
LISTS AND ITERATORS

Presentation for use with the textbook Data Structures and Algorithms
in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and M. H.
Goldwasser, Wiley, 2014

© 2014 Goodrich, Tamassia,
Goldwasser

Lists and Iterators

1

Abstract data types that represent a linear sequence of elements,
with more general support for adding or removing elements at
arbitrary positions.

Presenter
Presentation Notes
DS Design issues

THE JAVA.UTIL.LIST ADT

 The java.util.List interface includes the following index based
methods:

© 2014 Goodrich, Tamassia,
Goldwasser

Lists and Iterators

2

EXAMPLE

 A sequence of List operations:

© 2014 Goodrich, Tamassia,
Goldwasser

Lists and Iterators

3

ARRAY LISTS

 An obvious choice for implementing the list ADT is to
use an array, A, where A[i] stores (a reference to) the
element with index i.

 With a representation based on an array A, the get(i)
and set(i, e) methods are easy to implement by
accessing A[i] (assuming i is a legitimate index).

© 2014 Goodrich, Tamassia,
Goldwasser

Lists and Iterators

4

A
0 1 2 n i

INSERTION

 In an operation add(i, o), we need to make room for
the new element by shifting forward the n − i
elements A[i], …, A[n − 1]

 In the worst case (i = 0), this takes O(n) time

© 2014 Goodrich, Tamassia,
Goldwasser

Lists and Iterators

5

A
0 1 2 n i

A
0 1 2 n i

A
0 1 2 n

o
i

ELEMENT REMOVAL

 In an operation remove(i), we need to fill the hole left by the
removed element by shifting backward the n − i − 1 elements
A[i + 1], …, A[n − 1]

 In the worst case (i = 0), this takes O(n) time

© 2014 Goodrich, Tamassia,
Goldwasser

Lists and Iterators

6

A
0 1 2 n i

A
0 1 2 n

o
i

A
0 1 2 n i

PERFORMANCE OF ARRAY LIST

 In an array-based
implementation of a list (array
list):
 The space used by the data

structure is O(n)
 Indexing the element at i takes O(1)

time
 add and remove run in O(n) time

 In an add operation, when the
array is full, instead of throwing
an exception, we can replace the
array with a larger one …

© 2014 Goodrich, Tamassia,
Goldwasser

Lists and Iterators

7

JAVA IMPLEMENTATION: BOUNDED CAPACITY
© 2014 Goodrich, Tamassia,

Goldwasser
Lists and Iterators

8

An implementation of a
simple ArrayList class with
bounded capacity

JAVA IMPLEMENTATION, CONT.
© 2014 Goodrich, Tamassia,

Goldwasser
Lists and Iterators

9

DYNAMIC ARRAY:

 Let push(o) be the operation
that adds element o at the end
of the list

 When the array is full, we
replace the array with a larger
one

 How large should the new
array be?
 Incremental strategy: increase

the size by a constant c
 Doubling strategy: double the

size

© 2014 Goodrich, Tamassia,
Goldwasser

Lists and Iterators

10

Algorithm push(o)
 if t = S.length − 1 then
 A ← new array of
 size …
 for i ← 0 to n−1 do
 A[i] ← S[i]
 S ← A
 n ← n + 1
 S[n−1] ← o

create new
array B

store
elements of A

in B

reassign
reference A to
the new array

IMPLEMENTING A DYNAMIC ARRAY
 Provide means to “grow” the array A

© 2014 Goodrich, Tamassia,
Goldwasser

Lists and Iterators

11

1. Allocate a new array B with
larger capacity.

2. Set B[k]=A[k], for
k=0, . . . ,n−1, where n
denotes current number of
items.

3. Set A = B, that is, we
henceforth use the new
array to support the list.

4. Insert the new element in
the new array.

REVISION TO OUR ORIGINAL ARRAYLIST IMPLEMENTATION,
© 2014 Goodrich, Tamassia,

Goldwasser
Lists and Iterators

12

Strategy #2: new array to have twice the capacity
of the existing array

ADVANCE TOPIC: COMPARISON OF THE STRATEGIES

 We compare the incremental strategy and the
doubling strategy by analyzing the total time
T(n) needed to perform a series of n push
operations (amortization)

 We assume that we start with an empty list
represented by a growable array of size 1

 We call amortized time of a push operation the
average time taken by a push operation over the
series of operations, i.e., T(n)/n

© 2014 Goodrich, Tamassia,
Goldwasser

Lists and Iterators

13

INCREMENTAL STRATEGY ANALYSIS

 Over n push operations, we replace the array k = n/c
times, where c is a constant

 The total time T(n) of a series of n push operations is
proportional to

n + c + 2c + 3c + 4c + … + kc =
n + c(1 + 2 + 3 + … + k) =

n + ck(k + 1)/2
 Since c is a constant, T(n) is O(n + k2), i.e., O(n2)
 Thus, the amortized time of a push operation is O(n)

© 2014 Goodrich, Tamassia,
Goldwasser

Lists and Iterators

14

Actual push op.

DOUBLING STRATEGY ANALYSIS

 We replace the array k = log2 n times (2k+1 -
1=n; solve for k)

 The total time T(n) of a series of n push
operations is proportional to

 n + 1 + 2 + 4 + 8 + …+ 2k =
 n + 2k + 1 − 1 =

 3n − 1
 T(n) is O(n)
 The amortized time of a push operation is

O(1)

© 2014 Goodrich, Tamassia,
Goldwasser

Lists and Iterators

15

geometric series

1

2

1
4

8

DYNAMIC ARRAY: ANALYSIS EXAMPLE

© 2014 Goodrich, Tamassia, Goldwasser

16

Uses Regular Array: O(n2)

Uses Dynamic Array: O(n)

POSITIONAL LISTS

 To provide for a general abstraction of a sequence of elements with the
ability to identify the location of an element, we define a positional list
ADT.

 A position acts as a marker or token within the broader positional list.
 A position p is unaffected by changes elsewhere in a list; the only way

in which a position becomes invalid is if an explicit command is issued to
delete it.

 A position instance is a simple object, supporting only the following
method:
 P.getElement(): Return the element stored at position p.

© 2014 Goodrich, Tamassia,
Goldwasser

Lists and Iterators

17

IMMEDIATE CHALLENGE IN DESIGNING THE ADT;

 Challenge: Achieve constant
time insertions and
deletions at arbitrary
locations:
 we effectively need a

reference to the node at which
an element is stored.

 We introduce the concept of
a position, which formalizes
the intuitive notion of the
“location” of an element
relative to others in the list.

 Bad: ADT in which a node

reference serves as the
mechanism for describing a
position.
 Details of our implementation

need to be known
 Not a robust data structure

(user can access or manipulate
the nodes <- cause problems)

 Bad encapsulating
(implementation details
exposed)

© 2014 Goodrich, Tamassia,
Goldwasser

Lists and Iterators

18

POSITIONAL LIST ADT

 Accessor methods:

© 2014 Goodrich, Tamassia,
Goldwasser

Lists and Iterators

19

We can subsequently use the returned
position to traverse the list

POSITIONAL LIST ADT, 2

 Update methods:

© 2014 Goodrich, Tamassia,
Goldwasser

Lists and Iterators

20

EXAMPLE

 A sequence of Positional List operations:

© 2014 Goodrich, Tamassia,
Goldwasser

Lists and Iterators

21

position instances, we use
variables such as p and q

EXAMPLE CONT.

© 2014 Goodrich, Tamassia,
Goldwasser

Lists and Iterators

22

Position interface

PositionList
interface

POSITIONAL LIST IMPLEMENTATION
USING DOUBLY LIKED LIST

 The most natural way to implement
a positional list is with a doubly-
linked list.

 NOTE: Not the same as the
DoublyLinkedList class in Ch3
 Difference in the management of the

positional abstraction

© 2014 Goodrich, Tamassia,
Goldwasser

Lists and Iterators

23

prev next

element

trailer header nodes/positions

elements

node

© 2014 Goodrich, Tamassia,
Goldwasser

Lists and Iterators

24

definition of the nested
Node<E> class, which
implements the Position<E>
interface.

© 2014 Goodrich, Tamassia,
Goldwasser

Lists and Iterators

25

The declaration
of the instance variables of the
outer LinkedPositionalList class
and its constructor.

The private validate(p) method is called
anytime the user sends a Position instance as
a parameter. It throws an exception if it
determines that the position is invalid, and
otherwise returns that instance, implicitly cast
as a Node, so that methods of the Node class
can subsequently be called.
The private position(node) method is used
when about to return a Position to the user.
Its primary purpose is to make sure that we
do not expose either sentinel node to a caller,
returning a null reference in such a case.

© 2014 Goodrich, Tamassia,
Goldwasser

Lists and Iterators

26

public accessor methods

INSERTION

 Insert a new node, q, between p and its successor.

© 2014 Goodrich, Tamassia,
Goldwasser

Lists and Iterators

27

A B X C

A B C

p

A B C

p

X

q

p q

© 2014 Goodrich, Tamassia,
Goldwasser

Lists and Iterators

28

© 2014 Goodrich, Tamassia,
Goldwasser

Lists and Iterators

29

public update methods, relying
on a private addBetween
method to unify the
implementations of the various
insertion operations.

DELETION

 Remove a node, p, from a doubly-linked list.

© 2014 Goodrich, Tamassia,
Goldwasser

Lists and Iterators

30

A B C D

p

A B C

D

p

A B C

© 2014 Goodrich, Tamassia,
Goldwasser

Lists and Iterators

31

Public remove method.
Note that it sets all fields of
the removed node back to
null—a condition we can later
detect to recognize a defunct
position.

IMPLEMENTING A POSITIONAL LIST WITH AN ARRAY

 The problem with using index number to keep track of an
element: the index of an element e changes when other
insertions or deletions occur before it.

 Solution approach: Instead of storing the elements of L directly
in array A, store a new kind of position object in each cell of A.
A position p stores the element e as well as the current index i
of that element within the list.

 addFirst, addBefore, addAfter, and remove methods take O(n)
time

© 2014 Goodrich, Tamassia,
Goldwasser

Lists and Iterators

32

ITERATORS

 An iterator is a software design pattern that abstracts
the process of scanning through a sequence of
elements, one element at a time.

© 2014 Goodrich, Tamassia,
Goldwasser

Lists and Iterators

33

THE ITERABLE INTERFACE

 Java defines a parameterized interface, named Iterable, that
includes the following single method:
 iterator(): Returns an iterator of the elements in the collection.

 An instance of a typical collection class in Java, such as an
ArrayList, is iterable (but not itself an iterator); it produces an
iterator for its collection as the return value of the iterator()
method.

 Each call to iterator() returns a new iterator instance, thereby
allowing multiple (even simultaneous) traversals of a collection.

© 2014 Goodrich, Tamassia,
Goldwasser

Lists and Iterators

34

THE FOR-EACH LOOP

 Java’s Iterable class also plays a fundamental role in s
upport of the “for-each” loop syntax:

is equivalent to:

© 2014 Goodrich, Tamassia,
Goldwasser

Lists and Iterators

35

	Lists and Iterators
	The java.util.List ADT
	Example
	Array Lists
	Insertion
	Element Removal
	Performance of array list
	Java Implementation: Bounded Capacity
	Java Implementation, cont.
	Dynamic Array:
	Implementing a Dynamic Array
	revision to our original ArrayList implementation,
	Advance Topic: Comparison of the Strategies
	Incremental Strategy Analysis
	Doubling Strategy Analysis
	Dynamic Array: Analysis Example
	Positional Lists
	immediate challenge in designing the ADT;
	Positional List ADT
	Positional List ADT, 2
	Example
	Example cont.
	Positional List Implementation �Using Doubly Liked List
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Insertion
	Slide Number 28
	Slide Number 29
	Deletion
	Slide Number 31
	Implementing a Positional List with an Array
	Iterators
	The Iterable Interface
	The for-each Loop

