
ANALYSIS OF ALGORITHMS

Presentation for use with the textbook Data Structures and Algorithms in
Java, 6th edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser,
Wiley, 2014

© 2014 Goodrich, Tamassia, Goldwasser

1

Algorithm Input Output

EVALUATING PROGRAM EFFICIENCY

 What’s the best way to program a solution to a
problem ?

 Efficiency in terms of
 Time (running time)
 Space (memory requirements)
 Resources (Input/Output such as disk I/O)
 Energy consumption

 Most analysis focuses on time efficiency

© 2014 Goodrich, Tamassia, Goldwasser

2

RUNNING TIME
 The running time of an

algorithm typically grows
with the input size.

 Average case time is often
difficult to determine.

 We focus on the worst
case running time.
 Easier to analyze
 Crucial to applications such as

games, finance and robotics

0

20

40

60

80

100

120

Ru
nn

in
g

Ti
m

e

1000 2000 3000 4000

Input Size

best case
average case
worst case

© 2014 Goodrich, Tamassia, Goldwasser

3

EXPERIMENTAL STUDIES

 Write a program
implementing the
algorithm

 Run the program with
inputs of varying size
and composition, noting
the time needed:

 Plot the results
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 50 100

Input Size
Ti

m
e

(m
s)

© 2014 Goodrich, Tamassia, Goldwasser

4

LIMITATIONS OF EXPERIMENTS

 It is necessary to implement the algorithm, which may
be difficult

 Results may not be indicative of the running time on
other inputs not included in the experiment.

 Measured times reported by the system may likely vary
from trial to trial, even on the same machine and input.
 Processes share CPU and memory.

 In order to compare two algorithms, the same

hardware and software environments must be used

© 2014 Goodrich, Tamassia, Goldwasser

5

EXAMPLE

© 2014 Goodrich, Tamassia, Goldwasser

6

repeat('*', 40)

"**"

GOALS OF ANALYZING THE EFFICIENCY OF ALGORITHMS

1. Allows us to evaluate the relative efficiency of any two
algorithms in a way that is independent of the hardware
and software environment.

2. Is performed by studying a high- level description of the
algorithm without need for implementation.

3. Takes into account all possible inputs.

© 2014 Goodrich, Tamassia, Goldwasser

7

THEORETICAL ANALYSIS

 Uses a high-level description of the algorithm instead
of an implementation

 Characterizes running time as a function of the
 input size, n

 Takes into account all possible inputs

 Allows us to evaluate the speed of an algorithm

independent of the hardware/software environment

© 2014 Goodrich, Tamassia, Goldwasser

8

F.Y.I.: PRIMITIVE OPERATIONS

 Basic computations
performed by an algorithm

 Identifiable in pseudocode
 Largely independent from

the programming language
 Exact definition not

important (we will see why
later)

 Assumed to take a constant
amount of time in the RAM
model

 Examples:
 Assigning a value to a

variable
 Following an object

reference
 Performing an arithmetic

operation (for example,
adding two numbers)

 Comparing two numbers
 Accessing a single element

of an array by index
 Calling a method
 Returning from a method

© 2014 Goodrich, Tamassia, Goldwasser

9

F.Y.I.: THE RANDOM ACCESS MACHINE (RAM)

A RAM consists of
 A CPU
 An potentially unbounded bank

of memory cells, each of which
can hold an arbitrary number or
character

 Memory cells are numbered and
accessing any cell in memory
takes unit time

© 2014 Goodrich, Tamassia, Goldwasser

10

0
1
2

F.Y.I.: PSEUDOCODE
 High-level description of an algorithm
 More structured than English prose
 Less detailed than a program
 Preferred notation for describing algorithms
 Hides program design issues

© 2014 Goodrich, Tamassia, Goldwasser

11

example of pseudocode (for the mathematical game fizz buzz):

http://en.wikipedia.org/wiki/Pseudocode

PSEUDOCODE DETAILS

 Control flow
 if … then … [else …]
 while … do …
 repeat … until …
 for … do …
 Indentation replaces braces

 Method declaration
Algorithm method (arg [, arg…])
 Input …
 Output …

 Method call
method (arg [, arg…])

 Return value
return expression

 Expressions:
←Assignment

= Equality testing

n2 Superscripts and other

mathematical
formatting allowed

© 2014 Goodrich, Tamassia, Goldwasser

12

COUNTING PRIMITIVE OPERATIONS

 Step 3: 2 ops, 4: 2 ops, 5: 2n ops,
6: 2n ops, 7: 0 to n ops, 8: 1 op

 By inspecting the pseudocode, we can determine the
maximum number of primitive operations executed by
an algorithm, as a function of the input size

© 2014 Goodrich, Tamassia, Goldwasser

13

ESTIMATING RUNNING TIME

 Algorithm arrayMax executes 5n + 5 primitive operations
in the worst case, 4n + 5 in the best case. Define:
a = Time taken by the fastest primitive operation
b = Time taken by the slowest primitive operation

 Let T(n) be worst-case time of arrayMax. Then
 a (4n + 5) ≤ T(n) ≤ b(5n + 5)

 Hence, the running time T(n) is bounded by two linear
functions

© 2014 Goodrich, Tamassia, Goldwasser

14

Focus on the growth rate of the running time as a function

of the input size n, taking a “big-picture” approach.

GROWTH RATE OF RUNNING TIME

 Changing the hardware/ software
environment
 Affects T(n) by a constant factor, but
 Does not alter the growth rate of T(n)

 a (4n + 5) ≤ T(n) ≤ b(5n + 5)

 The linear growth rate of the running time

T(n) is an intrinsic property of algorithm
arrayMax

© 2014 Goodrich, Tamassia, Goldwasser

15

WHY GROWTH RATE MATTERS

© 2014 Goodrich, Tamassia, Goldwasser

16

Slide by Matt Stallmann
included with permission.

if runtime
is... time for n + 1 time for 2 n time for 4 n

c lg n c lg (n + 1) c (lg n + 1) c(lg n + 2)

c n c (n + 1) 2c n 4c n

c n lg n
~ c n lg n

 + c n
2c n lg n +

2cn
4c n lg n +

4cn

c n2 ~ c n2 + 2c n 4c n2 16c n2

c n3 ~ c n3 + 3c n2 8c n3 64c n3

c 2n c 2 n+1 c 2 2n c 2 4n

runtime
quadruples
when
problem
size doubles

F.Y.I.: SEVEN IMPORTANT FUNCTIONS

 Seven functions that often
appear in algorithm
analysis:
 Constant ≈ 1
 Logarithmic ≈ log n
 Linear ≈ n
 N-Log-N ≈ n log n
 Quadratic ≈ n2

 Cubic ≈ n3

 Exponential ≈ bn

 In a log-log chart, the
slope of the line
corresponds to the growth
rate

© 2014 Goodrich, Tamassia, Goldwasser

17
log-log chart

Polynomials

THE SEVEN FUNCTIONS GRAPHED USING “NORMAL” SCALE

© 2014 Goodrich, Tamassia, Goldwasser

18

g(n) = 2n g(n) = 1

g(n) = lg n

g(n) = n lg n

g(n) = n

g(n) = n2

g(n) = n3
Slide by Matt Stallmann
included with permission.

Constant

Logarithmic

Linear

N-Log-N

Quadratic

Cubic

Exponential

© 2014 Goodrich, Tamassia, Goldwasser

19

log-log chart

F.Y.I.: SUMMATIONS

© 2014 Goodrich, Tamassia, Goldwasser

20

Running times of loops with increasing terms

where a and b are integers and a ≤ b

Loop for which each iteration takes a multiplicative factor longer than

the previous one.

CONSTANT FACTORS

 The growth rate is
not affected by
 constant factors or
 lower-order terms

 Examples
 102n + 105 is a linear

function
 105n2 + 108n is a

quadratic function

© 2014 Goodrich, Tamassia, Goldwasser

21

1E-1
1E+1
1E+3
1E+5
1E+7
1E+9

1E+11
1E+13
1E+15
1E+17
1E+19
1E+21
1E+23
1E+25

1E-1 1E+1 1E+3 1E+5 1E+7 1E+9

T(
n)

n

Quadratic

Quadratic

Linear

Linear

COMPARISON OF TWO ALGORITHMS

© 2014 Goodrich, Tamassia, Goldwasser

22

Slide by Matt Stallmann
included with permission.

insertion sort is
 n2 / 4

merge sort is
 2 n lg n

sort a million items?
 insertion sort takes
 roughly 70 hours
while
 merge sort takes
 roughly 40 seconds

This is a slow machine, but if
100 x as fast then it’s 40 minutes
versus less than 0.5 seconds

BIG-OH NOTATION

 Example: 2n + 10 is O(n)
 2n + 10 ≤ cn
 (c − 2) n ≥ 10
 n ≥ 10/(c − 2)
 Pick c = 3 and n0 = 10

© 2014 Goodrich, Tamassia, Goldwasser

23

Focus on the growth rate of the running time as a function of the

input size n, taking a “big-picture” approach.

BIG-OH EXAMPLE

 Example: the function
n2 is not O(n)
 n2 ≤ cn
 n ≤ c
 The above inequality c

annot be satisfied since
c must be a constant

© 2014 Goodrich, Tamassia, Goldwasser

24

1

10

100

1,000

10,000

100,000

1,000,000

1 10 100 1,000
n

n^2

100n

10n

n

© 2014 Goodrich, Tamassia, Goldwasser

25

More Big-Oh Examples

 7n - 2
 7n-2 is O(n)

need c > 0 and n0 ≥ 1 such that 7 n - 2 ≤ c n for n ≥ n0
this is true for c = 7 and n0 = 1

 3 n3 + 20 n2 + 5

 3 n3 + 20 n2 + 5 is O(n3)
need c > 0 and n0 ≥ 1 such that 3 n3 + 20 n2 + 5 ≤ c n3 for n ≥ n0
this is true for c = 4 and n0 = 21

 3 log n + 5
3 log n + 5 is O(log n)
need c > 0 and n0 ≥ 1 such that 3 log n + 5 ≤ c log n for n ≥ n0
this is true for c = 8 and n0 = 2

BIG-OH AND GROWTH RATE

 The big-Oh notation gives an upper bound on the gr
owth rate of a function

 The statement “f(n) is O(g(n))” means that the growth
rate of f(n) is no more than the growth rate of g(n)

 We can use the big-Oh notation to rank functions accor
ding to their growth rate

© 2014 Goodrich, Tamassia, Goldwasser

26

f(n) is O(g(n)) g(n) is O(f(n))

g(n) grows more Yes No
f(n) grows more No Yes
Same growth Yes Yes

BIG-OH RULES

 If is f(n) a polynomial of degree d, then f(n) is
O(nd), i.e.,

1. Drop lower-order terms
2. Drop constant factors

 Use the smallest possible class of functions

 Say “2n is O(n)” instead of “2n is O(n2)”

 Use the simplest expression of the class
 Say “3n + 5 is O(n)” instead of “3n + 5 is O(3n)”

© 2014 Goodrich, Tamassia, Goldwasser

27

ASYMPTOTIC ALGORITHM ANALYSIS

 The asymptotic analysis of an algorithm determines th
e running time in big-Oh notation

 To perform the asymptotic analysis
 We find the worst-case number of primitive operations exe

cuted as a function of the input size
 We express this function with big-Oh notation

 Example:
 We say that algorithm arrayMax “runs in O(n) time”

 Since constant factors and lower-order terms are even
tually dropped anyhow, we can disregard them when
counting primitive operations

© 2014 Goodrich, Tamassia, Goldwasser

28

COMPARATIVE ANALYSIS

 What’s considered a better algorithm?
 Asymptotically faster algorithm that solves the same proble

m.
 NOTE: Although we ignore constants, large constants can be

effect the time significantly in real programs.

 What’s considered fast?
 Generally, algorithms that runs within O(nlogn) is considered

fast.
 If we need to divide algorithms to tractable and intractable, t

he borderline will be polynomial (nk) vs exponential (an)

© 2014 Goodrich, Tamassia, Goldwasser

29

EXAMPLE: TREE-WAY SET DISJOINTNESS

© 2014 Goodrich, Tamassia, Goldwasser

30

PROBLEM(three-way set disjointness): Given three sets, A, B,
and C, that contains no duplicate values, determine if the
intersection of the three sets is empty, namely, that there is
no element x such that x∈A,x∈B,andx∈C.

 O(n3)

© 2014 Goodrich, Tamassia, Goldwasser

31

 O(n2)

HINT: There are quadratically many pairs (a,b)
to consider. However, if A and B are each sets
of distinct elements, there can be at most O(n)
such pairs with a equal to b. Therefore, the
inner most loop, over C, executes at most n

times.

EXAMPLE: COMPUTING PREFIX AVERAGES

PROBLEM: The i-th prefix aver
age of an array X is average o
f the first (i + 1) elements of X:
A[i] = (X[0] + X[1] + … + X[i])/(i+1)

Computing the array A of prefi
x averages of another array X

APPLICATIONS: Given a stream
of daily Web usage logs, a websi
te manager may wish to track av
erage usage trends over various
time periods.

© 2014 Goodrich, Tamassia, Goldwasser

32

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7

X
A

© 2014 Goodrich, Tamassia, Goldwasser

33

Prefix Averages (Quadratic time)
The following algorithm computes prefix averages in
quadratic time by applying the definition

ARITHMETIC PROGRESSION

 The running time of prefi
xAverage1 is
O(1 + 2 + …+ n)

 The sum of the first n in
tegers is n(n + 1) / 2
 There is a simple visual pr

oof of this fact

 Thus, algorithm prefixAv
erage1 runs in O(n2) time

© 2014 Goodrich, Tamassia, Goldwasser

34

0

1

2

3

4

5

6

7

1 2 3 4 5 6

© 2014 Goodrich, Tamassia, Goldwasser

35

Prefix Averages 2 (Linear)
The following algorithm uses a running summation to
improve the efficiency

Algorithm prefixAverage2 runs in O(n) time!

© 2014 Goodrich, Tamassia, Goldwasser

36

Relatives of Big-Oh

big-Omega
 f(n) is Ω(g(n)) if there is a constant c > 0

and an integer constant n0 ≥ 1 such that
 f(n) ≥ c g(n) for n ≥ n0

big-Theta
 f(n) is Θ(g(n)) if there are constants c’ > 0 and

c’’ > 0 and an integer constant n0 ≥ 1 such that
c’g(n) ≤ f(n) ≤ c’’g(n) for n ≥ n0

INTUITION FOR ASYMPTOTIC NOTATION

© 2014 Goodrich, Tamassia, Goldwasser

37

 big-Oh
 f(n) is O(g(n)) if f(n) is asymptotically

less than or equal to g(n)
 big-Omega

 f(n) is Ω(g(n)) if f(n) is asymptotically
greater than or equal to g(n)

 big-Theta
 f(n) is Θ(g(n)) if f(n) is asymptotically

equal to g(n)

© 2014 Goodrich, Tamassia, Goldwasser

38

Example Uses of the Relatives
of Big-Oh

f(n) is Θ(g(n)) if it is Ω(n2) and O(n2). We have already seen the former,
for the latter recall that f(n) is O(g(n)) if there is a constant c > 0 and an
integer constant n0 ≥ 1 such that f(n) < c g(n) for n ≥ n0

Let c = 5 and n0 = 1

 5n2 is Θ(n2)

f(n) is Ω(g(n)) if there is a constant c > 0 and an integer constant n0 ≥ 1
such that f(n) ≥ c g(n) for n ≥ n0

let c = 1 and n0 = 1

 5n2 is Ω(n)

f(n) is Ω(g(n)) if there is a constant c > 0 and an integer constant n0 ≥ 1
such that f(n) ≥ c g(n) for n ≥ n0

let c = 5 and n0 = 1

 5n2 is Ω(n2)

MATH YOU NEED TO REVIEW

 Properties of powers:
a(b+c) = aba c
abc = (ab)c
ab /ac = a(b-c)
b = a logab
bc = a c*logab

 Properties of logarithms:
logb(xy) = logbx + logby
logb (x/y) = logbx - logby
logbxa = alogbx
logba = logxa/logxb

 Summations
 Powers
 Logarithms
 Proof techniques
 Basic probability

© 2014 Goodrich, Tamassia, Goldwasser

39

	Analysis of Algorithms
	Evaluating prograM Efficiency
	Running Time
	Experimental Studies
	Limitations of Experiments
	Example
	Goals of analyzing the efficiency of algorithms
	Theoretical Analysis
	F.Y.I.: Primitive Operations
	F.Y.I.: The Random Access Machine (RAM)
	F.Y.I.: Pseudocode
	Pseudocode Details
	Counting Primitive Operations
	Estimating Running Time
	Growth Rate of Running Time
	�Why Growth Rate Matters
	F.Y.I.: Seven Important Functions
	The Seven Functions Graphed Using “Normal” Scale
	Slide Number 19
	F.Y.I.: summations
	Constant Factors
	�Comparison of Two Algorithms
	Big-Oh Notation
	Big-Oh Example
	Slide Number 25
	Big-Oh and Growth Rate
	Big-Oh Rules
	Asymptotic Algorithm Analysis
	Comparative Analysis
	Example: Tree-way set disjointness
	Slide Number 31
	Example: Computing Prefix Averages
	Slide Number 33
	Arithmetic Progression
	Slide Number 35
	Slide Number 36
	Intuition for Asymptotic Notation
	Slide Number 38
	Math you need to Review

