: Pair of Fibonacci numbers \((F_k, F_{k-1})\)
 if \(k = 1\) then
 return \((k, 0)\)
 else
 \((i, j) = \text{LinearFibonacci}(k - 1)\)
 return \((i + j, i)\)

Each invocation
1) makes only one recursive call and
2) decreases the argument \(n\) by 1.

runs in \(O(n)\) time.