© 2014 Goodrich, Tamassia, Goldwasser

@ Korea H\\\‘ Stony Brook
#ERRILAND UI‘liVEI“'Sit},’

JAVA PRIMER;

TYPES, CLASSES AND OPERATORS
/O METHODS AND CONTROL FLOW

Presentation for use with the textbook Data Structures and Algorithms in Java, 6!
" edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014

© 2014 Goodrich, Tamassia, Goldwasser

THE JAVA COMPILER

Java is a compiled language.

Programs are compiled into byte-code executable files,
which are executed through the Java virtual machine
(JVM).

The JVM reads each instruction and executes that instruction.

A programmer defines a Java program in advance and
saves that program in a text file known as source code.

For Java, source code is conventionally stored in a file
named with the .java suffix (e.g., demo.java) and the
byte-code file Is stored in a file named with a .class
suffix, which is produced by the Java compiler.

AN EXAMPLE PROGRAM

FL Fi |]

all code ina Java curly brace for hi hod
program must the opening of dT 's mefho
belong to a class the class body oesn T return

anything
the name of
this class

this says anyone can

run this program the name of The parameters passed to

this method this method (in this case the
arguements on the command

anyone can : :
i line as an array of strings)
method curly brace for the opening
of the method body
thismethod 7 e
belongs to the System out. pnntln ("HeIIo Umverse"')“ ﬂ—semrcolon

class, notan LT
object (more ;-

on this later) } the name of the method we the parameter passed to this

indicating the end
of this statement

curly brace want to call (in this case the method (in this case the
closing the : } method for printing strings string we want to print)
class pad on the screen)

curly brace for closing
the method body

COMPONENTS OF A JAVA PROGRAM

In Java, executable statements are placed in
functions, known as methods, that belong to
class definitions.

The static method named main is the first
method to be executed when running a Java
program.

Any set of statements between the braces “{”
and “}” define a program block.

IDENTIFIERS

The name of a class, method, or variable in Java is calle
d an identifier, which can be any string of characters as |
ong as it begins with a letter and consists of letters.

Exceptions:

Reserved Words
abstract default goto package synchronized
assert do if private this
boolean double implements protected throw
break else import public throws
byte enum instanceof return transient
case extends int short true
catch false interface static try
char final long strictfp void
class finally native super volatile
const float new switch while
continue for null

BASE TYPES

Java has several base types, which are basic ways of
storing data.

An identifier variable can be declared to hold any base
type and it can later be reassigned to hold another value
of the same type.

boolean
char
byte
short
int
long
float
double

a boolean value: true or false

16-bit Unicode character

8-bit signed two’s complement integer

16-bit signed two’s complement integer
32-bit signed two’s complement integer
64-bit signed two’s complement integer
32-bit floating-point number (IEEE 754-1985)
64-bit floating-point number (IEEE 754-1985)

boolean flag = true;
boolean verbose, debug;
char grade = 'A';

byte b = 12;
short s = 24;
inti, j, k=257,
long | = 890L;

float pi = 3.1416F;
double e = 2.71828, a = 6.022e23;

CLASSES AND OBJECTS

Every object is an instance of a class, which serves as the type
of the object and as a blueprint, defining the data which the
object stores and the methods for accessing and modifying
that data. The critical members of a class in Java are the

following:

Instance variables, which are also called fields, represent the data associated
with an object of a class. Instance variables must have a type, which can either
be a base type (such as int, float, or double) or any class type.

Methods in Java are blocks of code that can be called to perform actions.
Methods can accept parameters as arguments, and their behavior may depend
on the object upon which they are invoked and the values of any parameters
that are passed. A method that returns information to the caller without
changing any instance variables is known as an accessor method, while an
update method is one that may change one or more instance variables when
called.

ANOTHER EXAMPLE

public class Counter {

private int count; // a simple integer instance variable
public Counter() { } // default constructor (count is 0)

public Counter(int initial) { count = initial; } // an alternate constructor
public int getCount() { return count; } // an accessor method
public void increment() { count++; } // an update method
public void increment(int delta) { count += delta; } // an update method
public void reset() { count = 0; } // an update method

}

This class includes one instance variable, named count,
which will have a default value of zero, unless we otherwise
initialize it.

The class includes two special methods known as
constructors, one accessor method, and three update
methods.

CREATING AND USING OBJECTS

Classes are known as reference types in Java, and a variable of that
type is known as a reference variable.

A reference variable is capable of storing the location (i.e., memory
address) of an object from the declared class.

So we might assign it to reference an existing instance or a newly constructed
instance.

A reference variable can also store a special value, null, that represents the lack of
an object.

In Java, a new object is created by using the new operator followed by a
call to a constructor for the desired class.

A constructor is a method that always shares the same name as its
class. The new operator returns a reference to the newly created
instance; the returned reference is typically assigned to a variable for
further use.

CONTINUED EXAMPLE

public class CounterDemo {
public static void main(String] |
Counter c;

¢ = new Counter();

args) {

// declares a variable; no counter yet constructed
// constructs a counter; assigns its reference to c

c.increment(J; // increases its value by one
c.increment(3); // increases its value by three more
int temp = c.getCount(); // will be 4

c.reset(); [/ value becomes 0

|Counter d = new Counter(5);/|/ declares and constructs a counter having value 5
d.increment(); // value becomes 6

Counter e = d; // assigns e to reference the same object as d

temp = e.getCount(); // will be 6 (as e and d reference the same counter)
e.increment(2); // value of e (also known as d) becomes 8

}
}

Here, a new Counter is constructed at line 4, with its reference assigned
to the variable c. That relies on a form of the constructor, Counter(), that
takes no arguments between the parentheses.

THE DOT OPERATOR

One of the primary uses of an object reference
variable is to access the members of the class for
this object, an instance of its class.

This access is performed with the dot (“.”)
operator.

We call a method associated with an object by
using the reference variable name, following that
by the dot operator and then the method name
and its parameters. _ i
e.increment(2); |

WRAPPER TYPES

There are many data structures and algorithms
iIn Java’s libraries that are specifically designed
so that they only work with object types (not
primitives).

To get around this obstacle, Java defines a
wrapper class for each base type.

Java provides additional support for implicitly
converting between base types and their wrapper
types through a process known as automatic boxing
and unboxing.

EXAMPLE WRAPPER TYPES

Base Type | Class Name | Creation Example Access Example
boolean Boolean obj = new Boolean(true); obj.booleanValue()
char Character | obj = new Character('Z’); obj.charValue()
byte Byte obj = new Byte((byte) 34); obj.byteValue()
short Short obj = new Short((short) 100); | obj.shortValue()
int Integer obj = new Integer(1045); obj.intValue()
long Long obj = new Long(10849L); obj.longValue()
float Float obj = new Float(3.934F); obj.floatValue()
double Double obj = new Double(3.934); obj.doubleValue()

int] = 8;

Integer a = new Integer(12);

int k = a;

intm=j + a;

a=3x%xm

Integer b = new Integer("-135");
int n = Integer.parselnt("2013"); //

// implicit call to a.intValue()

// a is automatically unboxed before the addition
// result is automatically boxed before assignment

constructor accepts a String
using static method of Integer class

SIGNATURES

If there are several methods with this same name defined for
a class, then the Java runtime system uses the one that
matches the actual number of parameters sent as
arguments, as well as their respective types.

A method’s name combined with the number and types of its
parameters is called a method’s signature, for it takes all of
these parts to determine the actual method to perform for a
certain method call.

A reference variable v can be viewed as a “pointer” to some
object o.

DEFINING CLASSES

A class definition is a block of code, delimited by
braces “{” and “}” , within which is included
declarations of instance variables and methods
that are the members of the class.

Immediately before the definition of a class,
Instance variable, or method in Java, keywords
known as modifiers can be placed to convey
additional stipulations about that definition.

ACCESS CONTROL MODIFIERS

The public class modifier designates that all classes may
access the defined aspect.

The protected class modifier designates that access to the
defined aspect is only granted to classes that are designhated
as subclasses of the given class through inheritance or in the
same package.

The private class modifier designates that access to a
defined member of a class be granted only to code within
that class.

When a variable or method of a class is declared as static, it
IS associated with the class as a whole, rather than with
each individual instance of that class.

PARAMETERS

A method’s parameters are defined in a comma-separated
list enclosed in parentheses after the name of the method.

A parameter consists of two parts, the parameter type and the
parameter name.

If a method has no parameters, then only an empty pair of
parentheses is used.
All parameters in Java are passed by value, that is, any time
we pass a parameter to a method, a copy of that parameter
iIs made for use within the method body.

So if we pass an int variable to a method, then that variable’s integer
value is copied.

The method can change the copy but not the original.

If we pass an object reference as a parameter to a method, then the
reference is copied as well.

THE KEYWORD THIS

Within the body of a method in Java, the keyword
this is automatically defined as a_reference to the
Instance upon which the method was invoked. There
are three common uses:

To store the reference in a variable, or send it as a
parameter to another method that expects an instance
of that type as an argument.

To differentiate between an instance variable and a
local variable with the same name.

To allow one constructor body to invoke another
constructor body.

ARITHMETIC OPERATORS

Java supports the following arithmetic operators:
+ addition
— subtraction
* multiplication
/ division
% the modulo operator

If both operands have type int, then the result is an int;
If one or both operands have type float, the result is a
float.

Integer division has its result truncated.

INCREMENT AND DECREMENT OPERATORS

Java provides the plus-one increment (++) and
decrement (——) operators.

If such an operator is used in front of a variable
reference, then 1 is added to (or subtracted from) the
variable and its value is read into the expression.

If it is used after a variable reference, then the value is
first read and then the variable is incremented or
decremented by 1.

inti = §8;

int j = i++; // j becomes 8 and then i becomes 9
int k = +4i; // i becomes 10 and then k becomes 10
intm=i——, // m becomes 10 and then i becomes 9

intn =9 + ——i; // i becomes 8 and then n becomes 17

LOGICAL OPERATORS

Java supports the following operators for numerical valu

es, which result in Boolean values:
< less than

<= less than or equal to
== equal to

I= notequal to

>= greater than or equal to

> greater than

Boolean values also have the following operators:

| not (prefix)
&& conditional and
|| conditional or

The and and or operators short circuit, in that they do
not evaluate the second operand if the result can be det
ermined based on the value of the first operand.

BITWISE OPERATORS

Java provides the following bitwise operators
for integers and booleans:

~ bitwise complement (prefix unary operator)
& bitwise and
| bitwise or
) bitwise exclusive-or
<< shift bits left, filling in with zeros
>> shift bits right, filling in with sign bit
>>> shift bits right, filling in with zeros

OPERATOR PRECEDENCE

Operator Precedence
Type Symbols
[| array index | []
method call | ()
dot operator | .
2 | postfix ops | exp++ exp——
prefix ops ++exp ——exp +exp —exp “exp lexp
cast (type) exp
3 | mult./div. * %
4 | add./subt. + —
5 | shift << > 3>
6 | comparison | < <= > >= instanceof
7 | equality == I=
8 | bitwise-and | &
9 | bitwise-xor | ~
10 | bitwise-or |
11 | and & &
12 | or |
13 | conditional | booleanExpression ? valuelfTrue : valuelfFalse
14 | assignment | = += —= *x= /= %= <<= >>= >>>= &= "= |=

CASTING

Casting is an operation that allows us to change
the type of a value.

We can take a value of one type and cast it into an
equivalent value of another type.

There are two forms of casting in Java: explicit
casting and implicit casting.

EXPLICIT CASTING

Java supports an explicit casting syntax with the
following form:

(type) exp
Here “type” is the type that we would like the expression
exp to have.

This syntax may only be used to cast from one primitive
type to another primitive type, or from one reference type
to another reference type.

Examples:

double d1 = 3.2;

double d2 = 3.9999;

int il = (int) d1; // il gets value 3
int i2 = (int) d2; // i2 gets value 3
double d3 = (double) i2; // d3 gets value 3.0

IMPLICIT CASTING

There are cases where Java will perform an implicit cast
based upon the context of an expression.

You can perform a widening cast between primitive types
(such as from an int to a double), without explicit use of
the casting operator.

However, if attempting to do an implicit narrowing cast, a
compiler error results.

int il = 42;
double d1 = i1; // d1 gets value 42.0
i1 = dl; // compile error: possible loss of precision

IF STATEMENTS

The syntax of a simple if statement is as follows:

if (booleanExpression)
trueBody

else
falseBody

booleanExpression is a boolean expression and
trueBody and falseBody are each either a single
statement or a block of statements enclosed in

braces (“{” and “}”).

COMPOUND IF STATEMENTS

There is also a way to group a number of boolean
tests, as follows:

if (firstBooleanExpression)
firstBody

else if (secondBooleanExpression)
secondBody

else
thirdBody

SWITCH STATEMENTS

Java provides for multiple-value control flow using the
switch statement.

The switch statement evaluates an integer, string, or enum
expression and causes control flow to jump to the code
location labeled with the value of this expression.

If there is no matching label, then control flow jumps to the
location labeled “default.”

This is the only explicit jump performed by the switch
statement, however, so flow of control “falls through” to
the next case if the code for a case is not ended with a
break statement

SWITCH EXAMPLE

switch (d) {

case MON:
System.out.printin("This is tough.");
break;

case TUE:
System.out.printin("This is getting better.");
break;

case WED:
System.out.printin("Half way there.");
break;

case THU:
System.out.printIn("I can see the light.");
break;

case FRI:
System.out.printIn("Now we are talking.");
break;

default:
System.out.printin("Day off!");

BREAK AND CONTINUE

Java supports a break statement that immediat

ely terminate a while or for loop when executed
within its body.

Java also supports a continue statement that ca
uses the current iteration of a loop body to stop,

but with subsequent passes of the loop proceed
Ing as expected.

32

WHILE LOOPS

The simplest kind of loop in Java is a while loop.

Such a loop tests that a certain condition is
satisfied and will perform the body of the loop
each time this condition is evaluated to be true.

The syntax for such a conditional test before a
loop body is executed is as follows:

while (booleanExpression)
loopBody

DO-WHILE LOOPS

Java has another form of the while loop that
allows the boolean condition to be checked at
the end of each pass of the loop rather than
before each pass.

This form is known as a do-while loop, and has
syntax shown below:

do
loopBody
while (booleanExpression)

FOR LOOPS

The traditional for-loop syntax consists of four sections—
an initialization, a boolean condition, an increment
statement, and the body—although any of those can be
empty.

The structure is as follows:
for (initialization; booleanCondition; increment)
loopBody
Meaning:

{
initialization;
while (booleanCondition) {
loopBodly:
increment;

}

EXAMPLE FOR LOOPS

Compute the sum of an array of doubles:

public static double sum(double| | data) {
double total = 0;
for (int j=0; j < data.length; j++) // note the use of length
total += datalj];
return total;

}

Compute the maximum in an array of doubles:
public static double max(double| | data) {

double currentMax = datal0]; // assume first is biggest (for now)
for (int j=1; j < data.length; j4++) // consider all other entries

if (data[j] > currentMax) // if datalj] is biggest thus far...

currentMax = datalj]; // record it as the current max

return currentMax;

}

FOR-EACH LOOPS

Since looping through elements of a collection is
such a common construct, Java provides a
shorthand notation for such loops, called the for-
each loop.

The syntax for such a loop is as follows:
for (elementType name : container)
loopBody

FOR-EACH LOOP EXAMPLE

Computing a sum of an array of doubles:

public static double sum(double| | data) {
double total = 0;
for (double val : data) // Java's for-each loop style
total += val;
return total;

}

\IVHGH using d 10r-eacri 100p, nere Is rno explicCit u
se of array indices.

The loop variable represents one particular ele
ment of the array.

SIMPLE QUTPUT

Java provides a built-in static object, called System.out, t
hat performs output to the “standard output” device, wit
h the following methods:

print(String 5): Print the string s.
print(Object 0): Print the object o using its toString method.
print(baseType b): Print the base type value b.
println(String 5): Print the string s, followed by the newline character.
println(Object 0): Similar to print(o), followed by the newline character.

println(baseType b): Similar to print(b), followed by the newline character.

39

JAVA.UTIL.SCANNER METHODS

The Scanner class reads the input stream and
divides it into tokens, which are strings of
characters separated by delimiters.

hasNext(): Return true if there is another token in the input stream.

next(): Return the next token string in the input stream; generate
an error 1f there are no more tokens left.

hasNextType(): Return true if there is another token in the input stream
and 1t can be interpreted as the corresponding base type,
Type, where Type can be Boolean, Byte, Double, Float,
Int, Long, or Short.

nextType(): Return the next token in the input stream, returned as
the base type corresponding to Type; generate an error 1f
there are no more tokens left or if the next token cannot
be interpreted as a base type corresponding to Type.

40

SIMPLE INPUT

There is also a special object, System.in, for performing input from t
he Java console window.

A simple way of reading input with this object is to use it to create a
Scanner object, using the expression

new Scanner(System.in)

Example: import java.util.Scanner; // loads Scanner definition for our use

public class InputExample {

public static void main(String| | args) {
Scanner input = new Scanner(System.in);
System.out.print("Enter your age 1n years: ");
double age = input.nextDouble();

System.out.print("ENter your maximum heart rate: ");

double rate = input.nextDouble();

double fb = (rate — age) * 0.65;

System.out.printIn("Your ideal fat-burning heart rate is " + fb);

SAMPLE PROGRAM

I public class CreditCard {

2 // Instance variables:

3 private String customer; // name of the customer (e.g., " John Bowman")

4 private String bank; // name of the bank (e.g., " California Savings")

5 private String account; // account identifier (e.g., "5391 0375 9387 5309")
6 private int limit; // credit limit (measured in dollars)

7 protected double balance; // current balance (measured in dollars)

8 // Constructors:

9 public CreditCard(String cust, String bk, String acnt, int lim, double initialBal) {
10 customer = cust;
11 bank = bk;
12 account = acnt;
13 limit = lim;
14 balance = initialBal;
15 }
16 public CreditCard(String cust, String bk, String acnt, int lim) {
17 this(cust, bk, acnt, lim, 0.0); // use a balance of zero as default

18}

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

}

/| Accessor methods:

public String getCustomer() { return customer; }
public String getBank() { return bank; }

public String getAccount() { return account; }
public int getLimit() { return limit; }

public double getBalance() { return balance; }
// Update methods:

public boolean charge(double price) { // make a charge
if (price 4+ balance > limit) // if charge would surpass limit
return false; / refuse the charge
// at this point, the charge is successful
balance += price; // update the balance
return true; // announce the good news

}

public void makePayment(double amount) { // make a payment
balance —= amount;
}
// Utility method to print a card's information
public static void printSummary(CreditCard card) {
System.out.printIn("Customer = " + card.customer);
System.out.printin("Bank = " + card.bank);
System.out.printin("Account = " + card.account);
(
(

System.out.println("Balance = " + card.balance); // implicit cast
System.out.printin("Limit = " 4+ card.limit); // implicit cast

}

// main method shown on next page...

I,‘_] [S—

O 00 =] O Lh o

public static void main(String| | args) {

CreditCard| | wallet = new CreditCard[3];

wallet[0] = new CreditCard("John Bowman", "California Savings",
"5391 0375 9387 5309", 5000);

wallet[1] = new CreditCard("John Bowman", "California Federal",
"3485 0399 3395 1954", 3500);

wallet[2] = new CreditCard("John Bowman", "California Finance",
"5391 0375 9387 5309", 2500, 300);

for (int val = 1; val <= 16; val++) {
wallet[0].charge(3*val);
wallet[1].charge(2%val);
wallet[2].charge(val);

for (CreditCard card : wallet) {
CreditCard.printSummary(card); // calling static method
while (card.getBalance() > 200.0) {
card.makePayment(200);
System.out.printin("New balance = " + card.getBalance());

}
}
}

	Java Primer: �Types, Classes and Operators�I/O Methods and Control Flow
	The Java Compiler
	An Example Program
	Components of a Java Program
	Identifiers
	Base Types
	Classes and Objects
	Another Example
	Creating and Using Objects
	Continued Example
	The Dot Operator
	Wrapper Types
	Example Wrapper Types
	Signatures
	Defining Classes
	Access Control Modifiers
	Parameters
	The Keyword this
	Arithmetic Operators
	Increment and Decrement Operators
	Logical Operators
	Bitwise Operators
	Operator Precedence
	Casting
	Explicit Casting
	Implicit Casting
	If Statements
	Compound if Statements
	Switch Statements
	Switch Example
	Break and Continue
	While Loops
	Do-While Loops
	For Loops
	Example For Loops
	For-Each Loops
	For-Each Loop Example
	Simple Output
	java.util.Scanner Methods
	Simple Input
	Sample Program
	Slide Number 43
	Slide Number 44

