
RECURSION (CH 5)

Presentation for use with the textbook Data Structures and Algorithms in Java,
6th edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014

© 2014 Goodrich, Tamassia,
Goldwasser

Recursion

1

A pattern for solving
algorithm design problems

Presenter
Presentation Notes
Design Pattern: patterns for solving algorithm design problems

THE RECURSION PATTERN EXAMPLE

 Recursion: when a method calls itself

 Classic example – the factorial function:
 n! = 1· 2· 3· ··· · (n-1)· n

 Recursive definition:

 As a Java method:

−⋅
=

=
elsenfn
n

nf
)1(

0 if1
)(

© 2014 Goodrich, Tamassia,
Goldwasser

2

Recursion

CONTENT OF A RECURSIVE METHOD

 Base case(s)
 Values of the input variables for which we perform

no recursive calls are called base cases (there
should be at least one base case).

 Every possible chain of recursive calls must
eventually reach a base case.

 Recursive calls
 Calls to the current method.
 Each recursive call should be defined so that it

makes progress towards a base case.
© 2014 Goodrich, Tamassia,

Goldwasser
Recursion

3

VISUALIZING RECURSION

 Recursion trace
 A box for each

recursive call
 An arrow from each

caller to callee
 An arrow from each

callee to caller
showing return value

 Example

© 2014 Goodrich, Tamassia,
Goldwasser 4

Recursion

recursiveFactorial (4)

recursiveFactorial (3)

recursiveFactorial (2)

recursiveFactorial (1)

recursiveFactorial (0)

return 1

call

call

call

call

return 1 * 1 = 1

return 2 * 1 = 2

return 3 * 2 = 6

return 4 * 6 = 24 final answer call

VISUALIZING BINARY SEARCH

 We consider three cases:
 If the target equals data[mid], then we have found the target.
 If target < data[mid], then we recur on the first half of the

sequence.
 If target > data[mid], then we recur on the second half of the

sequence.

© 2014 Goodrich, Tamassia,
Goldwasser

Recursion

5

INPUT: Values stored
in sorted order within
an array (sequence is
sorted and
indexable,)
OUTPUT: Location of
the target value.

BINARY SEARCH

Search for an integer in an ordered list

© 2014 Goodrich, Tamassia,
Goldwasser

Recursion

6

ANALYZING BINARY SEARCH

 Runs in O(log n) time.
 The remaining portion of the list is of size high – low + 1
 After one comparison, this becomes one of the following:

 Thus, each recursive call divides the search region in half;
hence, there can be at most log n levels

© 2014 Goodrich, Tamassia,
Goldwasser

Recursion

7

TYPES OF RECURSION

 Linear recursion : If a recursive call starts at most one
other.

 Binary recursion: If a recursive call may start two others.

 Multiple recursion: If a recursive call may start three or
more others.

© 2014 Goodrich, Tamassia,
Goldwasser

Recursion

8

Terminology reflects the structure of the recursion trace, not the
asymptotic analysis of the running time.

LINEAR RECURSION

 Test for base cases
 Begin by testing for a set of base cases (there should be at least

one).
 Every possible chain of recursive calls must eventually reach a

base case, and the handling of each base case should not use
recursion.

 Recur once
 Perform a single recursive call
 This step may have a test that decides which of several possible

recursive calls to make, but it should ultimately make just one of
these calls

 Define each possible recursive call so that it makes progress
towards a base case.

© 2014 Goodrich, Tamassia,
Goldwasser

Recursion

9

EXAMPLE OF LINEAR RECURSION

Algorithm linearSum(A, n):
Input:
 Array, A, of integers
 Integer n such that
 0 ≤ n ≤ |A|
Output:
 Sum of the first n

integers in A.

© 2014 Goodrich, Tamassia,
Goldwasser

10

Recursion

Recursion trace of linearSum(data, 5)
called on array data = [4, 3, 6, 2, 8]

REVERSING AN ARRAY

Algorithm reverseArray(A, i, j):
Input: An array A and nonnegative

integer indices i and j
Output: The reversal of the elements in

A starting at index i and ending at

if i < j then
 Swap A[i] and A[j]
 reverseArray(A, i + 1, j − 1)
return

© 2014 Goodrich, Tamassia,
Goldwasser

Recursion

11

Problem: Reverse the n elements of an array, so that the first element
becomes the last, the second element becomes second to the last, and
so on.

Terminates after a total of (1 +
𝑓𝑓𝑓𝑓𝑓 𝑛

2
) recursive calls. Because

each call involves a constant amount
of work, the entire process runs in
O(n) time.

DEFINING ARGUMENTS FOR RECURSION

 In creating recursive methods, it is important to define the methods in
ways that facilitate recursion.

 This sometimes requires we define additional parameters that are
passed to the method.

 For example, we defined the array reversal method as reverseArray(A,
i, j), not reverseArray(A)

© 2014 Goodrich, Tamassia,
Goldwasser

Recursion

12

RECURSIVE ALGORITHMS FOR COMPUTING POWERS

 The power function, power(x,n)=xn, can be defined recursively:

 This leads to an power function that runs in O(n) time (for we
make n recursive calls)

 We can do better than this, however

−⋅
=

=
else)1,(

0 if1
),(

nxpowerx
n

nxpower

© 2014 Goodrich, Tamassia,
Goldwasser

13

Recursion

Problem: Raise a number x to an arbitrary nonnegative integer n.

RECURSIVE SQUARING

 We can derive a more efficient linearly recursive algorithm by
using repeated squaring:

 For example,
24 = 2(4/2)2 = (24/2)2 = (22)2 = 42 = 16
25 = 21+(4/2)2 = 2(24/2)2 = 2(22)2 = 2(42) = 32
26 = 2(6/ 2)2 = (26/2)2 = (23)2 = 82 = 64
27 = 21+(6/2)2 = 2(26/2)2 = 2(23)2 = 2(82) = 128

© 2014 Goodrich, Tamassia,
Goldwasser

14

Recursion

OBSERVATION: We consider the expression 𝑥𝑘 2
 , where 𝑘 = 𝑓𝑓𝑓𝑓𝑓(𝑛

2
).

When n is odd, 𝑓𝑓𝑓𝑓𝑓 𝑛
2

= 𝑛−1
2

 , 𝑥𝑘 2 = 𝑥𝑛−1 and therefore 𝑥𝑛 = 𝑥𝑘 2 ∗ 𝑥.

When n is even, 𝑓𝑓𝑓𝑓𝑓(𝑛
2

) = 𝑛
2
 and therefore 𝑥𝑘 2 = 𝑥

𝑛
2

2
= 𝑥𝑛.

RECURSIVE SQUARING METHOD

Algorithm Power(x, n):
 Input: A number x and integer

n = 0
 Output: The value xn

 if n = 0 then
 return 1
 if n is odd then
 y = Power(x, (n - 1)/ 2)
 return x · y · y
 else
 y = Power(x, n/ 2)
 return y · y

© 2014 Goodrich, Tamassia,
Goldwasser

Recursion

15

It is important that we
use a variable twice
here rather than calling
the method twice.

Each time we make a
recursive call we halve
the value of n; hence,
we make log n recursive
calls. That is, this
method runs in O(log n)
time.

O(logn) recursive calls.

RECURSIVE SQUARING METHOD
© 2014 Goodrich, Tamassia,

Goldwasser
Recursion

16

Example: power(2, 13)

BINARY RECURSION

 Binary recursion occurs whenever there are two
recursive calls for each non-base case.

 Example from before: the drawInterval method for
drawing ticks on an English ruler.

© 2014 Goodrich, Tamassia,
Goldwasser

Recursion

18

EXAMPLE: DRAWING ENGLISH RULER

 Print the ticks and numbers like an English ruler:

© 2014 Goodrich, Tamassia,
Goldwasser 19

Recursion

2-inch ruler
with major
tick length
4;

1-inch ruler with major
tick length 5;

3-inch ruler with major
tick length 3.

USING RECURSION

© 2014 Goodrich, Tamassia,
Goldwasser

Recursion

20

drawInterval(length)
Input: length of a ‘tick’
Output: ruler with tick of the given length in the middle and
smaller rulers on either side

drawInterval(length)

 if(length > 0) then

 drawInterval (length − 1)

 draw line of the given length

 drawInterval (length − 1)

Slide by Matt Stallmann
included with permission.

RECURSIVE DRAWING METHOD

 The drawing method
is based on the
following recursive
definition

 An interval with a
central tick length
L >1 consists of:
 An interval with a

central tick length L−1
 An single tick of

length L
 An interval with a

central tick length L−1

© 2014 Goodrich, Tamassia, Goldwasser
21

Recursion

A RECURSIVE METHOD FOR DRAWING TICKS ON
AN ENGLISH RULER

© 2014 Goodrich, Tamassia,
Goldwasser

Recursion

22

Note the two
recursive calls

ANOTHER BINARY RECURSIVE METHOD

 Problem: Add all the numbers in an integer array A
 Solution strategy: Recursively compute the sum of the first half, and the

sum of the second half, and add those sums together.

© 2014 Goodrich, Tamassia,
Goldwasser

23

Recursion

3 , 1

2 , 2

0 , 4

2 , 1 1 , 1 0 , 1

0 , 8

0 , 2

7 , 1

6 , 2

4 , 4

6 , 1 5 , 1

4 , 2

4 , 1

Algorithm BinarySum(A, i, n):
 Input: An array A and integers i and n
 Output: The sum of the n integers in A
 starting at index i
 if n = 1 then
 return A[i]
 return BinarySum(A, i, n/ 2) +
 BinarySum(A, i + n/ 2, n/ 2)

Example trace:
BinarySum(data, 0, 8)

Space: binarySum uses O(logn)
amount of additional space,
which is a big improvement over
the O(n) space used by the
linearSum method.
Time : However, the running time
of is O(n).

MULTIPLE RECURSION

 Motivating example: summation puzzles
 pot + pan = bib
 dog + cat = pig
 boy + girl = baby

 Multiple recursion:
 makes potentially many recursive calls
 not just one or two

© 2014 Goodrich, Tamassia,
Goldwasser

Recursion

24

Multiple recursion : a process in which a method may
make more than two recursive calls.

To solve such a puzzle, we need to assign a
unique digit (that is, 0,1, . . . ,9) to each
letter in the equation, in order to make the
equation true.

ALGORITHM FOR MULTIPLE RECURSION
© 2014 Goodrich, Tamassia,

Goldwasser
Recursion

25

If the number of possible configurations is not too large, however, we can
use a computer to simply enumerate all the possibilities and test each one.

© 2014 Goodrich, Tamassia,
Goldwasser

Recursion

26

Recursion trace for an execution of PuzzleSolve(3, S, U),
where S is empty and U ={a,b,c}.

EXAMPLE
© 2014 Goodrich, Tamassia,

Goldwasser
Recursion

27

cbb + ba = abc a,b,c stand for 7,8,9; not
necessarily in that order

[] {a,b,c}

[a] {b,c}
a=7

[b] {a,c}
b=7

[c] {a,b}
c=7

[ab] {c}
a=7,b=8
c=9

[ac] {b}
a=7,c=8
b=9

[ba] {c}
b=7,a=8
c=9

[bc] {a}
b=7,c=8
a=9

[ca] {b}
c=7,a=8
b=9

[cb] {a}
c=7,b=8
a=9

might be able to
stop sooner

Slide by Matt Stallmann
included with permission.

799 + 98 = 997

PITFALLS OF RECURSION

 Recursion can easily be misused in various ways.

© 2014 Goodrich, Tamassia,
Goldwasser

Recursion

28

ELEMENT UNIQUENESS PROBLEM, REVISITED
© 2014 Goodrich, Tamassia,

Goldwasser
Recursion

29
Recursive unique3 for testing element uniqueness

sorting based brute force method

RROBLEM: Given an array with n elements, are all the elements
 of that collection are distinct from each other?

O(n2) O(nlogn)

O(2n)

Base case (n = 1): running time of unique3 is O(1) since there are
no recursive calls and the nonrecursive part of each call uses O(1)
time.
General case (n>1): a single call to unique3 for a problem of size n
may result in two recursive calls on problems of size n−1, and so on.
Thus, in the worst case, the total number of method calls is given by
the geometric summation:

1 + 2 + 4 + ⋯+ 2𝑛−1 = 2𝑛 − 1 =

ANALYSIS OF RECURSIVE UNIQUE3

 unique3 is a terribly inefficient use of recursion!!

© 2014 Goodrich, Tamassia,
Goldwasser

Recursion

30

O(2n)

Let n denote the number of entries under consideration:
 n = 1 + high − low

COMPUTING FIBONACCI NUMBERS

Fibonacci numbers are
defined recursively:

F0 = 0
F1 = 1
Fi = Fi-1 + Fi-2 for i > 1.

© 2014 Goodrich, Tamassia,
Goldwasser

Recursion

31

Algorithm BinaryFib(k):
 Input: Nonnegative integer k
 Output: The kth Fibonacci
 number Fk
 if k = 1 then
 return k
 else
 return BinaryFib(k − 1) +
 BinaryFib(k − 2)

Recursive algorithm
(inefficiently):

ANALYSIS
 Let nk be the number of recursive calls by BinaryFib(k)

 n0 = 1
 n1 = 1
 n2 = n1 + n0 + 1 = 1 + 1 + 1 = 3
 n3 = n2 + n1 + 1 = 3 + 1 + 1 = 5
 n4 = n3 + n2 + 1 = 5 + 3 + 1 = 9
 n5 = n4 + n3 + 1 = 9 + 5 + 1 = 15
 n6 = n5 + n4 + 1 = 15 + 9 + 1 = 25
 n7 = n6 + n5 + 1 = 25 + 15 + 1 = 41
 n8 = n7 + n6 + 1 = 41 + 25 + 1 = 67.

 Note that nk at least doubles every other time
 That is, nk > 2k/2. It is exponential!

© 2014 Goodrich, Tamassia,
Goldwasser

Recursion

32

A BETTER FIBONACCI ALGORITHM
 Use linear recursion instead

© 2014 Goodrich, Tamassia,
Goldwasser

Recursion

33

runs in O(n) time.

Algorithm LinearFibonacci(k):
 Input: A nonnegative integer k
 Output: Pair of Fibonacci numbers (Fk , Fk−1)
 if k = 1 then
 return (k, 0)
 else
 (i, j) = LinearFibonacci(k − 1)
 return (i +j, i)

Each invocation
1) makes only one recursive

call and
2) decreases the argument n

by 1.

	Recursion (CH 5)
	The Recursion Pattern Example
	Content of a Recursive Method
	Visualizing Recursion
	Visualizing Binary Search
	Binary Search
	Analyzing Binary Search
	Types of recursion
	Linear Recursion
	Example of Linear Recursion
	Reversing an Array
	Defining Arguments for Recursion
	Recursive Algorithms for Computing Powers
	Recursive Squaring
	Recursive Squaring Method
	Recursive Squaring Method
	Binary Recursion
	Example: Drawing English Ruler
	Using Recursion
	Recursive Drawing Method
	A Recursive Method for Drawing Ticks on an English Ruler
	Another Binary Recursive Method
	Multiple Recursion
	Algorithm for Multiple Recursion
	Slide Number 26
	Example
	Pitfalls of Recursion
	element uniqueness problem, revisited
	Analysis of Recursive unique3
	Computing Fibonacci Numbers
	Analysis
	A Better Fibonacci Algorithm

