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SINGLY LINKED LIST 

 A singly linked list is a 
concrete data structure 
consisting of a sequence 
of nodes, starting from a 
head pointer 

 Each node stores 
 element 
 link to the next node 
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node 
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A NESTED NODE CLASS 

Linked Lists 

3 

IN package net.datastructures; 

node 

element 

next 
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ACCESSOR METHODS 
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INSERTING 
AT THE 
HEAD 

Linked Lists 
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Allocate new node 

Insert new element 

Have new node 
point to old 
head 

Update head to 
point to new node 
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INSERTING 
AT THE TAIL 

• Allocate a new 
node 

• Insert new element 
• Have new node 

point to null 
• Have old last node 

point to new node 
• Update tail to point 

to new node 
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JAVA METHODS 
Linked Lists 
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REMOVING AT 
THE HEAD 

• Update head to 
point to next 
node in the list 

• Allow garbage 
collector to 
reclaim the 
former first node 

Linked Lists 
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REMOVING AT THE TAIL  

• Removing at the tail of a singly linked list is not 
efficient! 

• There is no constant-time way to update the tail 
to point to the previous node 
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CIRCULARLY LINKED LIST 

Linked Lists 
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 A singularly linked list in which the next reference of the 
tail node is set to refer back to the head of the list (rather 
than null).  

 Supports all of the public behaviors of our SinglyLinkedList 
class and one additional update method 
 
 

 Nodes store: 
 element 
 link to the next node 
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APPLICATION OF CIRCULARLY LINKED LIST  

Linked Lists 

11 



© 2014 Goodrich, Tamassia, Goldwasser 

ROTATE() ON A CIRCULARLY LINKED LIST 
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We do not move any nodes or elements, we simply advance 
the tail reference to point to the node that follows it (the 
implicit head of the list). 

implicit head: tail.getNext( ). 
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Effect of a call to 
addFirst(STL) on the 
circularly linked list:  

Removing the first node from a 
circularly linked list can be 
accomplished by simply updating the 
next field of the tail node to bypass 
the implicit head. 

Removing at the tail is 
still not efficient 
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DOUBLY LINKED LISTS 
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DOUBLY LINKED LIST 

 A doubly linked list can be traversed 
forward and backward 

 Nodes store: 
 element 
 link to the previous node 
 link to the next node 

 Special trailer and header nodes 

Linked Lists 
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prev next 

element 

trailer header nodes/positions 

elements 

node 
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DOUBLY-LINKED LIST IN JAVA: NESTED CLASS NODE  
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TRAILER AND HEADER NODES 
 Description:  

Header node at the beginning of the list, and a trailer node at the end of the 
list are known as sentinels (or guards), and they do not store elements of the 
primary sequence. 

 Advantages:  
 The header and trailer nodes never change 
 We can treat all insertions in a unified manner 

 because a new node will always be placed between a pair of existing 
nodes 

 Every element that is to be deleted is guaranteed to be stored in a 
node that has neighbors on each side. 
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OPERATIONS IN DOUBLY LINKED LIST  
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DOUBLY-LINKED LIST IN JAVA, 2 
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INSERTION 

Linked Lists 
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DOUBLY-LINKED LIST IN JAVA: INSERTION 
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We can treat all insertions in a unified manner 
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DELETION 
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DOUBLY-LINKED LIST IN JAVA: DELETION  
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We can treat all deletion in a unified manner 



Ch3.5~6 
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JAVA SPECIFIC NOTES ON LINKED LIST 
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EQUIVALENCE TESTING 

 an equivalence relation in mathematics, satisfying the 
following properties: 
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EQUIVALENCE TESTING WITH ARRAYS 
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Arrays are a reference type in Java, but not technically a class 
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EQUIVALENCE TESTING WITH LINKED LISTS 
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SinglyLinkedList class 
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CLONING DATA STRUCTURES 
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Cloning Arrays 
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if the variable contacts refers to an 
array of hypothetical Person 
instances, the result of the command 
guests = contacts.clone( ) produces 
a shallow copy 

A deep copy of the contact list 
can be created by iteratively 
cloning the individual elements 
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CLONING LINKED LISTS 
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shallow copy 
of the original 
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