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THE RECURSION PATTERN EXAMPLE
Recursion: when a method calls itself
Classic example —the factorial function:
n'=1-2-3---.. (n_l). N
Recursive definition: ¢y} 1 Ifn=0
n-f(n-1) else

As a Java method:

1 public static int factorial(int n) throws lllegalArgumentException {

2 if(n<0)

3 throw new lllegalArgumentException();  // argument must be nonnegative
4 else if (n == 0)

5 return 1; // base case

6 else

7 return n x factorial(n—1); // recursive case

8}



Base case(s)

Values of the input variables for which we perform
no recursive calls are called base cases (there
should be at least one base case).

Every possible chain of recursive calls must
eventually reach a base case.

Recursive calls
Calls to the current method.

Each recursive call should be defined so that it
makes progress towards a base case.
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VISUALIZING RECURSION

Recursion trace Example
A box for each \CaH return 4*6 = 24 —— final answer
I’eCUI’Sive Ca” (recursiveFactoriaI (4)
An arrow from each _ et _ retum 32.= 6
” i ”ee (recursweFactonaI (3)
caller 10 ca \call return 2*1 = 2
An arrow from eaCh (recursiveFactorial (2)
callee to caller e retun 141 =1
ShOWin return Value (recursiveFactoriaI (1)
g \call return 1

[recursiveFactoriaI (0)
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VISUALIZING BINARY SEARCH

We consider three cases:
If the target equals data[mid], then we have found the target.
If target < data[mid], then we recur on the first half of the

seguence.
If target > data[mid], then we recur on the second half of the
Sequence 1 2 3 4 5 6 7 B8 9 10 11 12 13 14 15
2145|789 |12|14]17|19]|22|25|27|28|33|37
INPUT: Values stored i 7 .
in sorted order within =~ m -
_ |2]a]s]7]s]o]i2]14]1z]10]22]25]27]28]33] 37|
an array (sequence is | - N
e 1] i ig
.?artea'and [2[a[s|[7]s8]9]12]1afag]19]22]25]27]28]33]37|
Indexable,) R
OUTPUT Locatlon Of 2145|789 12]14]17|19]|22]|25|27|28|33|37
the target value. o hih
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BINARY SEARCH

Search for an integer in an ordered list

CooNAAWM b WN -

/*%*

* Returns true if the target value is found in the indicated portion of the data array.
* This search only considers the array portion from data[low] to data[high] inclusive.
*
/
public static boolean binarySearch(int[ ] data, int target, int low, int high) {
if (low > high)
return false; // interval empty; no match
else {
int mid = (low + high) / 2;
if (target == data[mid])
return true; // found a match
else if (target < data[mid])
return binarySearch(data, target, low, mid — 1); // recur left of the middle
else
return binarySearch(data, target, mid + 1, high); // recur right of the middle
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ANALYZING BINARY SEARCH

Runs in O(log n) time.
The remaining portion of the list is of size high — low + 1
After one comparison, this becomes one of the following:

low + high
2

high — low + 1
2

(mid—l)—low—kl:{ J—Iow£

high — (mid+ 1)+ 1 = high —

Llow—khith _ high — low 4+ 1
—_— 2 -

Thus, each recursive call divides the search region in half;
hence, there can be at most log n levels



TYPES OF RECURSION

Linear recursion :If a recursive call starts at most one
other.

Binary recursion:. If a recursive call may start two others.

Multiple recursion:If a recursive call may start three or
more others.

Terminology reflects the structure of the recursion trace, not the
asymptotic analysis of the running time.
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LINEAR RECURSION

Test for base cases

Begin by testing for a set of base cases (there should be at least
one).

Every possible chain of recursive calls must eventually reach a
base case, and the handling of each base case should not use
recursion.

Recur once
Perform a single recursive call

This step may have a test that decides which of several possible
recursive calls to make, but it should ultimately make just one of
these calls

Define each possible recursive call so that it makes progress
towards a base case.
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EXAMPLE OF LINEAR RECURSION

Algorithm linearSum(A, n): . .

In%ut: (A1) Recursion trace of linearSum(data, 5)
Array, A, of integers called on array data = [4, 3, 6, 2, 8]
Integer n such that

0<n< |A| \ return 15 + data[4] = 15 + 8 = 23

Output: ( linearSum(data, 5)

sSum of the first n _ =
integers in A. ( “nearsui(data . return 13 + data[3] = 13 + 2 =15
¥ return 7 + data[2] =7 + 6 = 13
( linearSum(data, 3)

/#= Returns the sum of the first n integers of the ¥ return 4 + data[l] = 4 + 3 = 7

public static int linearSum(int[ | data, int n) { I arSum(d >

if (n == 0) ( inearSum(data, 2)

return \ return 0 + data0] = 0 + 4 = 4

else (IinearSum(data, 1) *

return linearSum(data, n—1) + data[n—1];
| \ return 0

10
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REVERSING AN ARRAY

Problem: Reverse the n elements of an array, so that the first element
becomes the last, the second element becomes second to the last, and

SO 0OnN. 0 1 2 3 4 5 6 7
413|e6|2|7|8]|9]|s

Algorithm reverseArray(A, 1, j):

Input: An array A and nonnegative
Integer indices | and | s|o|6[2|7[8]3]4

Output: The reversal of the elements in slols|2l7]6]3]a
A starting at index i and ending at

S13|6 2T 894

LA

DlslT|2(6]|3]4

if i < j then :
Swap A[i] and A[ j] Terminates after a total of (1 +

n .
reverseArray(A, i + 1, j — 1) floor (5)) recursive calls. Because
return each call involves a constant amount

of work, the entire process runs in
o(n) time.

11
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DEFINING ARGUMENTS FOR RECURSION
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Goldwasser

In creating recursive methods, it is important to define the methods in
ways that facilitate recursion.

This sometimes requires we define additional parameters that are
passed to the method.

For example, we defined the array reversal method as reverseArray(A,
I, ]), not reverseArray(A)

/%% Reverses the contents of subarray data[low] through data[high] inclusive. %/
public static void reverseArray(int[ | data, int low, int high) {
if (low < high) { // if at least two elements in subarray
int temp = dataflow]; // swap data[low] and datalhigh]
data[low] = datalhigh];
datafhigh] = temp;
reverseArray(data, low + 1, high — 1); // recur on the rest
}
}

12



Recursion © 2014 Goodrich, Tamassia,
Goldwasser

RECURSIVE ALGORITHMS FOR COMPUTING POWERS

Problem: Raise a number x to an arbitrary nonnegative integer n.

The power function, power(x,n)=x", can be defined recursively:

public static double power{double =, int n) |

1 ifn=0 - pu
power(X,n) = 3 if(n==0)
X- power(x,n—-1) else 4 return 1;
5 else
6 return x * power(x, n—1});

T}

This leads to an power function that runs in O(n) time (for we
make n recursive calls)

We can do better than this, however

13
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RECURSIVE SQUARING

OBSERVATION: We consider the expression (x")2 , where k = floor(%).
When nis odd, floor (3) =2, (x*)” = x"~1 and therefore x™ = (x*)" + x.

ns 2
When nis even, floor(g) =§ and therefore (x*)* = (xE) = x™.

We can derive a more efficient linearly recursive algorithm by
using repeated squaring:

I ifn=20
)
power(x,n) = { (power(x,|5])) -x ifn=>0isodd

(power (x, | 5]) }3 if n > 0 is even

For example,
24 = 92(4/2)2 = (24/2)2 — (22)2 =42=16
25 = 21+(4/2)2 — 2(24/2)2 — 2(22)2 — 2(42) =32
26 = 2(6/2)2 = (26/2)2 — (23)2 =82=64

27 = 21+(6/2)2 — 2(26/2)2 — 2(23)2 — 2(82) =128 14
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O(logn) recursive calls.

Algorithm Power(x, n):
Input: A number x and integer
n=0 Each time we make a
Output: The value x" recursive call we halve
ifn=0 then the value of n; hence,
~ returnl we make log n recursive
If nis odd then calls. That is, this

y = Powef(X, )/ 2) method runs in O(log n)

else
y = Power(x, n/ 2)
returny -y

15
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RECURSIVE SQUARING METHOD )

| P 4 - R =

Example: power(2, 13)

. public static double power(double x, int n) {
3 if(n==0) 5 return 64 + 64 2 = 8192
4 return 1; ( power(2, 13)
5 else { H return 8 = 8 = 64
6 double partial = power(x, n/2); ( power(2, 6) e ~
1 double result = partial  partial; q return 2 + 2 2 = §
8 if(n%2==1) ( power(2, 3) T~
0 result £= x * return 1 152 = 3
10 return result; ( power(2, 1) 4

* return 1

( power(2, 0)

16
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BINARY RECURSION °

Binary recursion occurs whenever there are two
recursive calls for each non-base case.

Example from before: the drawinterval method for
drawing ticks on an English ruler.

18



EXAMPLE; DRAWING ENGLISH RULER

Recursion

Print the ticks and numbers like an English ruler:

1-inch ruler with major

tick length 5;
2-inch ruler ——— 0 —— 0
with major - -
tick length - B
4, o .
ey
s ey

uiuvvasscel

_ 3-inch ruler with major
--- 2 tick length 3.

19
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Recursion -

Slide by Matt Stallmann er

USING RECURSION included with permission.

drawlInterval(length)
Input: length of a ‘tick’
Output: ruler with tick of the given length in the middle and
smaller rulers on either side

-0 -—— 0

drawlInterval(length)

If( length > 0 ) then
drawlnterval ( length — 1)

draw line of the given length

drawlInterval (length — 1)



RECURSIVE DRAWING METHOD

Recursion

( drawlInterval(3) )

The drawing method ]
IS based on the
following recursive
definition

An interval with a
central tick length

L >1 consists of:
An interval with a
central tick length L-1
An single tick of
length L
An interval with a '

>—>( drawlnterval(2) )

(4

rawlnterval(1) )

L

L

>—>( drawlnterval(0) )

>—>( drawline(1)

) —

L

»—»( drawlInterval(0) )

=

drawline(2) )

0—>( drawlnterval(1) )

4

L

b—»( drawlInterval(0) J

>—>( drawline(1)

) —

L

>—>( drawlnterval(0) )

»—»( drawlLine(3) J

y

central tick length L-1 -

>—>( drawlnterval(2) )

(previous pattern repeats)

© 2014 Goodr ..., ... T o .

Output

21




Recursion © 2014 Goodrich, Tamassia,

A RECURSIVE METHOD FOR DRAWING TICKS ON Goldwasser
AN ENGLISH RULER

(lelile RN Be TRV, I S VN

/#% Draws an English ruler for the given number of inches and major tick length. */
public static void drawRuler(int ninches, int majorLength) {

drawLine(majorLength, 0); // draw inch 0 line and label
for (int j = 1; j <= nlnches; j++) {
drawlnterval(majorLength — 1); // draw interior ticks for inch
drawLine(majorLength, j); // draw inch j line and label
}
}
private static void drawlnterval(int centralLength) { NOte *he TWO
if (centralLength >= 1) { // otherwi ng .
drawlnterval(centralLength — 1); recursivel interval P@CUI“SIV@ Ca”s
drawLine(centralLength); center tick line (without label)

drawlnterval(centralLength — 1); // recursively draw bottom interval

}
}

private static void drawLine(int tickLength, int tickLabel) {
for (int j = 0; j < tickLength; j++)
System.out.print("-");
if (tickLabel >= 0)
System.out.print(" " + tickLabel);
System.out.print("\n");
}
/#* Draws a line with the given tick length (but no label). */
private static void drawLine(int tickLength) {
drawLine(tickLength, —1);
}

22
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ANOTHER BINARY RECURSIVE METHOD

Problem: Add all the numbers in an integer array A

Solution strategy: Recursively compute the sum of the first half, and the
sum of the second half, and add those sums together.

Example trace:
Algorithm BinarySum(A, i, n): RinarvSumf(data N Q)

Input: An array A and integersi and n ~ Space: binarySum uses O(logn)
Output: The sum of the n integers in A amount of additional space,
starting at index i which is a big improvement over
If n =1 then the O(n) space used by the
return Al linearSum method.
return BinarySum(A, I, n/ 2) + Time : However, the running time
BinarySum(A, i + n/ 2, n/ 2) @f is O(n). J

23
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MULTIPLE RECURSION ’

Multiple recursion : a process in which a method may
make more than two recursive calls.

Motivating example: summation puzzles

pot+ pan = b/,b —— | To solve such a puzzle, we need to assign a
dog + cat = pig unique digit (that is, 0,1, . . . ,9) to each
boy + girl = baby letter in the equation, in order to make the
equation true.

Multiple recursion:

makes potentially many recursive calls
not just one or two

24
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ALGORITHM FOR MULTIPLE RECURSION o

If the number of possible configurations is not too large, however, we can
use a computer to simply enumerate all the possibilities and test each one.

Algorithm PuzzleSolve(k, S, U):
Inpui: Aninteger k, sequence S, and set U
Output: An enumeration of all k-length extensions to S using elements in U
without repetitions

for each ¢ in U do
Add e to the end of §
Remove ¢ from U {e is now being used}
if k== 1 then
Test whether § is a configuration that solves the puzzle
if § solves the puzzle then

add S to output {a solution]}
else
PuzzleSolve(k — 1. 5, U) {a recursive call}
Remove ¢ from the end of §
Add e back to U {e 1s now considered as unused}

25



Recursion trace for an execution of PuzzleSolve(3, S, V),
where Sis empty and U ={a,b,c}.

initial u.'.uI]+

e A ™
hPLEﬂESDEE{E.i -,:.,I:u,n:},g.
4—-""’;_ + __ﬁ:““-—h
(F'LEI|E5-:}|UEI:2. a, [I:u.n:}]) ."EF:'JEI eSolve(2, b, [a.c:-]!_. (F'LIE|E5-:}|UEI:2. c {a.:-}})

(PJIIESDWE[I ab {.;}D iF‘uzzIeS:er{l. ba, [n::-]jJ (F‘LzzIeSc}IvE[l ca {::-}})
abc bac cab

(PJEI eSolve(l, ac {:-}]l)l iF‘uzzIeS:u ve(l, be, [a}}j (PLEE|E5{:-|VE[1. cb, a}]l)
ach bea cha
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Recursion
EXAMPLE included with permission.
cbb + ba = abc a,b,c stand for 7,8,9; not
799 + 98 = 997 necessarily in that order
[ {a,b,c}
/ A \
[a] {b,c} [b] {a,c} [c] {a,b}
a=1, b=7% e=+
— \ T~
[ab] {c} [ac] {b} [ca] {b} [cb] {a}
a=7,b=8 a=7,c=8 c=7,a=8 c=7,b=8
b b
e R A B might be able to
~—Q a=9 stop sooner

27



PITFALLS OF RECURSION

Recursion can easily be misused in various ways.



ELEMENT UNIQUENESS PROBLEM, REVISITED

RROBLEM: Given an array with n elements, are all the elements
of that collection are distinct from each other?

2 public static boolean unigueZ(int| | data) {

2 public static boolean uniguel(int| | data) { 3 int n = data.length;

3 imt n = data.length; 4 int] ] temp = Arrays_copyOfidata, n);

4 for (int j=0; ] < n—1; j++) 5 Arrays.sort(temp);

5 for (int k=j+1; k < n; k++) & for (int ]=0; ] <~ n—1; j++)

i if (data[j] == datalk]) 7 if (temp[j] == temp[j+1])

7 return false: 8 return false;

8 return true; 0 return true;

9 ) brute force method 0} sorting based

I /#+ Returns true if there are no duplicate values from data[low] through datalhigh].«/
2 public static boolean unique3(int[ | data, int low, int high) {

3 if (low == high) return true; // at most one item

4 else if (lunique3(data, low, high—1)) return false; // duplicate in first n—1
5 else if (lunique3(data, low+1, high)) return false; /| duplicate in last n—1
6 else return (data[low] != data[high]); // do first and last differ?
.

} Recursive unique3 for testing element uniqueness




ANALYSIS OF RECURSIVE UNIQUE3

unique3 is a terribly inefficient use of recursion!!

Let 7 denote the number of entries under consideration:
n =1+ high — low
Base case (/7= 1): running time of unique3 is (1) since there are
no recursive calls and the nonrecursive part of each call uses O(1)

time.

General case (n>1): a single call to unique3 for a problem of size n
may result in two recursive calls on problems of size n—1, and so on.
Thus, in the worst case, the total number of method calls is given by

the geometric summation:

1+2+4+--+2"1=2"-1= Q20



Recursion
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COMPUTING FIBONACCI NUMBERS

Fibonacci numbers are
defined recursively:

Fo=0
F,=1
—_ + :
F.= F,*F._, fori>1.
xx Feturns the nth Fibonacci number (inefhciently).
2 public static long fibonacciBad(int n) |
if (n <= 1)
return n;
else

return fibonacciBad({n—2) + fibonacciBad{n—1);

Recursive algorithm
(inefficiently):

Algorithm BinaryFib(k):

Input: Nonnegative integer k

Output: The kth Fibonacci
number F,

If k =1 then
return k

else
return BinaryFib(k — 1) +

BinaryFib(k — 2)

31
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Let n, be the number of recursive calls by BinaryFib(k)

mn=1
n=1
n=m+n+1=1+1+1=3
n=n+m+1=3+1+1=5
n=mnmn+n+1=5+3+1=9
n=n+m+1=9+5+1=15
Ng=n+n+1=15+9+1=25
nn=nmn+n+1=25+15+1=41
Nng=n,+n+1=41+25+1=67.

Note that n, at least doubles every other time
That is, n, > 2K2_ |t is exponential!

32
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A BETTER FIBONACCI ALGORITHM Goldwasser

Use linear recursion instead Each invocation |
Algorithm LinearFibonacci(k): 1) makes only one recursive

Input: A nonnegative integer k call and
Output: Pair of Fibonacci numbers (F, F1) | 2) decreases the argument 7
If K =1 then by 1

return (k, 0) y 1

else
(i, J) = LinearFibohacci(k — 1)
return (i +j, i)

1 /#+ Returns array containing the pair of Fibonacci numbers, F(n) and F{n—1). »

2 public static long| ] fibonacciGood(int n) { ) )

i if(n==1){ runs In U(n) time.
4 long[ | answer = {n, 0};

5 return answer;

b | else {

7 long[ | temp = fibonacciGood{n — 1); returns {F,_1. Fo_2]

8 long[ | answer = {temp[0] + temp[1], temp[0]}: we want J.n’ Fai]

=

returnm answer,

0}
11}

33
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