
JAVA PRIMER:
TYPES, CLASSES AND OPERATORS
I/O METHODS AND CONTROL FLOW

Presentation for use with the textbook Data Structures and Algorithms in Java, 6t

h edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014

© 2014 Goodrich, Tamassia, Goldwasser

1

THE JAVA COMPILER

 Java is a compiled language.
 Programs are compiled into byte-code executable files,

which are executed through the Java virtual machine
(JVM).
 The JVM reads each instruction and executes that instruction.

 A programmer defines a Java program in advance and
saves that program in a text file known as source code.

 For Java, source code is conventionally stored in a file
named with the .java suffix (e.g., demo.java) and the
byte-code file is stored in a file named with a .class
suffix, which is produced by the Java compiler.

© 2014 Goodrich, Tamassia, Goldwasser

2

AN EXAMPLE PROGRAM

© 2014 Goodrich, Tamassia, Goldwasser

3

COMPONENTS OF A JAVA PROGRAM

 In Java, executable statements are placed in
functions, known as methods, that belong to
class definitions.

 The static method named main is the first
method to be executed when running a Java
program.

 Any set of statements between the braces “{”
and “}” define a program block.

© 2014 Goodrich, Tamassia, Goldwasser

4

IDENTIFIERS

 The name of a class, method, or variable in Java is calle
d an identifier, which can be any string of characters as l
ong as it begins with a letter and consists of letters.

 Exceptions:

© 2014 Goodrich, Tamassia, Goldwasser

5

BASE TYPES

 Java has several base types, which are basic ways of
storing data.

 An identifier variable can be declared to hold any base
type and it can later be reassigned to hold another value
of the same type.

© 2014 Goodrich, Tamassia, Goldwasser

6

CLASSES AND OBJECTS

 Every object is an instance of a class, which serves as the type
of the object and as a blueprint, defining the data which the
object stores and the methods for accessing and modifying
that data. The critical members of a class in Java are the
following:
 Instance variables, which are also called fields, represent the data associated

with an object of a class. Instance variables must have a type, which can either
be a base type (such as int, float, or double) or any class type.

 Methods in Java are blocks of code that can be called to perform actions.
Methods can accept parameters as arguments, and their behavior may depend
on the object upon which they are invoked and the values of any parameters
that are passed. A method that returns information to the caller without
changing any instance variables is known as an accessor method, while an
update method is one that may change one or more instance variables when
called.

© 2014 Goodrich, Tamassia, Goldwasser

7

ANOTHER EXAMPLE

 This class includes one instance variable, named count,
which will have a default value of zero, unless we otherwise
initialize it.

 The class includes two special methods known as
constructors, one accessor method, and three update
methods.

© 2014 Goodrich, Tamassia, Goldwasser

8

CREATING AND USING OBJECTS

 Classes are known as reference types in Java, and a variable of that
type is known as a reference variable.

 A reference variable is capable of storing the location (i.e., memory
address) of an object from the declared class.
 So we might assign it to reference an existing instance or a newly constructed

instance.
 A reference variable can also store a special value, null, that represents the lack of

an object.

 In Java, a new object is created by using the new operator followed by a
call to a constructor for the desired class.

 A constructor is a method that always shares the same name as its
class. The new operator returns a reference to the newly created
instance; the returned reference is typically assigned to a variable for
further use.

© 2014 Goodrich, Tamassia, Goldwasser

9

CONTINUED EXAMPLE

 Here, a new Counter is constructed at line 4, with its reference assigned
to the variable c. That relies on a form of the constructor, Counter(), that
takes no arguments between the parentheses.

© 2014 Goodrich, Tamassia, Goldwasser

10

THE DOT OPERATOR

 One of the primary uses of an object reference
variable is to access the members of the class for
this object, an instance of its class.

 This access is performed with the dot (“.”)
operator.

We call a method associated with an object by
using the reference variable name, following that
by the dot operator and then the method name
and its parameters.

© 2014 Goodrich, Tamassia, Goldwasser

11

WRAPPER TYPES

 There are many data structures and algorithms
in Java’s libraries that are specifically designed
so that they only work with object types (not
primitives).

 To get around this obstacle, Java defines a
wrapper class for each base type.
 Java provides additional support for implicitly

converting between base types and their wrapper
types through a process known as automatic boxing
and unboxing.

© 2014 Goodrich, Tamassia, Goldwasser

12

EXAMPLE WRAPPER TYPES

© 2014 Goodrich, Tamassia, Goldwasser

13

SIGNATURES

 If there are several methods with this same name defined for
a class, then the Java runtime system uses the one that
matches the actual number of parameters sent as
arguments, as well as their respective types.

 A method’s name combined with the number and types of its
parameters is called a method’s signature, for it takes all of
these parts to determine the actual method to perform for a
certain method call.

 A reference variable v can be viewed as a “pointer” to some
object o.

© 2014 Goodrich, Tamassia, Goldwasser

14

DEFINING CLASSES

 A class definition is a block of code, delimited by
braces “{” and “}” , within which is included
declarations of instance variables and methods
that are the members of the class.

 Immediately before the definition of a class,
instance variable, or method in Java, keywords
known as modifiers can be placed to convey
additional stipulations about that definition.

© 2014 Goodrich, Tamassia, Goldwasser

15

ACCESS CONTROL MODIFIERS

 The public class modifier designates that all classes may
access the defined aspect.

 The protected class modifier designates that access to the
defined aspect is only granted to classes that are designated
as subclasses of the given class through inheritance or in the
same package.

 The private class modifier designates that access to a
defined member of a class be granted only to code within
that class.

 When a variable or method of a class is declared as static, it
is associated with the class as a whole, rather than with
each individual instance of that class.

© 2014 Goodrich, Tamassia, Goldwasser

16

PARAMETERS

 A method’s parameters are defined in a comma-separated
list enclosed in parentheses after the name of the method.
 A parameter consists of two parts, the parameter type and the

parameter name.
 If a method has no parameters, then only an empty pair of

parentheses is used.

 All parameters in Java are passed by value, that is, any time
we pass a parameter to a method, a copy of that parameter
is made for use within the method body.
 So if we pass an int variable to a method, then that variable’s integer

value is copied.
 The method can change the copy but not the original.
 If we pass an object reference as a parameter to a method, then the

reference is copied as well.

© 2014 Goodrich, Tamassia, Goldwasser

17

THE KEYWORD THIS

 Within the body of a method in Java, the keyword
this is automatically defined as a reference to the
instance upon which the method was invoked. There
are three common uses:

1. To store the reference in a variable, or send it as a
parameter to another method that expects an instance
of that type as an argument.

2. To differentiate between an instance variable and a
local variable with the same name.

3. To allow one constructor body to invoke another
constructor body.

© 2014 Goodrich, Tamassia, Goldwasser

18

ARITHMETIC OPERATORS

 Java supports the following arithmetic operators:

 If both operands have type int, then the result is an int;
if one or both operands have type float, the result is a
float.

 Integer division has its result truncated.

© 2014 Goodrich, Tamassia, Goldwasser

20

INCREMENT AND DECREMENT OPERATORS

 Java provides the plus-one increment (++) and
decrement (−−) operators.
 If such an operator is used in front of a variable

reference, then 1 is added to (or subtracted from) the
variable and its value is read into the expression.

 If it is used after a variable reference, then the value is
first read and then the variable is incremented or
decremented by 1.

© 2014 Goodrich, Tamassia, Goldwasser

21

LOGICAL OPERATORS

 Java supports the following operators for numerical valu
es, which result in Boolean values:

 Boolean values also have the following operators:

 The and and or operators short circuit, in that they do
not evaluate the second operand if the result can be det
ermined based on the value of the first operand.

© 2014 Goodrich, Tamassia, Goldwasser

22

BITWISE OPERATORS

 Java provides the following bitwise operators
for integers and booleans:

© 2014 Goodrich, Tamassia, Goldwasser

23

OPERATOR PRECEDENCE

© 2014 Goodrich, Tamassia, Goldwasser

24

CASTING

 Casting is an operation that allows us to change
the type of a value.

 We can take a value of one type and cast it into an
equivalent value of another type.

 There are two forms of casting in Java: explicit
casting and implicit casting.

© 2014 Goodrich, Tamassia, Goldwasser

25

EXPLICIT CASTING

 Java supports an explicit casting syntax with the
following form:

 (type) exp
 Here “type” is the type that we would like the expression

exp to have.
 This syntax may only be used to cast from one primitive

type to another primitive type, or from one reference type
to another reference type.

 Examples:

© 2014 Goodrich, Tamassia, Goldwasser

26

IMPLICIT CASTING

 There are cases where Java will perform an implicit cast
based upon the context of an expression.

 You can perform a widening cast between primitive types
(such as from an int to a double), without explicit use of
the casting operator.

 However, if attempting to do an implicit narrowing cast, a
compiler error results.

© 2014 Goodrich, Tamassia, Goldwasser

27

IF STATEMENTS

 The syntax of a simple if statement is as follows:

 booleanExpression is a boolean expression and
trueBody and falseBody are each either a single
statement or a block of statements enclosed in
braces (“{” and “}”).

© 2014 Goodrich, Tamassia, Goldwasser

28

COMPOUND IF STATEMENTS

 There is also a way to group a number of boolean
tests, as follows:

© 2014 Goodrich, Tamassia, Goldwasser

29

SWITCH STATEMENTS

 Java provides for multiple-value control flow using the
switch statement.

 The switch statement evaluates an integer, string, or enum
expression and causes control flow to jump to the code
location labeled with the value of this expression.

 If there is no matching label, then control flow jumps to the
location labeled “default.”

 This is the only explicit jump performed by the switch
statement, however, so flow of control “falls through” to
the next case if the code for a case is not ended with a
break statement

© 2014 Goodrich, Tamassia, Goldwasser

30

SWITCH EXAMPLE

© 2014 Goodrich, Tamassia, Goldwasser

31

BREAK AND CONTINUE

 Java supports a break statement that immediat
ely terminate a while or for loop when executed
within its body.

 Java also supports a continue statement that ca
uses the current iteration of a loop body to stop,
but with subsequent passes of the loop proceed
ing as expected.

© 2014 Goodrich, Tamassia, Goldwasser

32

WHILE LOOPS

 The simplest kind of loop in Java is a while loop.
 Such a loop tests that a certain condition is

satisfied and will perform the body of the loop
each time this condition is evaluated to be true.

 The syntax for such a conditional test before a
loop body is executed is as follows:

 while (booleanExpression)
 loopBody

© 2014 Goodrich, Tamassia, Goldwasser

33

DO-WHILE LOOPS

 Java has another form of the while loop that
allows the boolean condition to be checked at
the end of each pass of the loop rather than
before each pass.

 This form is known as a do-while loop, and has
syntax shown below:

 do
 loopBody
 while (booleanExpression)

© 2014 Goodrich, Tamassia, Goldwasser

34

FOR LOOPS

 The traditional for-loop syntax consists of four sections—
an initialization, a boolean condition, an increment
statement, and the body—although any of those can be
empty.

 The structure is as follows:
 for (initialization; booleanCondition; increment)
 loopBody
 Meaning:

© 2014 Goodrich, Tamassia, Goldwasser

35

EXAMPLE FOR LOOPS

 Compute the sum of an array of doubles:

 Compute the maximum in an array of doubles:

© 2014 Goodrich, Tamassia, Goldwasser

36

FOR-EACH LOOPS

 Since looping through elements of a collection is
such a common construct, Java provides a
shorthand notation for such loops, called the for-
each loop.

 The syntax for such a loop is as follows:
 for (elementType name : container)
 loopBody

© 2014 Goodrich, Tamassia, Goldwasser

37

FOR-EACH LOOP EXAMPLE

 Computing a sum of an array of doubles:

 When using a for-each loop, there is no explicit u
se of array indices.

 The loop variable represents one particular ele
ment of the array.

© 2014 Goodrich, Tamassia, Goldwasser

38

SIMPLE OUTPUT

 Java provides a built-in static object, called System.out, t
hat performs output to the “standard output” device, wit
h the following methods:

© 2014 Goodrich, Tamassia, Goldwasser

39

JAVA.UTIL.SCANNER METHODS

 The Scanner class reads the input stream and
divides it into tokens, which are strings of
characters separated by delimiters.

© 2014 Goodrich, Tamassia, Goldwasser

40

SIMPLE INPUT

 There is also a special object, System.in, for performing input from t
he Java console window.

 A simple way of reading input with this object is to use it to create a
Scanner object, using the expression

 new Scanner(System.in)
 Example:

© 2014 Goodrich, Tamassia, Goldwasser

41

SAMPLE PROGRAM

© 2014 Goodrich, Tamassia, Goldwasser

42

© 2014 Goodrich, Tamassia, Goldwasser

43

© 2014 Goodrich, Tamassia, Goldwasser

44

	Java Primer: �Types, Classes and Operators�I/O Methods and Control Flow
	The Java Compiler
	An Example Program
	Components of a Java Program
	Identifiers
	Base Types
	Classes and Objects
	Another Example
	Creating and Using Objects
	Continued Example
	The Dot Operator
	Wrapper Types
	Example Wrapper Types
	Signatures
	Defining Classes
	Access Control Modifiers
	Parameters
	The Keyword this
	Arithmetic Operators
	Increment and Decrement Operators
	Logical Operators
	Bitwise Operators
	Operator Precedence
	Casting
	Explicit Casting
	Implicit Casting
	If Statements
	Compound if Statements
	Switch Statements
	Switch Example
	Break and Continue
	While Loops
	Do-While Loops
	For Loops
	Example For Loops
	For-Each Loops
	For-Each Loop Example
	Simple Output
	java.util.Scanner Methods
	Simple Input
	Sample Program
	Slide Number 43
	Slide Number 44

