
© 2014 Goodrich, Tamassia, Goldwasser

LINKED LISTS

Presentation for use with the textbook Data Structures and Algorithms in Java, 6th
edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014

1

Linked Lists

© 2014 Goodrich, Tamassia, Goldwasser

SINGLY LINKED LIST

 A singly linked list is a
concrete data structure
consisting of a sequence
of nodes, starting from a
head pointer

 Each node stores
 element
 link to the next node

Linked Lists

2

node

element

next

© 2014 Goodrich, Tamassia, Goldwasser

A NESTED NODE CLASS

Linked Lists

3

IN package net.datastructures;

node

element

next

© 2014 Goodrich, Tamassia, Goldwasser

ACCESSOR METHODS

Linked Lists

4

© 2014 Goodrich, Tamassia, Goldwasser

INSERTING
AT THE
HEAD

Linked Lists

5

Allocate new node

Insert new element

Have new node
point to old
head

Update head to
point to new node

© 2014 Goodrich, Tamassia, Goldwasser

INSERTING
AT THE TAIL

• Allocate a new
node

• Insert new element
• Have new node

point to null
• Have old last node

point to new node
• Update tail to point

to new node

Linked Lists

6

© 2014 Goodrich, Tamassia, Goldwasser

JAVA METHODS
Linked Lists

7

© 2014 Goodrich, Tamassia, Goldwasser

REMOVING AT
THE HEAD

• Update head to
point to next
node in the list

• Allow garbage
collector to
reclaim the
former first node

Linked Lists

8

© 2014 Goodrich, Tamassia, Goldwasser

REMOVING AT THE TAIL

• Removing at the tail of a singly linked list is not
efficient!

• There is no constant-time way to update the tail
to point to the previous node

Linked Lists

9

© 2014 Goodrich, Tamassia, Goldwasser

CIRCULARLY LINKED LIST

Linked Lists

10

 A singularly linked list in which the next reference of the
tail node is set to refer back to the head of the list (rather
than null).

 Supports all of the public behaviors of our SinglyLinkedList
class and one additional update method

 Nodes store:
 element
 link to the next node

© 2014 Goodrich, Tamassia, Goldwasser

APPLICATION OF CIRCULARLY LINKED LIST

Linked Lists

11

© 2014 Goodrich, Tamassia, Goldwasser

ROTATE() ON A CIRCULARLY LINKED LIST

Linked Lists

12

We do not move any nodes or elements, we simply advance
the tail reference to point to the node that follows it (the
implicit head of the list).

implicit head: tail.getNext().

Linked Lists

13

Effect of a call to
addFirst(STL) on the
circularly linked list:

Removing the first node from a
circularly linked list can be
accomplished by simply updating the
next field of the tail node to bypass
the implicit head.

Removing at the tail is
still not efficient

Presentation for use with the textbook Data Structures and Algorithms in Java, 6th
edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014

Linked Lists

14

DOUBLY LINKED LISTS

© 2014 Goodrich, Tamassia, Goldwasser

DOUBLY LINKED LIST

 A doubly linked list can be traversed
forward and backward

 Nodes store:
 element
 link to the previous node
 link to the next node

 Special trailer and header nodes

Linked Lists

15

prev next

element

trailer header nodes/positions

elements

node

© 2014 Goodrich, Tamassia, Goldwasser

DOUBLY-LINKED LIST IN JAVA: NESTED CLASS NODE

Linked Lists

16

© 2014 Goodrich, Tamassia, Goldwasser

TRAILER AND HEADER NODES
 Description:

Header node at the beginning of the list, and a trailer node at the end of the
list are known as sentinels (or guards), and they do not store elements of the
primary sequence.

 Advantages:
 The header and trailer nodes never change
 We can treat all insertions in a unified manner

 because a new node will always be placed between a pair of existing
nodes

 Every element that is to be deleted is guaranteed to be stored in a
node that has neighbors on each side.

Linked Lists

17

© 2014 Goodrich, Tamassia, Goldwasser

OPERATIONS IN DOUBLY LINKED LIST

Linked Lists

18

© 2014 Goodrich, Tamassia, Goldwasser

DOUBLY-LINKED LIST IN JAVA, 2

Linked Lists

19

© 2014 Goodrich, Tamassia, Goldwasser

INSERTION

Linked Lists

20

© 2014 Goodrich, Tamassia, Goldwasser

DOUBLY-LINKED LIST IN JAVA: INSERTION

Linked Lists

21

We can treat all insertions in a unified manner

© 2014 Goodrich, Tamassia, Goldwasser

DELETION

Linked Lists

22

© 2014 Goodrich, Tamassia, Goldwasser

DOUBLY-LINKED LIST IN JAVA: DELETION

Linked Lists

23

We can treat all deletion in a unified manner

Ch3.5~6

Linked Lists

24

JAVA SPECIFIC NOTES ON LINKED LIST

© 2014 Goodrich, Tamassia, Goldwasser

EQUIVALENCE TESTING

 an equivalence relation in mathematics, satisfying the
following properties:

Linked Lists

25

© 2014 Goodrich, Tamassia, Goldwasser

EQUIVALENCE TESTING WITH ARRAYS

Linked Lists

26

Arrays are a reference type in Java, but not technically a class

© 2014 Goodrich, Tamassia, Goldwasser

EQUIVALENCE TESTING WITH LINKED LISTS

Linked Lists

27

SinglyLinkedList class

© 2014 Goodrich, Tamassia, Goldwasser

CLONING DATA STRUCTURES

Linked Lists

28

Cloning Arrays

© 2014 Goodrich, Tamassia, Goldwasser

Linked Lists

29

if the variable contacts refers to an
array of hypothetical Person
instances, the result of the command
guests = contacts.clone() produces
a shallow copy

A deep copy of the contact list
can be created by iteratively
cloning the individual elements

© 2014 Goodrich, Tamassia, Goldwasser

CLONING LINKED LISTS

Linked Lists

30

shallow copy
of the original

	Linked Lists
	Singly Linked List
	A Nested Node Class
	Accessor Methods
	Inserting at the Head
	Inserting at the Tail
	Java Methods
	Removing at the Head
	Removing at the Tail
	Circularly Linked List
	Application of Circularly Linked List
	Rotate() on a Circularly Linked List
	Slide Number 13
	Doubly Linked Lists
	Doubly Linked List
	Doubly-Linked List in Java: Nested class Node
	trailer and header nodes
	Operations in Doubly Linked List
	Doubly-Linked List in Java, 2
	Insertion
	Doubly-Linked List in Java: Insertion
	Deletion
	Doubly-Linked List in Java: Deletion
	JaVA Specific Notes on Linked List
	Equivalence Testing
	Equivalence Testing with Arrays
	Equivalence Testing with Linked Lists
	Cloning Data Structures
	Slide Number 29
	Cloning Linked Lists

