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A pattern for solving 
algorithm design problems  

Presenter
Presentation Notes
Design Pattern: patterns for solving algorithm design problems 



THE RECURSION PATTERN EXAMPLE 

 Recursion: when a method calls itself 
 

 Classic example – the factorial function:  
  n! = 1· 2· 3· ··· · (n-1)· n 

 
 Recursive definition: 
 
 As a Java method: 
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CONTENT OF A RECURSIVE METHOD 

 Base case(s) 
 Values of the input variables for which we perform 

no recursive calls are called base cases (there 
should be at least one base case).  

 Every possible chain of recursive calls must 
eventually reach a base case. 

 Recursive calls 
 Calls to the current method.  
 Each recursive call should be defined so that it 

makes progress towards a base case. 
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VISUALIZING RECURSION 

 Recursion trace 
 A box for each 

recursive call 
 An arrow from each 

caller to callee 
 An arrow from each 

callee to caller 
showing return value 

 Example 
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recursiveFactorial ( 4 ) 

recursiveFactorial ( 3 ) 

recursiveFactorial ( 2 ) 

recursiveFactorial ( 1 ) 

recursiveFactorial ( 0 ) 

return  1 

call 

call 

call 

call 

return  1 * 1  =  1 

return  2 * 1  =  2 

return  3 * 2  =  6 

return  4 * 6  =  24 final answer call 



VISUALIZING BINARY SEARCH 

 We consider three cases: 
 If the target equals data[mid], then we have found the target. 
 If target < data[mid], then we recur on the first half of the 

sequence. 
 If target > data[mid], then we recur on the second half of the 

sequence. 
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INPUT: Values stored 
in sorted order within 
an array (sequence is 
sorted and 
indexable,) 
OUTPUT: Location of 
the target value.  



BINARY SEARCH 

Search for an integer in an ordered list 
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ANALYZING BINARY SEARCH 

 Runs in O(log n) time. 
 The remaining portion of the list is of size high – low + 1 
 After one comparison, this becomes one of the following: 

 
 
 
 
 

 Thus, each recursive call divides the search region in half; 
hence, there can be at most log n levels 
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TYPES OF RECURSION 

 Linear recursion : If a recursive call starts at most one 
other.  
 

 Binary recursion: If a recursive call may start two others. 
 

 Multiple recursion: If a recursive call may start three or 
more others. 
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Terminology reflects the structure of the recursion trace, not the 
asymptotic analysis of the running time. 



LINEAR RECURSION 

 Test for base cases 
 Begin by testing for a set of base cases (there should be at least 

one).  
 Every possible chain of recursive calls must eventually reach a 

base case, and the handling of each base case should not use 
recursion. 

 Recur once 
 Perform a single recursive call 
 This step may have a test that decides which of several possible 

recursive calls to make, but it should ultimately make just one of 
these calls 

 Define each possible recursive call so that it makes progress 
towards a base case. 
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EXAMPLE OF LINEAR RECURSION 

Algorithm linearSum(A, n): 
Input:  
  Array, A, of integers 
  Integer n such that 
 0 ≤ n ≤ |A| 
Output:  
 Sum of the first n  

integers in A. 
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Recursion trace of linearSum(data, 5) 
called on array data = [4, 3, 6, 2, 8] 



REVERSING AN ARRAY 

Algorithm reverseArray(A, i,  j): 
Input: An array A and nonnegative 

integer indices i and  j 
Output: The reversal of the elements in 

A starting at index i and ending at   
 
if i <  j then 
  Swap A[i] and A[ j] 
  reverseArray(A, i + 1,  j − 1) 
return 
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Problem: Reverse the n elements of an array, so that the first element 
becomes the last, the second element becomes second to the last, and 
so on. 

Terminates after a total of (1 + 
𝑓𝑓𝑓𝑓𝑓 𝑛

2
) recursive calls. Because 

each call involves a constant amount 
of work, the entire process runs in 
O(n) time. 



DEFINING ARGUMENTS FOR RECURSION 

 In creating recursive methods, it is important to define the methods in 
ways that facilitate recursion. 

 This sometimes requires we define additional parameters that are 
passed to the method. 

 For example, we defined the array reversal method as reverseArray(A, 
i,  j), not reverseArray(A) 
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RECURSIVE ALGORITHMS FOR COMPUTING POWERS 

 The power function, power(x,n)=xn, can be defined recursively: 
 
 
 
 
 

 This leads to an power function that runs in O(n) time (for we 
make n recursive calls) 

 We can do better than this, however 
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Problem:  Raise a number x to an arbitrary nonnegative integer n. 



RECURSIVE SQUARING 

 We can derive a more efficient linearly recursive algorithm by 
using repeated squaring: 
 
 
 
 

 For example, 
24 =  2(4/2)2 = (24/2)2 = (22)2 = 42 = 16 
25 =  21+(4/2)2 = 2(24/2)2 = 2(22)2 = 2(42) = 32 
26 = 2(6/ 2)2 = (26/2)2 = (23)2 = 82 = 64 
27 = 21+(6/2)2 = 2(26/2)2 = 2(23)2 = 2(82) = 128 
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OBSERVATION: We consider the expression 𝑥𝑘 2
 , where 𝑘 = 𝑓𝑓𝑓𝑓𝑓(𝑛

2
).  

When n is odd, 𝑓𝑓𝑓𝑓𝑓 𝑛
2

= 𝑛−1
2

 , 𝑥𝑘 2 = 𝑥𝑛−1 and therefore 𝑥𝑛 = 𝑥𝑘 2 ∗ 𝑥.  

When n is even, 𝑓𝑓𝑓𝑓𝑓(𝑛
2

) = 𝑛
2
    and therefore 𝑥𝑘 2 = 𝑥

𝑛
2

2
= 𝑥𝑛.  



RECURSIVE SQUARING METHOD 

Algorithm Power(x, n): 
      Input: A number x and integer 

n = 0 
      Output: The value xn 

     if n = 0 then 
  return 1 
     if n is odd then 
  y  = Power(x, (n - 1)/ 2) 
  return x · y · y 
     else 
  y = Power(x, n/ 2) 
  return y · y 
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It is important that we 
use a variable twice 
here rather than calling 
the method twice. 

Each time we make a 
recursive call we halve 
the value of n; hence, 
we make log n recursive 
calls. That is, this 
method runs in O(log n) 
time. 

O(logn) recursive calls. 



RECURSIVE SQUARING METHOD 
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Example: power(2, 13) 



BINARY RECURSION 

 Binary recursion occurs whenever there are two 
recursive calls for each non-base case. 

 Example from before: the drawInterval method for 
drawing ticks on an English ruler. 

© 2014 Goodrich, Tamassia, 
Goldwasser 

Recursion 

18 



EXAMPLE: DRAWING ENGLISH RULER 

 Print the ticks and numbers like an English ruler: 
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Recursion 

2-inch ruler 
with major 
tick length 
4; 

1-inch ruler with major 
tick length 5; 

3-inch ruler with major 
tick length 3. 



USING RECURSION 
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drawInterval(length) 
Input: length of a ‘tick’ 
Output: ruler with tick of the given length in the middle and 
smaller rulers on either side 

drawInterval(length)  
 
  if( length > 0 ) then 
 
     drawInterval ( length − 1 ) 
 
     draw line of the given length 
 
     drawInterval ( length − 1 ) 
 

Slide by Matt Stallmann 
included with permission. 



RECURSIVE DRAWING METHOD  

 The drawing method 
is based on the 
following recursive 
definition 

 An interval with a 
central tick length  
L >1 consists of: 
 An interval with a 

central tick length L−1 
 An single tick of 

length L 
 An interval with a 

central tick length L−1 
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A RECURSIVE METHOD FOR DRAWING TICKS ON 
AN ENGLISH RULER 
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Note the two 
recursive calls 



ANOTHER BINARY RECURSIVE METHOD 

 Problem: Add all the numbers in an integer array A 
 Solution strategy: Recursively compute the sum of the first half, and the 

sum of the second half, and add those sums together.  
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3 ,  1 

2 ,  2 

0 ,  4 

2 ,  1 1 ,  1 0 ,  1 

0 ,  8 

0 ,  2 

7 ,  1 

6 ,  2 

4 ,  4 

6 ,  1 5 ,  1 

4 ,  2 

4 ,  1 

Algorithm BinarySum(A, i, n): 
      Input: An array A and integers i and n 
      Output: The sum of the n integers in A   
 starting at index i 
    if n = 1 then 
 return A[i] 
    return BinarySum(A, i, n/ 2) +   
 BinarySum(A, i + n/ 2, n/ 2) 

Example trace: 
BinarySum(data, 0, 8) 

Space: binarySum uses O(logn) 
amount of additional space, 
which is a big improvement over 
the O(n) space used by the 
linearSum method. 
Time : However, the running time 
of is O(n). 



MULTIPLE RECURSION 

 Motivating example: summation puzzles 
 pot + pan = bib  
 dog + cat = pig  
 boy + girl = baby 

 

 Multiple recursion:  
 makes potentially many recursive calls 
 not just one or two 
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Multiple recursion : a process in which a method may 
make more than two recursive calls.  

To solve such a puzzle, we need to assign a 
unique digit (that is, 0,1, . . . ,9) to each 
letter in the equation, in order to make the 
equation true. 



ALGORITHM FOR MULTIPLE RECURSION 
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If the number of possible configurations is not too large, however, we can 
use a computer to simply enumerate all the possibilities and test each one.  
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Recursion trace for an execution of PuzzleSolve(3, S, U), 
where S is empty and U ={a,b,c}. 



EXAMPLE 
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cbb + ba = abc a,b,c stand for 7,8,9; not 
necessarily in that order 

[] {a,b,c} 

[a] {b,c} 
a=7 

[b] {a,c} 
b=7 

[c] {a,b} 
c=7 

[ab] {c} 
a=7,b=8 
c=9 

[ac] {b} 
a=7,c=8 
b=9 

[ba] {c} 
b=7,a=8 
c=9 

[bc] {a} 
b=7,c=8 
a=9 

[ca] {b} 
c=7,a=8 
b=9 

[cb] {a} 
c=7,b=8 
a=9 

might be able to 
stop sooner 

Slide by Matt Stallmann 
included with permission. 

799 + 98 = 997 



PITFALLS OF RECURSION 

 Recursion can easily be misused in various ways.  
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ELEMENT UNIQUENESS PROBLEM, REVISITED  
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Recursive unique3 for testing element uniqueness 

sorting based brute force method 

RROBLEM: Given an array with n elements, are all the elements    
 of that collection are distinct from each other?  

O(n2) O(nlogn) 

O(2n) 



Base case (n = 1): running time of unique3 is O(1) since there are 
no recursive calls and the nonrecursive part of each call uses O(1) 
time.  
General case (n>1): a single call to unique3 for a problem of size n 
may result in two recursive calls on problems of size n−1, and so on. 
Thus, in the worst case, the total number of method calls is given by 
the geometric summation:  

1 + 2 + 4 + ⋯+ 2𝑛−1 = 2𝑛 − 1 = 
 

ANALYSIS OF RECURSIVE UNIQUE3 

 unique3 is a terribly inefficient use of recursion!! 
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O(2n) 

Let n denote the number of entries under consideration: 
 n = 1 + high − low 



COMPUTING FIBONACCI NUMBERS 

Fibonacci numbers are 
defined recursively: 

F0 =  0 
F1 =  1 
Fi =  Fi-1 + Fi-2     for i > 1. 
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Algorithm BinaryFib(k): 
      Input: Nonnegative integer k 
      Output: The kth Fibonacci  
 number Fk 
     if k = 1 then 
 return k 
     else 
 return BinaryFib(k − 1) +  
  BinaryFib(k − 2) 

Recursive algorithm 
(inefficiently): 

 



ANALYSIS 
 Let nk be the number of recursive calls by BinaryFib(k) 

 n0 = 1  
 n1 = 1  
 n2 = n1 + n0 + 1 = 1 + 1 + 1 = 3  
 n3 = n2 + n1 + 1 = 3 + 1 + 1 = 5  
 n4 = n3 + n2 + 1 = 5 + 3 + 1 = 9  
 n5 = n4 + n3 + 1 = 9 + 5 + 1 = 15  
 n6 = n5 + n4 + 1 = 15 + 9 + 1 = 25  
 n7 = n6 + n5 + 1 = 25 + 15 + 1 = 41  
 n8 = n7 + n6 + 1 = 41 + 25 + 1 = 67. 

 
 Note that nk at least doubles every other time 
 That is, nk > 2k/2. It is exponential! 
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A BETTER FIBONACCI ALGORITHM  
 Use linear recursion instead 
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runs in O(n) time. 

 
Algorithm LinearFibonacci(k): 
      Input: A nonnegative integer k 
      Output: Pair of Fibonacci numbers (Fk , Fk−1) 
     if k = 1 then 
 return (k, 0) 
     else 
 (i,  j)  =  LinearFibonacci(k − 1) 
 return (i +j, i) 
 

Each invocation  
1) makes only one recursive 

call and  
2) decreases the argument n 

by 1.  
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