ANALYSIS OF ALGORITHMS

Presentation for use with the textbook Data Structures and Algorithms in Java, $6^{\text {th }}$ edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014

EVALUATING PROGRAM EFFICIENCY

* What's the best way to program a solution to a problem?
* Efficiency in terms of
+ Time (running time)
+ Space (memory requirements)
+ Resources (Input/Output such as disk I/O)
+ Energy consumption
* Most analysis focuses on time efficiency

RUNNING TLME

The running time of an algorithm typically grows with the input size.

Average case time is often difficult to determine.

We focus on the worst case running time.

Easier to analyze

+ Crucial to applications such as games, finance and robotics

EXPERIMENTAL STUDIES

* Write a program implementing the algorithm
* Run the program with inputs of varying size and composition, noting the time needed:
Plot the results

1 long startTime $=$ System.currentTimeMillis();
// record the starting time
2 /* (run the algorithm) */
3 long endTime = System.currentTimeMillis();
// record the ending time
4 long elapsed = endTime - startTime;
© 2014 Goodrich, Tamassia, Goldwasser

LIMITATIONS OF EXPERIMENTS

It is necessary to implement the algorithm, which may be difficult

Results may not be indicative of the running time on other inputs not included in the experiment.

Measured times reported by the system may likely vary from trial to trial, even on the same machine and input.

+ Processes share CPU and memory.
* In order to compare two algorithms, the same hardware and software environments must be used

EXAMPLE

```
/** Uses repeated concatenation to compose a String with n copies of character c. */
```

public static String repeat1(char c, int n) \{
String answer $=$ " ";
for (int $\mathrm{j}=0 ; \mathrm{j}<\mathrm{n} ; \mathrm{j}++$)
answer $+=\mathrm{c}$;
return answer;
"**"
\}
repeat('*', 40)
"**"
/** Uses StringBuilder to compose a String with n copies of character c. */
public static String repeat2(char c , int n$)$ \{
StringBuilder $s b=$ new StringBuilder();
for (int $\mathrm{j}=0 ; \mathrm{j}<\mathrm{n} ; \mathrm{j}++$)
sb.append(c);
return sb.toString();
\}

Code Fragment 4.2: Two algorithms

Figure 4.1: Chart of the results of the timing experiment from Code Fragment 4.2, displayed on a log-log scale. The divergent slopes demonstrate an order of magnitude difference in the growth of the running times.

GOALS OF ANALYZING THE EFFICIENCY OF ALGORITHMS

Allows us to evaluate the relative efficiency of any two algorithms in a way that is independent of the hardware and software environment.
Is performed by studying a high- level description of the algorithm without need for implementation.
Takes into account all possible inputs.

THEORETICAL ANALYSIS

* Uses a high-level description of the algorithm instead of an implementation
* Characterizes running time as a function of the input size, n

Takes into account all possible inputs

Allows us to evaluate the speed of an algorithm independent of the hardware/software environment

F.Y.L,; PRIMITIVE OPERATIONS

Basic computations performed by an algorithm

* Identifiable in pseudocode
* Largely independent from
the programming language
* Exact definition not
important (we will see why later)
* Assumed to take a constant amount of time in the RAM model

Examples:
Assigning a value to a variable

+ Following an object reference
+ Performing an arithmetic operation (for example, adding two numbers)
Comparing two numbers Accessing a single element of an array by index Calling a method Returning from a method
© 2014 Goodrich, Tamassia, Goldwasser

F.Y.,.; THE RANDOM ACCESS MACHINE (RAM)

A RAM consists of A CPU

An potentially unbounded bank of memory cells, each of which can hold an arbitrary number or character

* Memory cells are numbered and
 accessing any cell in memory takes unit time

F,Y,L,, PSEUDOCODE

* High-level description of an algorithm
* More structured than English prose Less detailed than a program Preferred notation for describing algorithms Hides program design issues

example of pseudocode (for the mathematical game fizz buzz):

Fortran style pseudo code
program fizzbuzz
Do $i=1$ to 100
set print_number to true
If i is divisible by 3
print "Fizz"
set print_number to false
If i is divisible by 5
print "Buzz"
set print_number to false
If print_number, print i
print a newline

```
Pascal style pseudo code
```

```
procedure fizzbuzz
```

procedure fizzbuzz

```
procedure fizzbuzz
For i := 1 to 100 do
For i := 1 to 100 do
For i := 1 to 100 do
    set print_number to true;
    set print_number to true;
    set print_number to true;
    If i is divisible by 3 then
    If i is divisible by 3 then
    If i is divisible by 3 then
        print "Fizz";
        print "Fizz";
        print "Fizz";
        set print_number to false;
        set print_number to false;
        set print_number to false;
        If i is divisible by 5 then
        If i is divisible by 5 then
        If i is divisible by 5 then
        print "Buzz";
        print "Buzz";
        print "Buzz";
        set print_number to false;
        set print_number to false;
        set print_number to false;
    If print_number, print i;
    If print_number, print i;
    If print_number, print i;
    print a newline;
    print a newline;
    print a newline;
end
```

end

```
end
```

```
C style pseudo code:
void function fizzbuzz
For (i = 1; i <= 100; i++) {
        set print_number to true;
        If i is divisible by }
        print "Fizz";
        set print_number to false;
    If i is divisible by 5
        print "Buzz";
        set print_number to false;
    If print_number, print i;
    print a newline;
}
```

© 2014 Goodrich, Tamassia, Goldwasser

PSEUDOCODE RETAILS

* Control flow
+ if ... then ... [else ...]
+ while ... do ...
+ repeat ... until ...
+ for ... do ...
+ Indentation replaces braces
* Method declaration

Algorithm method (arg [, arg...])
Input ...
Output...

Method call

```
    method (arg [, arg...])
```


Return value

return expression
Expressions:
\leftarrow Assignment
$=$ Equality testing
n^{2} Superscripts and other mathematical formatting allowed

COUNTING PRIMITIVE OPERATIONS

* By inspecting the pseudocode, we can determine the maximum number of primitive operations executed by an algorithm, as a function of the input size

```
/** Returns the maximum value of a nonempty array of numbers. */
public static double arrayMax(double[ ] data) {
    int n = data.length;
    double currentMax = data[0];
    for (int j=1; j < n; j++)
        if (data[j] > currentMax)
        currentMax = data[j];
    // assume first entry is biggest (for now)
    // consider all other entries
    // if data[j] is biggest thus far...
    // record it as the current max
    return currentMax;
}
```

* Step 3: 2 ops, 4: 2 ops, 5: 2n ops, 6: 2 n ops, 7: 0 to n ops, 8 : 1 op

ESTIMATING RUNNING TLME

Focus on the growth rate of the running time as a function of the input size n, taking a "big-picture" approach.

Algorithm arrayMax executes $5 \boldsymbol{n}+5$ primitive operations in the worst case, $4 \boldsymbol{n}+5$ in the best case. Define:
$a=$ Time taken by the fastest primitive operation
$\boldsymbol{b}=$ Time taken by the slowest primitive operation
Let $\boldsymbol{T}(\boldsymbol{n})$ be worst-case time of arrayMax. Then

$$
\boldsymbol{a}(4 \boldsymbol{n}+5) \leq \boldsymbol{T}(\boldsymbol{n}) \leq \boldsymbol{b}(5 \boldsymbol{n}+5)
$$

Hence, the running time $\boldsymbol{T}(\boldsymbol{n})$ is bounded by two linear functions

GROWTH RATE OF RUNNING TIME

Changing the hardware/ software environment

+ Affects $T(n)$ by a constant factor, but
+ Does not alter the growth rate of $\boldsymbol{T}(\boldsymbol{n})$

$$
\boldsymbol{a}(4 \boldsymbol{n}+5) \leq \boldsymbol{T}(\boldsymbol{n}) \leq \boldsymbol{b}(5 \boldsymbol{n}+5)
$$

The linear growth rate of the running time $\boldsymbol{T}(\boldsymbol{n})$ is an intrinsic property of algorithm arrayMax

WHY GROWTH RATE MATTERS

if runtime is...	time for $n+1$	time for $2 n$	time for $4 n$
$c \lg n$	$c \lg (n+1)$	$c(\lg n+1)$	$c(\lg n+2)$

F.Y.,.,: SEVEN IMPORTANT FUNCTIONS

- Seven functions that often appear in algorithm analysis:

$$
f(n)=a_{0}+a_{1} n+a_{2} n^{2}+a_{3} n^{3}+\cdots+a_{d} n^{d}
$$

- Constant ≈ 1

Polynomials

- Logarithmic $\approx \log n$
- Linear $\approx n$
- N-Log-N $\approx \boldsymbol{n} \log n$
- Quadratic $\approx \boldsymbol{n}^{2}$
- Cubic $\approx n^{3}$ \qquad
- Exponential $\approx \mathbf{b}^{n}$
- In a log-log chart, the slope of the line corresponds to the growth rate

THE SEVEN FUNCTIONS GRAPHER USING "NORMAL" SCALE

$$
g(n)=1
$$

Constant
$g(n)=\lg n$
Logarithmic

$$
g(n)=n \lg n
$$

N-Log-N

$$
g(n)=2^{n}
$$

Exponential

Quadratic

$=g(n)=n^{3} /$| Slide by Matt Stallmann |
| :--- |
| included with permission. |

Cubic

log-log chart

F.Y.I.: SUMMATIONS

Running times of loops with increasing terms

$$
\sum_{i=a}^{b} f(i)=f(a)+f(a+1)+f(a+2)+\cdots+f(b)
$$

where a and b are integers and $a \leq b$
Proposition 4.3: For any integer $n \geq 1$, we have:

$$
1+2+3+\cdots+(n-2)+(n-1)+n=\frac{n(n+1)}{2} .
$$

Loop for which each iteration takes a multiplicative factor longer than the previous one.

Proposition 4.5: For any integer $n \geq 0$ and any real number a such that $a>0$ and $a \neq 1$, consider the summation

$$
\sum_{i=0}^{n} a^{i}=1+a+a^{2}+\cdots+a^{n}
$$

(remembering that $a^{0}=1$ if $a>0$). This summation is equal to

$$
\frac{a^{n+1}-1}{a-1}
$$

© 2014 Goodrich, Tamassia, Goldwasser

CONSTANT FACTORS

The growth rate is not affected by

+ constant factors or
+ lower-order terms
* Examples
§
$+10^{2} \boldsymbol{n}+10^{5}$ is a linear function
$+10^{5} \boldsymbol{n}^{2}+10^{8} \boldsymbol{n}$ is a quadratic function

COMPARISON OF TWO ALGORITHNID

insertion sort is $\mathrm{n}^{2} / 4$
merge sort is
$2 \mathrm{n} \lg \mathrm{n}$
sort a million items?
insertion sort takes roughly 70 hours
while
merge sort takes roughly 40 seconds

This is a slow machine, but if $100 \times$ as fast then it' s 40 minutes versus less than 0.5 seconds

BIG-OH NOTATION

Focus on the growth rate of the running time as a function of the input size n, taking a "big-picture" approach.
Let $f(n)$ and $g(n)$ be functions mapping positive integers to positive real numbers. We say that $f(n)$ is $O(g(n))$ if there is a real constant $c>0$ and an integer constant $n_{0} \geq 1$ such that

$$
f(n) \leq c \cdot g(n), \text { for } n \geq n_{0} .
$$

This definition is often referred to as the "big-Oh" notation, for it is sometimes pronounced as " $f(n)$ is big-Oh of $g(n)$."

Example: $2 \boldsymbol{n}+10$ is $\mathbf{O (n)}$
$+2 \boldsymbol{n}+10 \leq \boldsymbol{c n}$
$+(c-2) n \geq 10$
$+n \geq 10 /(\boldsymbol{c}-2)$

+ Pick $\boldsymbol{c}=3$ and $\boldsymbol{n}_{\mathbf{0}}=10$

© 2014 Goodrich, Tamassia, Goldwasser

BIG-OH EXAMPLE

Example: the function \boldsymbol{n}^{2} is not $\boldsymbol{O}(\boldsymbol{n})$
$+\boldsymbol{n}^{2} \leq \boldsymbol{c} \boldsymbol{n}$
$+\boldsymbol{n} \leq \boldsymbol{c}$

+ The above inequality c annot be satisfied since c must be a constant

More Big-Oh Examples

- $7 n-2$
$7 n-2$ is $\mathrm{O}(\mathrm{n})$
need $c>0$ and $n_{0} \geq 1$ such that $7 n-2 \leq \mathrm{n}$ for $\mathrm{n} \geq \mathrm{n}_{0}$
this is true for $\mathrm{c}=7$ and $\mathrm{n}_{0}=1$
- $3 n^{3}+20 n^{2}+5$
$3 n^{3}+20 n^{2}+5$ is $O\left(n^{3}\right)$
need $c>0$ and $n_{0} \geq 1$ such that $3 n^{3}+20 n^{2}+5 \leq c n^{3}$ for $n \geq n_{0}$ this is true for $\mathrm{c}=4$ and $\mathrm{n}_{0}=21$
- $3 \log n+5$
$3 \log n+5$ is $O(\log n)$
need $\mathrm{c}>0$ and $\mathrm{n}_{0} \geq 1$ such that $3 \log \mathrm{n}+5 \leq \mathrm{c} \log \mathrm{n}$ for $\mathrm{n} \geq \mathrm{n}_{0}$ this is true for $\mathrm{c}=8$ and $\mathrm{n}_{0}=2$

BIG-OH AND GROWTH RATE

The big-Oh notation gives an upper bound on the gr owth rate of a function
The statement " $f(n)$ is $\boldsymbol{O}(\boldsymbol{g}(\boldsymbol{n})$)" means that the growth rate of $f(n)$ is no more than the growth rate of $\boldsymbol{g}(\boldsymbol{n})$
We can use the big-Oh notation to rank functions accor ding to their growth rate

	$f(\boldsymbol{n})$ is $\boldsymbol{O}(\boldsymbol{g}(\boldsymbol{n}))$	$\boldsymbol{g}(\boldsymbol{n})$ is $\boldsymbol{O}(\boldsymbol{f}(\boldsymbol{n}))$
$\boldsymbol{g}(\boldsymbol{n})$ grows more	Yes	No
$\boldsymbol{f (n)}$ grows more	No	Yes
Same growth	Yes	Yes

BIG-OH RULES

If is $f(\boldsymbol{n})$ a polynomial of degree \boldsymbol{d}, then $f(\boldsymbol{n})$ is $\boldsymbol{O}\left(\boldsymbol{n}^{d}\right)$, i.e.,

1. Drop lower-order terms
2. Drop constant factors

Proposition 4.8: If $f(n)$ is a polynomial of degree d, that is,

$$
f(n)=a_{0}+a_{1} n+\cdots+a_{d} n^{d},
$$

and $a_{d}>0$, then $f(n)$ is $O\left(n^{d}\right)$.

* Use the smallest possible class of functions
+ Say " $2 n$ is $O(n)$ " instead of " $2 n$ is $O\left(n^{2}\right)$ "
* Use the simplest expression of the class
+ Say " $3 \boldsymbol{n}+5$ is $\boldsymbol{O}(\boldsymbol{n})$ " instead of " $3 \boldsymbol{n}+5$ is $\boldsymbol{O}(3 n)$ "

ASYMPTOTIC ALGORITHM ANALYSIS

* The asymptotic analysis of an algorithm determines th e running time in big-Oh notation
* To perform the asymptotic analysis
+ We find the worst-case number of primitive operations exe cuted as a function of the input size
+ We express this function with big-Oh notation
* Example:
+ We say that algorithm arrayMax "runs in $\boldsymbol{O}(\boldsymbol{n})$ time"
* Since constant factors and lower-order terms are even tually dropped anyhow, we can disregard them when counting primitive operations

COMPARATIVE ANALYSIS

\times What's considered a better algorithm?

+ Asymptotically faster algorithm that solves the same proble m.
+ NOTE: Although we ignore constants, large constants can be effect the time significantly in real programs.
* What's considered fast?
+ Generally, algorithms that runs within O(nlogn) is considered fast.
+ If we need to divide algorithms to tractable and intractable, t he borderline will be polynomial $\left(n^{k}\right)$ vs exponential $\left(a^{n}\right)$

EXAMPLE: TREE-WAY SET DISJOINTNESS

PROBLEM(three-way set disjointness): Given three sets, A, B, and C, that contains no duplicate values, determine if the intersection of the three sets is empty, namely, that there is no element x such that $x \in A, x \in B, a n d x \in C$.

```
/** Returns true if there is no element common to all three arrays. */
public static boolean disjoint1(int[ ] groupA, int[ ] groupB, int[ ] groupC) {
    for (int a : groupA)
        for(int b : groupB)
            for (int c: groupC)
                if ((a == b) && (b == c))
                return false;
    return true;
}
// we found a common value
// if we reach this, sets are disjoint
```

$O\left(n^{3}\right)$

```
/** Returns true if there is no element common to all three arrays. */
public static boolean disjoint2(int[ ] groupA, int[ ] groupB, int[ ] groupC) {
    for (int a : groupA)
            for (int b : groupB)
            if (a== b)
                for (int c: groupC)
                    if (a== c)
                    return false;
    return true;
                    // only check C when we find match from A and B
                            // and thus b == c as well
// we found a common value
// if we reach this, sets are disjoint
}
```

HINT: There are quadratically many pairs (a, b) to consider. However, if A and B are each sets of distinct elements, there can be at most $O(n)$ such pairs with a equal to b. Therefore, the inner most loop, over C, executes at most n times.

EXAMPLE: COMPUTING PREFIX AVERAGES

PROBLEM: The i-th prefix aver age of an array \boldsymbol{X} is average o f the first $(\boldsymbol{i}+1)$ elements of \boldsymbol{X} :

$$
A[i]=(X[0]+X[1]+\ldots+X[i]) /(i+1)
$$

Computing the array A of prefi x averages of another array X

APPLICATIONS: Given a stream of daily Web usage logs, a websi te manager may wish to track av erage usage trends over various time periods.

Prefix Averages (Quadratic time)

The following algorithm computes prefix averages in quadratic time by applying the definition
11 return a;
12

```
/** Returns an array a such that, for all j, a[j] equals the average of x[0], .., x[j]. */
public static double[ ] prefixAverage1(double[] x) {
    int n = x.length;
    double[ ] a = new double[n];
    for (int j=0; j < n; j++) {
        double total = 0;
        for (int i=0; i <= j; i++)
            total +=x[i];
        a[j] = total / (j+1);
    }
}
```


ARITHMETIC PROGRESSION

The running time of prefi xAverage 1 is $\boldsymbol{O}(1+2+\ldots+\boldsymbol{n})$
The sum of the first \boldsymbol{n} in tegers is $\boldsymbol{n}(\boldsymbol{n}+1) / 2$

+ There is a simple visual pr oof of this fact
Thus, algorithm prefixAv erage1 runs in $\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$ time

Prefix Averages 2 (Linear)

The following algorithm uses a running summation to improve the efficiency

```
/** Returns an array a such that, for all j, a[j] equals the average of x[0], .., x[j].*/
public static double[ ] prefixAverage2(double[ ] x) {
    int n = x.length;
    double[] a = new double[n]; // filled with zeros by default
    double total = 0; // compute prefix sum as x[0] + x[1] + ...
    for (int j=0; j < n; j++) {
        total }+=x[j]; // update prefix sum to include x[j
        a[j] = total / (j+1); // compute average based on current sum
    }
    return a;
}
```

Algorithm prefixAverage2 runs in $\boldsymbol{O}(\boldsymbol{n})$ time!

Relatives of Big-Oh

big-Omega

- $\mathrm{f}(\mathrm{n})$ is $\Omega(\mathrm{g}(\mathrm{n}))$ if there is a constant $\mathrm{c}>0$ and an integer constant $n_{0} \geq 1$ such that

$$
f(n) \geq c g(n) \text { for } n \geq n_{0}
$$

big-Theta

- $f(n)$ is $\Theta(g(n))$ if there are constants $c^{\prime}>0$ and $c^{\prime \prime}>0$ and an integer constant $n_{0} \geq 1$ such that

$$
c^{\prime} g(n) \leq f(n) \leq c^{\prime \prime} g(n) \text { for } n \geq n_{0}
$$

INTUITION FOR ASYMPTOTIC NOTATION

big-Oh

- $f(n)$ is $O(g(n))$ if $f(n)$ is asymptotically less than or equal to $\mathrm{g}(\mathrm{n})$
big-Omega
- $\mathrm{f}(\mathrm{n})$ is $\Omega(\mathrm{g}(\mathrm{n}))$ if $\mathrm{f}(\mathrm{n})$ is asymptotically greater than or equal to $g(n)$
big-Theta
- $f(n)$ is $\Theta(g(n))$ if $f(n)$ is asymptotically equal to $g(n)$
© 2014 Goodrich, Tamassia, Goldwasser

Example Uses of the Relatives of Big-Oh

- $5 n^{2}$ is $\Omega\left(n^{2}\right)$

$f(n)$ is $\Omega(g(n))$ if there is a constant $c>0$ and an integer constant $n_{0} \geq 1$ such that $f(n) \geq c g(n)$ for $n \geq n_{0}$
let $c=5$ and $n_{0}=1$
- $\mathbf{5 n}^{\mathbf{2}}$ is $\Omega(n)$
$f(n)$ is $\Omega(g(n))$ if there is a constant $c>0$ and an integer constant $n_{0} \geq 1$ such that $f(n) \geq c g(n)$ for $n \geq n_{0}$
let $c=1$ and $n_{0}=1$
- $5 \boldsymbol{n}^{2}$ is $\Theta\left(\boldsymbol{n}^{2}\right)$
$f(n)$ is $\Theta(g(n))$ if it is $\Omega\left(n^{2}\right)$ and $O\left(n^{2}\right)$. We have already seen the former, for the latter recall that $f(n)$ is $O(g(n))$ if there is a constant $c>0$ and an integer constant $n_{0} \geq 1$ such that $\mathrm{f}(n) \leq c g(n)$ for $n \geq n_{0}$
Let $c=5$ and $n_{0}=1$

MATH YOU NEED TO REXIEW

* Summations
* Powers
* Logarithms
* Proof techniques
* Basic probability
* Properties of powers: $a^{(b+c)}=a^{b} a^{c}$ $a^{b c}=\left(a^{b}\right)^{c}$ $a^{b} / a^{c}=a^{(b-c)}$
$b=a \log _{a} b$
$b^{c}=a^{c^{*} \log _{a} b}$
* Properties of logarithms:

$$
\begin{aligned}
& \log _{b}(x y)=\log _{b} x+\log _{b} y \\
& \log _{b}(x / y)=\log _{b} x-\log _{b} y \\
& \log _{b} x a=a \log _{b} x \\
& \log _{b} a=\log _{x} a / \log _{x} b
\end{aligned}
$$

