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Algorithm Input Output 



EVALUATING PROGRAM EFFICIENCY  

 What’s the best way to program a solution to a 
problem ?  

 Efficiency in terms of 
 Time (running time) 
 Space (memory requirements) 
 Resources (Input/Output such as disk I/O) 
 Energy consumption  

 Most analysis focuses on time efficiency  
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RUNNING TIME 
 The running time of an 

algorithm typically grows 
with the input size. 
 
 

 Average case time is often 
difficult to determine. 
 
 
 

 We focus on the worst 
case running time. 
 Easier to analyze 
 Crucial to applications such as 

games, finance and robotics 

0

20

40

60

80

100

120

Ru
nn

in
g 

Ti
m

e

1000 2000 3000 4000

Input Size

best case
average case
worst case

© 2014 Goodrich, Tamassia, Goldwasser 

3 



EXPERIMENTAL STUDIES 

 Write a program 
implementing the 
algorithm 

 Run the program with 
inputs of varying size 
and composition, noting 
the time needed: 

 Plot the results 
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 50 100

Input Size
Ti

m
e 

(m
s)

© 2014 Goodrich, Tamassia, Goldwasser 

4 



LIMITATIONS OF EXPERIMENTS 

 It is necessary to implement the algorithm, which may 
be difficult 
 

 Results may not be indicative of the running time on 
other inputs not included in the experiment.  
 

 Measured times reported by the system may likely vary 
from trial to trial, even on the same machine and input.  
 Processes share CPU and memory.  

 
 In order to compare two algorithms, the same 

hardware and software environments must be used 

© 2014 Goodrich, Tamassia, Goldwasser 

5 



EXAMPLE 
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repeat('*', 40)  
 
"****************************************" 



GOALS OF ANALYZING THE EFFICIENCY OF ALGORITHMS 

1. Allows us to evaluate the relative efficiency of any two 
algorithms in a way that is independent of the hardware 
and software environment.  

2. Is performed by studying a high- level description of the 
algorithm without need for implementation.  

3. Takes into account all possible inputs.  
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THEORETICAL ANALYSIS 

 Uses a high-level description of the algorithm instead 
of an implementation 
 

 Characterizes running time as a function of the  
 input size, n 

 
 Takes into account all possible inputs 

 
 Allows us to evaluate the speed of an algorithm 

independent of the hardware/software environment 
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F.Y.I.: PRIMITIVE OPERATIONS 

 Basic computations 
performed by an algorithm 

 Identifiable in pseudocode 
 Largely independent from 

the programming language 
 Exact definition not 

important (we will see why 
later) 

 Assumed to take a constant 
amount of time in the RAM 
model 

 Examples: 
 Assigning a value to a 

variable  
 Following an object 

reference  
 Performing an arithmetic 

operation ( for example, 
adding two numbers) 

 Comparing two numbers  
 Accessing a single element 

of an array by index  
 Calling a method 
 Returning from a method 
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F.Y.I.: THE RANDOM ACCESS MACHINE (RAM) 

A RAM consists of 
 A CPU 
 An potentially unbounded bank 

of memory cells, each of which 
can hold an arbitrary number or 
character 

 Memory cells are numbered and 
accessing any cell in memory 
takes unit time 
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F.Y.I.: PSEUDOCODE 
 High-level description of an algorithm 
 More structured than English prose 
 Less detailed than a program 
 Preferred notation for describing algorithms 
 Hides program design issues 
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example of pseudocode (for the mathematical game fizz buzz): 

http://en.wikipedia.org/wiki/Pseudocode 



PSEUDOCODE DETAILS 

 Control flow 
 if … then … [else …] 
 while … do … 
 repeat … until … 
 for … do … 
 Indentation replaces braces  

 

 Method declaration 
Algorithm method (arg [, arg…]) 
 Input … 
 Output … 

 Method call 
method (arg [, arg…]) 
 

 Return value 
return expression 
 

 Expressions: 
←Assignment 

 
= Equality testing 

 
n2 Superscripts and other 

mathematical 
formatting allowed 
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COUNTING PRIMITIVE OPERATIONS 

 Step 3: 2 ops, 4: 2 ops, 5: 2n ops,  
6: 2n ops, 7: 0 to n ops, 8: 1 op 

 By inspecting the pseudocode, we can determine the 
maximum number of primitive operations executed by 
an algorithm, as a function of the input size 
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ESTIMATING RUNNING TIME 

 Algorithm arrayMax executes 5n + 5 primitive operations 
in the worst case, 4n + 5 in the best case.  Define: 
a = Time taken by the fastest primitive operation 
b  = Time taken by the slowest primitive operation 

 Let T(n) be worst-case time of arrayMax. Then 
  a (4n + 5) ≤ T(n) ≤ b(5n + 5) 

 Hence, the running time T(n) is bounded by two linear 
functions 
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Focus on the growth rate of the running time as a function 

of the input size n, taking a “big-picture” approach. 
 



GROWTH RATE OF RUNNING TIME 

 Changing the hardware/ software 
environment  
 Affects T(n) by a constant factor, but 
 Does not alter the growth rate of T(n) 

 
   a (4n + 5) ≤ T(n) ≤ b(5n + 5) 

 
 The linear growth rate of the running time 

T(n) is an intrinsic property of algorithm 
arrayMax 
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WHY GROWTH RATE MATTERS 
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Slide by Matt Stallmann 
included with permission. 

if runtime 
is... time for n + 1 time for 2 n time for 4 n 

c lg n c lg (n + 1) c (lg n + 1) c(lg n + 2) 

c n c (n + 1) 2c n 4c n 

c n lg n 
~ c n lg n 

 +  c n 
2c n lg n + 

2cn 
4c n lg n + 

4cn 

c n2 ~ c n2 + 2c n 4c n2 16c n2 

c n3 ~ c n3 + 3c n2 8c n3  64c n3 

c 2n c 2 n+1 c 2 2n c 2 4n 

runtime 
quadruples 
when 
problem 
size doubles 



F.Y.I.: SEVEN IMPORTANT FUNCTIONS 

 Seven functions that often 
appear in algorithm 
analysis: 
 Constant ≈ 1 
 Logarithmic ≈ log n 
 Linear ≈ n 
 N-Log-N ≈ n log n 
 Quadratic ≈ n2 

 Cubic ≈ n3 

 Exponential ≈ bn 
 

 In a log-log chart, the 
slope of the line 
corresponds to the growth 
rate 

© 2014 Goodrich, Tamassia, Goldwasser 

17 
log-log chart 

Polynomials 



THE SEVEN FUNCTIONS GRAPHED  USING “NORMAL” SCALE 
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g(n) = 2n g(n) = 1 

g(n) = lg n 

g(n) = n lg n 

g(n) = n 

g(n) = n2 

g(n) = n3 
Slide by Matt Stallmann 
included with permission. 
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log-log chart 



F.Y.I.: SUMMATIONS 
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Running times of loops with increasing terms 

where a and b are integers and a ≤ b 

Loop for which each iteration takes a multiplicative factor longer than 

the previous one. 



CONSTANT FACTORS 

 The growth rate is 
not affected by 
 constant factors or  
 lower-order terms 

 Examples 
 102n + 105 is a linear 

function 
 105n2 + 108n is a 

quadratic function 
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1E-1
1E+1
1E+3
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1E+7
1E+9
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1E+19
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n
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Quadratic

Linear

Linear



 
COMPARISON OF TWO ALGORITHMS 
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Slide by Matt Stallmann 
included with permission. 

insertion sort is 
 n2 / 4 

merge sort is 
 2 n lg n 

sort a million items? 
 insertion sort takes 
  roughly 70 hours 
while 
 merge sort takes 
 roughly 40 seconds 

This is a slow machine, but if 
100 x as fast then it’s 40 minutes 
versus less than 0.5 seconds 



BIG-OH NOTATION 

 Example: 2n + 10 is O(n) 
 2n + 10 ≤ cn 
 (c − 2) n ≥ 10 
 n ≥ 10/(c − 2) 
 Pick c = 3 and n0 = 10 
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Focus on the growth rate of the running time as a function of the 

input size n, taking a “big-picture” approach. 



BIG-OH EXAMPLE 

 Example: the function 
n2 is not O(n) 
 n2 ≤ cn 
 n ≤ c 
 The above inequality c

annot be satisfied since 
c must be a constant  

 

© 2014 Goodrich, Tamassia, Goldwasser 

24 

1

10

100

1,000

10,000

100,000

1,000,000

1 10 100 1,000
n

n^2

100n

10n

n



© 2014 Goodrich, Tamassia, Goldwasser 

25 

More Big-Oh Examples 

 7n - 2 
 7n-2 is O(n) 

need c > 0 and n0 ≥ 1 such that 7 n - 2 ≤ c n for n ≥ n0 
this is true for c = 7 and n0 = 1 

 
 3 n3 + 20 n2 + 5 

 3 n3 + 20 n2 + 5 is O(n3) 
need c > 0 and n0 ≥ 1 such that 3 n3 + 20 n2 + 5 ≤ c n3 for n ≥ n0 
this is true for c = 4 and n0 = 21 

 3 log n + 5 
3 log n + 5 is O(log n) 
need c > 0 and n0 ≥ 1 such that 3 log n + 5 ≤ c log n for n ≥ n0 
this is true for c = 8 and n0 = 2 



BIG-OH AND GROWTH RATE 

 The big-Oh notation gives an upper bound on the gr
owth rate of a function 

 The statement “f(n) is O(g(n))” means that the growth 
rate of f(n) is no more than the growth rate of g(n) 

 We can use the big-Oh notation to rank functions accor
ding to their growth rate 
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f(n) is O(g(n)) g(n) is O(f(n)) 

g(n) grows more Yes No 
f(n) grows more No Yes 
Same growth Yes Yes 



BIG-OH RULES 

 If is f(n) a polynomial of degree d, then f(n) is 
O(nd), i.e., 

1. Drop lower-order terms 
2. Drop constant factors 

 
 

 
 Use the smallest possible class of functions 

 Say “2n is O(n)” instead of “2n is O(n2)” 

 Use the simplest expression of the class 
 Say “3n + 5 is O(n)” instead of “3n + 5 is O(3n)” 
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ASYMPTOTIC ALGORITHM ANALYSIS 

 The asymptotic analysis of an algorithm determines th
e running time in big-Oh notation 

 To perform the asymptotic analysis 
 We find the worst-case number of primitive operations exe

cuted as a function of the input size 
 We express this function with big-Oh notation 

 Example: 
 We say that algorithm arrayMax “runs in O(n) time” 

 Since constant factors and lower-order terms are even
tually dropped anyhow, we can disregard them when 
counting primitive operations 
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COMPARATIVE ANALYSIS  

 What’s considered a better algorithm?  
 Asymptotically faster algorithm that solves the same proble

m.  
 NOTE: Although we ignore constants, large constants can be 

effect the time significantly in real programs.  

 What’s considered fast? 
 Generally, algorithms that runs within O(nlogn) is considered 

fast. 
 If we need to divide algorithms to tractable and intractable, t

he borderline will be polynomial (nk) vs exponential  (an) 
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EXAMPLE: TREE-WAY SET DISJOINTNESS 
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PROBLEM(three-way set disjointness): Given three sets, A, B, 
and C, that contains no duplicate values, determine if the 
intersection of the three sets is empty, namely, that there is 
no element x such that x∈A,x∈B,andx∈C.  
 

 

 O(n3) 
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 O(n2) 

HINT: There are quadratically many pairs (a,b) 
to consider. However, if A and B are each sets 
of distinct elements, there can be at most O(n) 
such pairs with a equal to b. Therefore, the 
inner most loop, over C, executes at most n 

times. 



EXAMPLE: COMPUTING PREFIX AVERAGES 

PROBLEM: The i-th prefix aver
age of an array X is average o
f the first (i + 1) elements of X: 
A[i] = (X[0] + X[1] + … + X[i])/(i+1) 

 

Computing the array A of prefi
x averages of another array X 
 
 
APPLICATIONS: Given a stream 
of daily Web usage logs, a websi
te manager may wish to track av
erage usage trends over various 
time periods.  
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Prefix Averages (Quadratic time) 
The following algorithm computes prefix averages in 
quadratic time by applying the definition 



ARITHMETIC PROGRESSION 

 The running time of prefi
xAverage1 is 
O(1 + 2 + …+ n) 

 The sum of the first n in
tegers is n(n + 1) / 2 
 There is a simple visual pr

oof of this fact 

 Thus, algorithm prefixAv
erage1 runs in O(n2) time  
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Prefix Averages 2 (Linear) 
The following algorithm uses a running summation to 
improve the efficiency 

Algorithm prefixAverage2 runs in O(n) time! 
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Relatives of Big-Oh 

big-Omega 
 f(n) is Ω(g(n)) if there is a constant c > 0  

and an integer constant n0 ≥ 1 such that  
 f(n) ≥ c g(n) for n ≥ n0 

 

big-Theta 
 f(n) is Θ(g(n)) if there are constants c’ > 0 and 

c’’ > 0 and an integer constant n0 ≥ 1 such that 
c’g(n) ≤ f(n) ≤ c’’g(n) for n ≥ n0 



INTUITION FOR ASYMPTOTIC NOTATION 
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 big-Oh 
 f(n) is O(g(n)) if f(n) is asymptotically 

less than or equal to g(n) 
 big-Omega 

 f(n) is Ω(g(n)) if f(n) is asymptotically 
greater than or equal to g(n) 

 big-Theta 
 f(n) is Θ(g(n)) if f(n) is asymptotically 

equal to g(n) 
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Example Uses of the Relatives 
of Big-Oh 

f(n) is Θ(g(n)) if it is Ω(n2) and O(n2). We have already seen the former, 
for the latter recall that f(n) is O(g(n)) if there is a constant c > 0 and an 
integer constant n0 ≥ 1 such that f(n) < c g(n) for n ≥ n0  

Let c = 5 and n0 = 1 

 5n2 is Θ(n2) 

f(n) is Ω(g(n)) if there is a constant c > 0 and an integer constant n0 ≥ 1 
such that f(n) ≥ c g(n) for n ≥ n0 

let c = 1 and n0 = 1 

 5n2 is Ω(n) 

f(n) is Ω(g(n)) if there is a constant c > 0 and an integer constant n0 ≥ 1 
such that f(n) ≥ c g(n) for n ≥ n0 

let c = 5 and n0 = 1 

 5n2 is Ω(n2) 



MATH YOU NEED TO REVIEW 

 Properties of powers: 
a(b+c) = aba c 
abc = (ab)c 
ab /ac = a(b-c) 
b = a logab 
bc = a c*logab 

 Properties of logarithms: 
logb(xy) = logbx + logby 
logb (x/y) = logbx - logby 
logbxa = alogbx 
logba = logxa/logxb 

 Summations 
 Powers 
 Logarithms 
 Proof techniques 
 Basic probability 
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