
FINAL’S REVIEW

CSE214

1

© 2014 Goodrich, Tamassia, Goldwasser

2

ALGORITHMS:
ANALYSIS, SOLUTION PATTERNS, AND SORTING

BIG-OH NOTATION

 Example: 2n + 10 is O(n)
 2n + 10 ≤ cn
 (c − 2) n ≥ 10
 n ≥ 10/(c − 2)
 Pick c = 3 and n0 = 10

© 2014 Goodrich, Tamassia, Goldwasser

3

Focus on the growth rate of the running time as a function of the

input size n, taking a “big-picture” approach.

BIG-OH EXAMPLE

 Example: the function
n2 is not O(n)
 n2 ≤ cn
 n ≤ c
 The above inequality c

annot be satisfied since
c must be a constant

© 2014 Goodrich, Tamassia, Goldwasser

4

1

10

100

1,000

10,000

100,000

1,000,000

1 10 100 1,000
n

n^2

100n

10n

n

© 2014 Goodrich, Tamassia, Goldwasser

5

Relatives of Big-Oh

big-Omega
 f(n) is Ω(g(n)) if there is a constant c > 0

and an integer constant n0 ≥ 1 such that
 f(n) ≥ c g(n) for n ≥ n0

big-Theta
 f(n) is Θ(g(n)) if there are constants c’ > 0 and

c’’ > 0 and an integer constant n0 ≥ 1 such that
c’g(n) ≤ f(n) ≤ c’’g(n) for n ≥ n0

INTUITION FOR ASYMPTOTIC NOTATION

© 2014 Goodrich, Tamassia, Goldwasser

6

 big-Oh
 f(n) is O(g(n)) if f(n) is asymptotically

less than or equal to g(n)
 big-Omega

 f(n) is Ω(g(n)) if f(n) is asymptotically
greater than or equal to g(n)

 big-Theta
 f(n) is Θ(g(n)) if f(n) is asymptotically

equal to g(n)

ADVANCE TOPIC: COMPARISON OF THE STRATEGIES

 We compare the incremental strategy and
the doubling strategy by analyzing the total
time T(n) needed to perform a series of n
push operations (amortization)

 We assume that we start with an empty list
represented by a growable array of size 1

 We call amortized time of a push operation
the average time taken by a push operation
over the series of operations, i.e., T(n)/n

© 2014 Goodrich, Tamassia,
Goldwasser

Lists and Iterators

7

THE RECURSION PATTERN EXAMPLE

 Recursion: when a method calls itself

 Classic example – the factorial function:
 n! = 1· 2· 3· ··· · (n-1)· n

 Recursive definition:

 As a Java method:





−⋅
=

=
elsenfn
n

nf
)1(

0 if1
)(

© 2014 Goodrich, Tamassia,
Goldwasser

8

Recursion

CONTENT OF A RECURSIVE METHOD

 Base case(s)
 Values of the input variables for which we perform

no recursive calls are called base cases (there
should be at least one base case).

 Every possible chain of recursive calls must
eventually reach a base case.

 Recursive calls
 Calls to the current method.
 Each recursive call should be defined so that it

makes progress towards a base case.

© 2014 Goodrich, Tamassia,
Goldwasser

Recursion

9

BINARY SEARCH

Search for an integer in an ordered list

© 2014 Goodrich, Tamassia,
Goldwasser

Recursion

10

TYPES OF RECURSION

 Linear recursion : If a recursive call starts at most one
other.

 Binary recursion: If a recursive call may start two others.
 Multiple recursion: If a recursive call may start three or

more others.

© 2014 Goodrich, Tamassia,
Goldwasser

Recursion

11

Terminology reflects the structure of the recursion trace, not the
asymptotic analysis of the running time.

Recursion is important: Make sure you can trace the
recursion code and figure it’s time complexity.
Know everything about the recursion we have talked
about!.

© 2014 Goodrich, Tamassia, Goldwasser

12

BASE DATASTRUCTURES

Base Data-structure questions will be integrated with
the questions in the advance datastructures (ex> how
dequeue() works in a queue when implemented with
singly-linked list.)

ARRAY LISTS

 An obvious choice for implementing the list ADT is to
use an array, A, where A[i] stores (a reference to) the
element with index i.

 With a representation based on an array A, the get(i)
and set(i, e) methods are easy to implement by
accessing A[i] (assuming i is a legitimate index).

© 2014 Goodrich, Tamassia,
Goldwasser

Lists and Iterators

13

A
0 1 2 n i

INSERTION

 In an operation add(i, o), we need to make room
for the new element by shifting forward the n − i
elements A[i], …, A[n − 1]

 In the worst case (i = 0), this takes O(n) time

© 2014 Goodrich, Tamassia,
Goldwasser

Lists and Iterators

14

A
0 1 2 n i

A
0 1 2 n i

A
0 1 2 n

o
i

ELEMENT REMOVAL

 In an operation remove(i), we need to fill the hole left by
the removed element by shifting backward the n − i − 1
elements A[i + 1], …, A[n − 1]

 In the worst case (i = 0), this takes O(n) time

© 2014 Goodrich, Tamassia,
Goldwasser

Lists and Iterators

15

A
0 1 2 n i

A
0 1 2 n

o
i

A
0 1 2 n i

PERFORMANCE OF ARRAY LIST

 In an array-based
implementation of a list (array
list):
 The space used by the data

structure is O(n)
 Indexing the element at i takes

O(1) time
 add and remove run in O(n) time

 In an add operation, when the
array is full, instead of
throwing an exception, we can
replace the array with a larger
one …

© 2014 Goodrich, Tamassia,
Goldwasser

Lists and Iterators

16

DYNAMIC ARRAY:

 Let push(o) be the operation
that adds element o at the
end of the list

 When the array is full, we
replace the array with a
larger one

 How large should the new
array be?
 Incremental strategy: increase

the size by a constant c
 Doubling strategy: double the

size

© 2014 Goodrich, Tamassia,
Goldwasser

Lists and Iterators

17

Algorithm push(o)
 if t = S.length − 1 then
 A ← new array of
 size …
 for i ← 0 to n−1 do
 A[i] ← S[i]
 S ← A
 n ← n + 1
 S[n−1] ← o

create new
array B

store
elements of A

in B

reassign
reference A to
the new array

IMPLEMENTING A DYNAMIC ARRAY
 Provide means to “grow” the array A

© 2014 Goodrich, Tamassia,
Goldwasser

Lists and Iterators

18

1. Allocate a new array B with
larger capacity.

2. Set B[k]=A[k], for
k=0, . . . ,n−1, where n
denotes current number of
items.

3. Set A = B, that is, we
henceforth use the new
array to support the list.

4. Insert the new element in
the new array.

INCREMENTAL STRATEGY ANALYSIS

 Over n push operations, we replace the array k =
n/c times, where c is a constant

 The total time T(n) of a series of n push operations
is proportional to

n + c + 2c + 3c + 4c + … + kc =
n + c(1 + 2 + 3 + … + k) =

n + ck(k + 1)/2
 Since c is a constant, T(n) is O(n + k2), i.e., O(n2)
 Thus, the amortized time of a push operation is

O(n)

© 2014 Goodrich, Tamassia,
Goldwasser

Lists and Iterators

19

Actual push op.

DOUBLING STRATEGY ANALYSIS

 We replace the array k = log2 n
times (2k+1 -1=n; solve for k)

 The total time T(n) of a series of n
push operations is proportional to

 n + 1 + 2 + 4 + 8 + …+ 2k =
 n + 2k + 1 − 1 =

 3n − 1
 T(n) is O(n)
 The amortized time of a push

operation is O(1)

© 2014 Goodrich, Tamassia,
Goldwasser

Lists and Iterators

20

geometric series

1

2

1
4

8

SINGLY LINKED LIST

 A singly linked list is a
concrete data structure
consisting of a sequence
of nodes, starting from a
head pointer

 Each node stores
 element
 link to the next node

Linked Lists

21

node

element

next

INSERTING
AT THE
HEAD

Linked Lists

22

Allocate new node

Insert new element

Have new node
point to old
head

Update head to
point to new node

INSERTING
AT THE TAIL

• Allocate a new
node

• Insert new element
• Have new node

point to null
• Have old last node

point to new node
• Update tail to point

to new node

Linked Lists

23

REMOVING AT
THE HEAD

• Update head to
point to next
node in the list

• Allow garbage
collector to
reclaim the
former first node

Linked Lists

24

REMOVING AT THE TAIL

• Removing at the tail of a singly linked list is not
efficient!

• There is no constant-time way to update the tail
to point to the previous node

Linked Lists

25

CIRCULARLY LINKED LIST

Linked Lists

26

 A singularly linked list in which the next reference of the
tail node is set to refer back to the head of the list (rather
than null).

 Supports all of the public behaviors of our SinglyLinkedList
class and one additional update method

 Nodes store:
 element
 link to the next node

ROTATE() ON A CIRCULARLY LINKED LIST

Linked Lists

27

We do not move any nodes or elements, we simply advance
the tail reference to point to the node that follows it (the
implicit head of the list).

implicit head: tail.getNext().

DOUBLY LINKED LIST

 A doubly linked list can be traversed
forward and backward

 Nodes store:
 element
 link to the previous node
 link to the next node

 Special trailer and header nodes

Linked Lists

28

prev next

element

trailer header nodes/positions

elements

node

INSERTION IN DOUBLY LINKED LIST

Linked Lists

29

DELETION IN DOUBLY LINKED LIST

Linked Lists

30

POSITIONAL LISTS

 To provide for a general abstraction of a sequence of elements
with the ability to identify the location of an element, we define a
positional list ADT.

 A position acts as a marker or token within the broader positional
list.

 A position p is unaffected by changes elsewhere in a list; the only
way in which a position becomes invalid is if an explicit command
is issued to delete it.

 A position instance is a simple object, supporting only the
following method:
 P.getElement(): Return the element stored at position p.

© 2014 Goodrich, Tamassia,
Goldwasser

Lists and Iterators

31

POSITIONAL LIST IMPLEMENTATION
USING DOUBLY LIKED LIST

 The most natural way to
implement a positional list is with
a doubly-linked list.

 NOTE: Not the same as the
DoublyLinkedList class in Ch3
 Difference in the management of the

positional abstraction

© 2014 Goodrich, Tamassia,
Goldwasser

Lists and Iterators

32

prev next

element

trailer header nodes/positions

elements

node

INSERTION

 Insert a new node, q, between p and its successor.

© 2014 Goodrich, Tamassia,
Goldwasser

Lists and Iterators

33

A B X C

A B C

p

A B C

p

X

q

p q

DELETION

 Remove a node, p, from a doubly-linked list.

© 2014 Goodrich, Tamassia,
Goldwasser

Lists and Iterators

34

A B C D

p

A B C

D

p

A B C

© 2014 Goodrich, Tamassia, Goldwasser

35

BASIC DATASTRUCTURES

STACKS

 Main stack operations:
 push(object): inserts an element
 object pop(): removes and returns the last inserted

element

 Auxiliary stack operations:
 object top(): returns the last inserted element without

removing it
 integer size(): returns the number of elements stored
 boolean isEmpty(): indicates whether no elements are

stored

© 2014 Goodrich, Tamassia,
Goldwasser

Stacks

36

ARRAY-BASED STACK

 A simple way of
implementing the Stack
ADT uses an array

 We add elements from
left to right

 A variable (t) keeps
track of the index of
the top element

© 2014 Goodrich, Tamassia,
Goldwasser

Stacks

37

Algorithm size()
 return t + 1

Algorithm pop()
 if isEmpty() then
 return null
 else
 t ← t − 1
 return S[t + 1]

Bottom Top

PERFORMANCE & LIMITATIONS OF ARRAY-BASED STACK

 Performance
 Let n be the number of elements in
 the stack
 The space used is O(n)
 Each operation runs in time O(1)

 Limitations

 The maximum size of the stack must be defined a
priori and cannot be changed (fixed size array)

 Trying to push a new element into a full stack
causes an implementation-specific exception

© 2014 Goodrich, Tamassia,
Goldwasser

38

Stacks

IMPLEMENTING A STACK WITH A SINGLY LINKED LIST

 The linked-list approach has memory usage that is
always proportional to the number of actual elements
currently in the stack, and without an arbitrary
capacity limit

 Q: What the best choice for the top of the stack: the
front or back of the list?
 With the top of the stack stored at the front of the list, all

methods execute in constant time.

© 2014 Goodrich, Tamassia,
Goldwasser

Stacks

39

ADAPTING SINGLE LINKED LIST ON STACK ADT

 We will adapt SinglyLinkedList class of Section 3.2.1 to define a
new LinkedStack class

© 2014 Goodrich, Tamassia,
Goldwasser

Stacks

40

SinglyLinkedList is named list as
a private field, and uses the
following correspondences:

EXAMPLE: MATCHING PARENTHESES

 Consider arithmetic expressions that may contain
various pairs of grouping symbols:
 Parentheses: “(” and “)”
 Braces: “{” and “}”
 Brackets: “[” and “]”

© 2014 Goodrich, Tamassia,
Goldwasser

Stacks

41

[(5+x)−(y+z)

EVALUATING POSTFIX EXPRESSIONS

 Write a class that evaluates a postfix expression
 Use the space character as a delimiter between

tokens

Data Structures Abstraction and Design Using Java, 2nd Edition
by Elliot B. Koffman & Paul A. T. Wolfgang, Wiley, 2010

QUEUE

 The Queue ADT stores arbitrary objects
 The queue, like the stack, is a widely used data structure
 A queue differs from a stack in one important way Insertions

and deletions follow
 A stack is LIFO list – Last-In, First-Out
 while a queue is FIFO list, First-In, First-Out

 Insertions are at the rear of the queue and removals are at the
front of the queue

Data Structures Abstraction and Design Using Java, 2nd Edition
by Elliot B. Koffman & Paul A. T. Wolfgang, Wiley, 2010

Know about application of queues and their base
operations.

THE QUEUE ADT

 Main queue operations:
 enqueue(object): inserts an

element at the end of the
queue

 object dequeue(): removes
and returns the element at the
front of the queue

 Auxiliary queue
operations:
 object first(): returns the

element at the front without
removing it

 integer size(): returns the
number of elements stored

 boolean isEmpty():
indicates whether no
elements are stored

 Boundary cases:
 Attempting the execution of

dequeue or first on an
empty queue returns null

© 2014 Goodrich, Tamassia,
Goldwasser

Queues

44

ARRAY-BASED QUEUE 1

 Replace a dequeued
element in the array with
a null reference

 A variable to keep track
of the front
f index of the front element

© 2014 Goodrich, Tamassia,
Goldwasser

Queues

45

O(n) running time for the dequeue method.

Using an array to store elements of a queue, such that the first element inserted,
“A”, is at cell 0, the second element inserted, “B”, at cell 1, and so on.

O(1) deque operation but, if we
repeatedly let the front of the queue drift
rightward over time, the back of the
queue would reach the end of the
underlying array even when there are
fewer than N elements currently in the
queue.

ARRAY-BASED QUEUE 2

ARRAY-BASED QUEUE 3: CIRCULAR ARRAY
 Use an array of size N in a circular fashion
 Two variables keep track of the front and size

f index of the front element
sz number of stored elements

 How to store additional elements in such a configuration:
 When the queue has fewer than N elements, array location
 r = (f + sz) mod N is the first empty slot past the rear of the queue

© 2014 Goodrich, Tamassia,
Goldwasser

Queues

46

normal configuration

wrapped-around configuration

QUEUE OPERATIONS (CONT.): ENQUEUE

 Operation enqueue
throws an exception if the
array is full

 This exception is
implementation-dependent

© 2014 Goodrich, Tamassia,
Goldwasser

Queues

47

Algorithm enqueue(o)
 if size() = N − 1 then
 throw IllegalStateException
 else
 r ← (f + sz) mod N
 Q[r] ← o
 sz ← (sz + 1)

Q
0 1 2 r f

Q
0 1 2 f r

avail = (f + sz) % data.length;

QUEUE OPERATIONS (CONT.): DEQUEUE

 Note that operation
dequeue returns NULL if
the queue is empty

© 2014 Goodrich, Tamassia,
Goldwasser

Queues

48

Algorithm dequeue()
 if isEmpty() then
 return null
 else
 o ← Q[f]
 f ← (f + 1) mod N
 sz ← (sz − 1)
 return o

Q
0 1 2 r f

Q
0 1 2 f r

f = (f+1) % data.length

IMPLEMENTING A QUEUE WITH A SINGLY LINKED LIST

 Supporting worst-case O(1)-time for all operations,
and without any artificial limit on the capacity

 Orientation for Queue using singly linked list
 Align the front of the queue with the front of the list,
 Align the back of the queue with the tail of the list,
(because the only update operation that singly linked lists
support at the back end is an insertion)

© 2014 Goodrich, Tamassia,
Goldwasser

Queues

49

DOUBLE-ENDED QUEUE: DEQUE

 A deque (pronounced "deck") is short for double-
ended queue

 A double-ended queue allows insertions and removals
from both ends

 The deque abstract data type is more general than
both the stack and the queue ADTs.

© 2014 Goodrich, Tamassia,
Goldwasser

Queues

50

SETS

 Consider another part of the Collection hierarchy: the Set
interface

 A set is an unordered collection of elements, without duplicates
that typically supports efficient membership tests.
 Elements of a set are like keys of a map, but without any auxiliary values.

51

STORING A SET IN A LIST

 We can implement a set with a list
 The space used is O(n)

52

∅ List

Set elements

MAPS

Maps

53

 A map models a searchable
 collection of key-value pairs (k,v),
 which we call entries

 Keys are required to be unique
 Maps are also known as associative arrays,

 entry’s key serves somewhat like an index into the map, in that it assists the
map in efficiently locating the associated entry.

 Unlike a standard array, a key of a map need not be numeric,
and is does not directly designate a position within the
structure.

 The Map is related to the Set, mathematically, a Map is a
set of ordered pairs whose elements are known as the key
and the value

 The main operations are for searching, inserting, and deleting
items

A SIMPLE UNSORTED MAP IMPLEMENTATION:
UNSORTEDTABLEMAP

Maps

54

The use of the AbstractMap class with a very simple concrete
implementation of the map ADT that relies on storing key-value pairs
in arbitrary order within a Java ArrayList.

Private findIndex(key) method
that returns the
index at which such an entry is
found, or −1 if no such entry is
found by scanning the array to
determine whether an entry
with key equal to k exists.

SIMPLE IMPLEMENTATION OF A SORTED MAP

Maps

55

Sorted search table: Store the map’s entries in an array list A so that
they are in increasing order of their keys.

• the sorted search table has a space requirement that is O(n).
• array-based implementation allows us to use the binary search

algorithm for a variety of efficient operations.

FINDINDEX METHOD

Maps

56

findIndex method uses the recursive binary search algorithm,
• returns the index of the leftmost entry in the search range

having key greater than or equal to k;
• if no entry in the search range has such a key, we return the

index just beyond the end of the search range.

⇒ If an entry has the target key, the search returns the index of

that entry. (Recall that keys are unique in a map.)
⇒ If the key is absent, the method returns the index at which a

new entry with that key would be inserted

ANALYSIS OF OUR SORTEDTABLEMAP

Maps

57

HASH CODES AND INDEX CALCULATION

 The basis of hashing is to transform the item’s key
value into an integer value (its hash code) which is
then transformed into a table index

HASH FUNCTIONS

 The goal of a hash function, h, is to map each key k to an
integer in the range [0, N − 1], where N is the capacity of the
bucket array for a hash table.

 A hash function is usually specified as the composition of two
functions:
 Hash code (independent of hash table size – allow generic

implementation):
 h1: keys → integers

 Compression function (dependent of hash table size):
 h2: integers → [0, N - 1]

© 2014 Goodrich, Tamassia,
Godlwasser

Hash Tables

59

HASH CODES: BIT REPRESENTATION AS AN INTEGER
 Integer cast:

 Java relies on 32-bit hash
codes

 We reinterpret the bits of
the key as an integer

 Suitable for keys of length
less than or equal to the
number of bits of the
integer type (e.g., byte,
short, int and float in Java)

 Component sum:
 Partition the bits of the key

into components of fixed
length (e.g., 16 or 32 bits) and
we sum (or exclusive-or) the
components (ignoring
overflows)

 Suitable for numeric keys of
fixed length greater than or
equal to the number of bits of
the integer type (e.g., long and
& double in Java)

© 2014 Goodrich, Tamassia,
Godlwasser

Hash Tables

60

Both not good for character strings or other variable-length objects that can
be viewed as tuples of the form (x0,x1,...,xn−1), where the order of the xi’s is
significant. Ex> "stop", "tops", "pots", and "spot".

POLYNOMIAL HASH CODES

 Polynomial accumulation:
 Partition the bits of the key into

a sequence of components of
fixed length (e.g., 8, 16 or 32
bits)

 Evaluate the polynomial

 where a!=1 is a nonzero

constant, ignoring overflows
 Especially suitable for strings

 (33, 37, 39, and 41 are
particularly good choices for a
when working with character
strings that are English words.)

 Polynomial p(a) can be
evaluated in O(n) time using
Horner’s rule:
 The following polynomials are

successively computed, each
from the previous one in O(1)
time

 p0(a) = xn-1

 pi (a) = xn-i-1 + axi-1(a)
 (i = 1, 2, …, n -1)

 We have p(a) = pn-1(a)

© 2014 Goodrich, Tamassia,
Godlwasser

Hash Tables

61

A polynomial hash code takes into consideration the positions of the xi’s
by using multiplication by different powers as a way to spread out the
influence of each component across the resulting hash code.

CYCLIC-SHIFT HASH CODES

 A variant of the polynomial hash code replaces
multiplication by a with a cyclic shift of a partial
sum by a certain number of bits.
 Ex.> 5-bit cyclic shift of the 32-bit
00111101100101101010100010101000 is achieved by
taking the leftmost five bits and placing those on the rightmost
side of the representation, resulting in
10110010110101010001010100000111.

© 2014 Goodrich, Tamassia,
Godlwasser

Hash Tables

62

CYCLIC-SHIFT HASH CODES

 A variant of the polynomial hash code replaces
multiplication by a with a cyclic shift of a partial
sum by a certain number of bits.
 Ex.> 5-bit cyclic shift of the 32-bit
00111101100101101010100010101000 is achieved by
taking the leftmost five bits and placing those on the rightmost
side of the representation, resulting in
10110010110101010001010100000111.

© 2014 Goodrich, Tamassia,
Godlwasser

Hash Tables

63

COMPRESSION FUNCTIONS

© 2014 Goodrich, Tamassia,
Godlwasser

Hash Tables

64

• Compression function maps integer hash code i into an
integer in the range of [0, N-1]

• A good compression function: probability any two different keys
collide is 1/N.
• If a hash function is chosen well, it should ensure that the

probability of two different keys getting hashed to the same
bucket is 1/N.

• Methods:

• Multiplication method
• MAD method

COMPRESSION FUNCTION: DIVISION METHOD

 Function:
h2 (i) = i mod N (i: the hash code)

 The size N of the hash table is usually chosen to be a
prime
 Prime numbers are shown to helps “spread out” the distribution of hashed

values.
 Example: if we insert keys with hash codes

{200,205,210,215,220,...,600} into a bucket array of size 100, then each
hash code will collide with three others. But if we use a bucket array of size
101, then there will be no collisions.

 The reason has to do with number theory and is beyond the scope of this
course

 Choosing N to be a prime number is not always enough
 If there is a repeated pattern of hash codes of the form pN + q fo

r several different prime numbers, p, then there will still be collis
ions.

© 2014 Goodrich, Tamassia,
Godlwasser

Hash Tables

65

COMPRESSION FUNCTION: MAD METHOD

 Multiply-Add-and-Divide (MAD) Method:
 h2 (i) = [(ai + b) mod p] mod N
 where N is the size of the hash table, p is a prime number larger than N,

and a and b are integers chosen at random from the interval [0, p − 1],
with a > 0.

 MAD is chosen in order to eliminate repeated patterns in the
set of hash codes and get us closer to having a “good” hash
function

© 2014 Goodrich, Tamassia,
Godlwasser

Hash Tables

66

COLLISION-HANDLING SCHEMES
 The main idea of a hash table is to take a bucket array, A, and

a hash function, h, and use them to implement a map by
storing each entry (k,v) in the “bucket” A[h(k)].

 Even with a good hash function, collisions happen, i.e., two
distinct keys, k1 and k2, such that h(k1) = h(k2).

 Collisions
 Prevents us from simply inserting a new entry (k,v) directly into the

bucket A[h(k)]
 Complicates our procedure for insertion, search, and deletion operations.

 Collision handling schemes:
 Separate Chaining
 Open Addressing

 Linear Probing and Variants of Linear Probing

© 2014 Goodrich, Tamassia,
Godlwasser

Hash Tables

67

COLLISION-HANDLING SCHEMES: SEPARATE CHAINING

 Separate Chaining Scheme: have each bucket A[j] store its own
secondary container, holding all entries (k,v) such that h(k) = j.

© 2014 Goodrich, Tamassia,
Godlwasser

Hash Tables

68

A hash table of size 13, storing 10
entries with integer keys, with
collisions resolved by separate
chaining. The compression function is
h(k) = k mod 13. Values omitted.

• Advantage: simple implementations
of map operations

• Disadvantage: requires the use of
an auxiliary data structure to hold
entries with colliding keys

COLLISION-HANDLING SCHEMES: OPEN ADDRESSING

 Open Addressing: store each entry directly in a table
slot.
 This approach saves space because no auxiliary structures

are employed
 Requires a bit more complexity to properly handle collisions.

 Open addressing requires
 Load factor is always at most 1
 Entries are stored directly in the cells of the bucket array

itself.

 EX> Linear Probing and Its Variants

© 2014 Goodrich, Tamassia,
Godlwasser

Hash Tables

69

COLLISION-HANDLING SCHEMES: LINEAR PROBING

 Deletion Scheme:
 Cannot simply remove a found entry from its slot in the array

 Resolve by replacing a deleted entry with a special “defunct”
sentinel object.
 Modify search algorithm so that the search for a key k will skip over

cells containing the defunct
 The put should remember a defunct locations during the search for k,

and put the new entry (k,v), if no existing entry is found beyond it.

© 2014 Goodrich, Tamassia,
Godlwasser

Hash Tables

70

 EX> after the insertion of key 15, if the
entry with key 37 were trivially deleted,
a subsequent search for 15 would fail
because that search would start by
probing at index 4, then index 5, and
then index 6, at which an empty cell is
found.

COLLISION-HANDLING SCHEMES:
VARIANTS OF LINEAR PROBING

 Linear probing tends to cluster the entries of a map into
contiguous runs, which may even overlap causing searches to
slow down considerably.

 Avoiding Clustering with variant of Linear Probing:
 Quadratic Probing: iteratively tries the buckets
 A[(h(k)+ f(i)) mod N], for i = 0,1,2,..., where f(i) = i2, until
finding an empty bucket.
 Double Hashing: choose a secondary hash function, h′, and

if h maps some key k to a bucket A[h(k)] that is already
occupied (no clustering effect)

© 2014 Goodrich, Tamassia,
Godlwasser

Hash Tables

71

PROBLEMS WITH QUADRATIC PROBING

 Quadratic probing strategy complicates the removal o
peration.

 It does avoid the kinds of clustering patterns that occ
ur with linear probing but still suffers from secondary
clustering
 Secondary Clustering: set of filled array cells still has a non

uniform pattern, even if we assume that the original hash c
odes are distributed uniformly.

 Calculation of next index ((h(k)+ f(i)) mod N) is time-
consuming, involving multiplication, addition, and
modulo division

DOUBLE HASHING

 Open addressing strategy that does
not cause clustering of the kind prod
uced by linear probing or the kind pr
oduced by quadratic probing

 Double hashing uses a secondary hash
function h’(k) and handles collisions by
placing an item in the first available cel
l of the series

 (h(k) + i*h’(k)) mod N
 for i = 0, 1, … , N � 1

 The table size N must be a prime to all

ow probing of all the cells

 The secondary hash function
h’(k) cannot have zero values

 Common choice of compressio
n function for the secondary h
ash function:
h'(k) = q − (k mod q)

 for some prime q < N.

 The possible values for h’(k) ar
e
 1, 2, … , q

© 2014 Goodrich, Tamassia,
Godlwasser

Hash Tables

73

MAP WITH SEPARATE CHAINING

 To represent each bucket for separate chaining, we
use an instance of the simpler UnsortedTableMap
class.

 Entire hash table is then represented as a fixed-
capacity array A of thevsecondary maps.

 Each cell, A[h], is initially a null reference;
 We only create a secondary map when an entry is first

hashed to a particular bucket.

© 2014 Goodrich, Tamassia,
Godlwasser

Hash Tables

74

MAP WITH LINEAR PROBING

 Open addressing: the collidi
ng item is placed in a differ
ent cell of the table

 Linear probing: handles collisio
ns by placing the colliding item
in the next (circularly) available
table cell

 Each table cell inspected is refe
rred to as a “probe”

 Colliding items lump together, c
ausing future collisions to cause
a longer sequence of probes

 Example:
 h(x) = x mod 13
 Insert keys 18, 41, 2

2, 44, 59, 32, 31, 73,
in this order

© 2014 Goodrich, Tamassia,
Godlwasser

Hash Tables

75

0 1 2 3 4 5 6 7 8 9 10 11 12

 41 18 44 59 32 22 31 73
0 1 2 3 4 5 6 7 8 9 10 11 12

PERFORMANCE OF HASH TABLES VERSUS
SORTED ARRAY AND BINARY SEARCH TREE

 The number of comparisons required for a binary
search of a sorted array is O(log n)
 A sorted array of size 128 requires up to 7 probes (27 is

128) which is more than for a hash table of any size
that is 90% full

 A binary search tree performs similarly
 Insertion or removal

hash table O(1) expected; worst case

O(n)
unsorted array O(n)

binary search tree O(log n); worst case O(n)

WHAT IS A TREE

 Trees consists of nodes with a

parent-child relation

 Trees also provide a natural or
ganization for data,
 Organization charts
 File systems
 Programming environment

s

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

77

In computer science, a tree is an abstract
model of hierarchical structure (a type of
nonlinear data structure)

TREE TERMINOLOGY

 Root: node without parent (A)
 Internal node: node with at least

one child (A, B, C, F)
 External node (a.k.a. leaf): node

without children (E, I, J, K, G, H, D)
 Ancestors of a node: parent,

grandparent, grand-grandparent,
etc.

 Descendant of a node: child,
grandchild, grand-grandchild, etc.

 Subtree: tree consisting of a node
and its descendants

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

78

 organization of a fictitious corporation.

TREE TERMINOLOGY CONT

 Siblings: two nodes that are children of the same
parent

 Depth of a node: number of ancestors
 Height of a tree: maximum depth of any node (3)
 Edge: a pair of nodes (u,v) such that u is the parent

of v, or vice versa.
 Path: a sequence of nodes such that any two

consecutive nodes in the sequence form an edge

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

79

BINARY TREES

 A binary tree is a tree with the following
properties:
 Each internal node has at most two children (exactly

two for proper binary trees)
 The children of a node are an ordered pair

 (Alternative recursive definition) A set of nodes T
is a binary tree if either of the following is true
 T is empty
 Its root node has two subtrees, TL and TR, such that TL

and TR are binary trees
 (TL = left subtree; TR = right subtree)

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

80

TREE ADT

 We use positions as an abstraction for a node of a tree
 A position object for a tree supports the method:

 getElement(): Returns the element stored at this position.

 Accessor methods for navigating through positions of a tree T
 root(): Returns the position of the root of the tree (or null if empty).
 parent(p): Returns the position of the parent of position p (or null if p is

the root).
 children(p): Returns an iterable collection containing the children of

position p (if any).
 numChildren(p): Returns the number of children of position p.

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

81

TREE ADT CONT.

 Query methods, which are often used with conditionals
statements:
 isInternal(p): Returns true if position p has at least one child.
 isExternal(p): Returns true if position p does not have any children.
 isRoot(p): Returns true if position p is the root of the tree.

 General methods, unrelated to the specific structure of the tree:
 size(): Returns the number of positions (and hence elements) that

are contained in the tree.
 isEmpty(): Returns true if the tree does not contain any positions

(and thus no elements).
 iterator(): Returns an iterator for all elements in the tree (so that

the tree itself is Iterable).
 positions(): Returns an iterable collection of all positions of the

tree.
 Additional update methods may be defined by data

structures implementing the Tree ADT. (Discussed later)

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

82

A TREE INTERFACE IN JAVA

Methods for a Tree interface:

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

83

Accessor
methods

Query
methods

General
method
s

COMPUTING DEPTH

 Let p be a position within tree T. The depth of p is the
number of ancestors of p, other than p itself.

 The depth of p can also be recursively defined as
follows:
 If p is the root, then the depth of p is 0.
 Otherwise, the depth of p is one plus the depth of the

parent of p.

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

84

COMPUTING HEIGHT CONT

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

85

O(n) worst-case time

 The overall height of a nonempty tree can be computed by sending the root of the
tree as a parameter.

 Assuming that children(p) executes in O(cp + 1) time, where cp
denotes the number of children of p. Algorithm height(p)
spends O(cp +1) time at each position p to compute the
maximum, and its overall running time is

O(∑p(cp +1)) = O(n+∑p cp).
 Let T be a tree with n positions, and let cp denote the number of children of a
position p of T. Then, summing over the positions of T, ∑pcp =n−1.

BINARY TREES
 A binary tree is an ordered tree with the following properties:

 Every node has at most two children.
 Each child node is labeled as being either a left child or a right

child.
 A left child precedes a right child in the order of children of a

node.
 The subtree rooted at a left or right child of an internal node v

is called a left subtree or right subtree, respectively, of v.
 A binary tree is proper (full) if each node has either zero or two

children.
 Every internal node has exactly two children.

 A binary tree that is not proper is improper
 Alternative recursive definition: a binary tree is either

 a tree consisting of a single node, or
 a tree whose root has an ordered pair of children, each of which is a

binary tree

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

86

PROPERTIES OF PROPER BINARY TREES

 Notation
n number of nodes
e number of externa

l nodes
i number of internal

nodes
h height

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

87

Properties:
 e = i + 1
 n = 2e − 1
 h ≤ i
 h ≤ (n − 1)/2
 e ≤ 2h

 h ≥ log2 e
 h ≥ log2 (n + 1) − 1

EULER TOUR TRAVERSAL

 Generic traversal of a binary tree
 Includes a special cases the preorder, postorder and inorder traversals
 Walk around the tree and visit each node three times:

 on the left (preorder traversal)
 from below (inorder traversal)
 on the right (postorder traversal)

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

88

+

×

− 2

5 1

3 2

L
B

R ×

LINKED STRUCTURE FOR BINARY TREES

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

89

l inked structure, with a node that maintains references to the element
stored at a position p and to the nodes associated with the children and
parent of p.

PERFORMANCE OF THE LINKED BINARY TREE IMPLEMENTATION

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

90

Running times for the methods of an n-node binary
tree implemented with a linked structure. The space
usage is O(n). dp is depth of node.

ARRAY-BASED REPRESENTATION OF A BINARY TREE

 Utilize the way of numbering
the positions of T.

 For every position p of T , let
f(p) be the of integer defined
as follows.
 If p is the root of T, then f(p)=0.
 If p is the left child of position

q, then f(p) = 2f(q)+1.
 If p is the right child of position

q, then f(p) = 2f(q)+2.
 f is known as level

numbering of the positions
in a binary tree T , for it
numbers the positions on
each level of T in increasing
order from left to right.

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

91

ARRAY-BASED REPRESENTATION OF A BINARY TREE 2

© 2014 Goodrich, Tamassia,
Goldwasser

Trees

92

an array-based structure A, with the
element at position p of T stored at
index f(p) of the array.

PRIORITY QUEUE

 Queue ADT is a collection of objects that are added and
removed according to the first-in, first-out (FIFO) principle.

 However, sometimes a FIFO policy does not suffice.
 Ex> “first come, first serve” policy might seem reasonable, but

other priorities also come into play.
 A priority queue is a data structure for storing prioritized

elements that allows arbitrary insertion, and allows the removal
of the element that has first priority (minimal key).

 Applications:
 Standby flyers
 Auctions
 Stock market

© 2014 Goodrich, Tamassia,
Goldwasser

Priority Queues

93

PRIORITY QUEUE ADT

 A priority queue stores a
collection of entries

 Each entry is a pair
 (key, value)
 Priority is stored in the key

 Main methods
 insert(k, v): inserts an entry with key k and value v
 removeMin(): removes and returns the entry with smallest key, or

null if the the priority queue is empty
 Additional methods

 min(): returns, but does not remove, an entry with smallest key, or
null if the the priority queue is empty

 size(), isEmpty()

© 2014 Goodrich, Tamassia,
Goldwasser

Priority Queues

94

SEQUENCE-BASED PRIORITY QUEUE

 Implementation with an
unsorted list

 Performance:

 insert takes O(1) time since
we can insert the item at the
beginning or end of the
sequence

 removeMin and min take
O(n) time since we have to
traverse the entire sequence
to find the smallest key

 Implementation with a
sorted list

 Performance:

 insert takes O(n) time since
we have to find the place
where to insert the item

 removeMin and min take
O(1) time, since the smallest
key is at the beginning

© 2014 Goodrich, Tamassia,
Goldwasser

Priority Queues

95

4 5 2 3 1 1 2 3 4 5

PRIORITY QUEUE SORTING “SCHEME”

 We can use a priority queue to sort a list of comparable elements
1. Insert the elements one by one with a series of insert operations
2. Remove the elements in sorted order with a series of removeMin operations

 The running time of this sorting method depends on the priority queue
implementation

 The pqSort scheme is the paradigm of several popular sorting algorithms,
including selection-sort, insertion-sort, and heap-sort

© 2014 Goodrich, Tamassia,
Goldwasser

Priority Queues

96

HEAPS
 A binary heap is a binary tree storing

keys at its nodes and satisfying the
following properties:

 (min) Heap-Order: for every internal
node v other than the root,
key(v) ≥ key(parent(v))

 Complete Binary Tree: let h be the
height of the heap
 for i = 0, … , h − 1, there are 2i nodes

of depth i
 at depth h − 1, the internal nodes are

to the left of the external nodes

 The last node of a heap is the
rightmost node of maximum
depth

© 2014 Goodrich, Tamassia,
Goldwasser

Heaps

97

2

6 5

7 9

last node

HEIGHT OF A HEAP

 Theorem: A heap T storing n entries has height h = ⌊log n⌋.
 Proof: (we apply the complete binary tree property)

 Let h be the height of a heap storing n keys
 Since there are 2i keys at depth i = 0, … , h − 1 and at least one key at

depth h, we have n ≥ 1 + 2 + 4 + … + 2h−1 + 1

 Thus, n ≥ 2h , i.e., h ≤ log n

© 2014 Goodrich, Tamassia,
Goldwasser

Heaps

98

1

2

2h−1

1

keys
0

1

h−1

h

depth

INSERTION INTO A HEAP

 Method insert(k, v) of the
priority queue ADT
corresponds to the insertion
of a key k to the heap

 The insertion algorithm
consists of three steps to
maintain the complete binary
tree property,
 Find the insertion node z (the n

ew last node)
 Store k at z
 Restore the heap-order

property

© 2014 Goodrich, Tamassia,
Goldwasser

Heaps

99

2

6 5

7 9

insertion node
2

6 5

7 9 1

z

z

UPHEAP

 After the insertion of a new key k, the heap-order property may be
violated

 Algorithm upheap restores the heap-order property by swapping k
along an upward path from the insertion node

 Upheap terminates when the key k reaches the root or a node
whose parent has a key smaller than or equal to k

 Since a heap has height O(log n), upheap runs in O(log n) time

© 2014 Goodrich, Tamassia,
Goldwasser

Heaps

100

2

1 5

7 9 6 z

1

2 5

7 9 6 z

REMOVAL FROM A HEAP

 Method removeMin of the
priority queue ADT
corresponds to the removal
of the root key from the
heap

 The removal algorithm
consists of three steps
 Replace the root key with the

key of the last node w
 Remove w
 Restore the heap-order

property (discussed next)

© 2014 Goodrich, Tamassia,
Goldwasser

Heaps

101

2

6 5

7 9

last node

w

7

6 5

9
w

new last node

DOWNHEAP

 After replacing the root key with the key k of the last node, the
heap-order property may be violated

 Algorithm downheap restores the heap-order property by swapping
key k along a downward path from the root

 Upheap terminates when key k reaches a leaf or a node whose
children have keys greater than or equal to k

 Since a heap has height O(log n), downheap runs in O(log n) time

© 2014 Goodrich, Tamassia,
Goldwasser

Heaps

102

7

6 5

9
w

5

6 7

9
w

UPDATING THE LAST NODE

 The last node is the rightmost node at the bottom level of the tree, or
as the leftmost position of a new level

 The last node can be found by traversing a path of O(log n) nodes
 Go up until a left child or the root is reached
 If a left child is reached, go to the right child
 Go down left until a leaf is reached

 Similar algorithm for updating the last node after a removal

© 2014 Goodrich, Tamassia,
Goldwasser

Heaps

103

ARRAY-BASED HEAP IMPLEMENTATION

 We can represent a heap with n keys by means of an array of length n
 For the node at rank i

 the left child is at rank 2i + 1
 the right child is at rank 2i + 2

 Links between nodes are not explicitly stored
 Methods insert and removeMin depend on locating the last position of a h

eap (in heap of size n, the last position at index n−1.)
 insert corresponds to inserting at rank n + 1
 removeMin corresponds to removing at rank n

 Space usage of an array-based representation of a complete binary
tree with n nodes is O(n),

 Time bounds of methods for adding or removing elements become
amortized. (occasional resizing of array needed)

 Yields in-place heap-sort

© 2014 Goodrich, Tamassia,
Goldwasser

Heaps

104

© 2014 Goodrich, Tamassia,
Goldwasser

Heaps

105

ANALYSIS OF A HEAP-BASED PRIORITY QUEUE

© 2014 Goodrich, Tamassia,
Goldwasser

Heaps

106

Assuming that two keys can be compared in O(1) time and
that the heap T is implemented with an array-based or
linked-based tree representation.

BOTTOM-UP HEAP CONSTRUCTION

 If we start with an initially empty heap, n successive calls
to the insert operation will run in O(nlog n) time in the
worst case.

 However, if all n key-value pairs to be stored in the heap
are given in advance, such as during the first phase of the
heap-sort algorithm, there is an alternative bottom-up
construction method that runs in O(n) time.

 we describe this bottom-up heap construction assuming
the number of keys, n, is an integer such that n = 2h+1 − 1.
 That is, the heap is a complete binary tree with every level being

full, so the heap has height h = log(n+1)−1.

© 2014 Goodrich, Tamassia,
Goldwasser

Heaps

107

MERGING TWO HEAPS

 We are given two heaps and a
key k

 We create a new heap with the
root node storing k and with the
two heaps as subtrees

 We perform downheap to restore
the heap-order property

© 2014 Goodrich, Tamassia,
Goldwasser

Heaps

108

7

3

5 8

2

6 4

3

5 8

2

6 4

2

3

5 8

4

6 7

ANALYSIS

 We visualize the worst-case time of a downheap with a proxy path
that goes first right and then repeatedly goes left until the bottom
of the heap (this path may differ from the actual downheap path)

 Since each node is traversed by at most two proxy paths, the total
number of nodes of the proxy paths is O(n)

 Thus, bottom-up heap construction runs in O(n) time
 Bottom-up heap construction is faster than n successive insertions

and speeds up the first phase of heap-sort

© 2014 Goodrich, Tamassia,
Goldwasser

Heaps

109

ORDERED MAPS

Keys are assumed to come from a total order.
Items are stored in order by their keys
This allows us to support nearest neighbor queries
:

Item with largest key less than or equal to k
Item with smallest key greater than or equal to k

© 2014 Goodrich, Tamassia,
Goldwasser

Binary Search Trees

110

BINARY SEARCH

 Binary search can perform nearest neighbor queries on an ordered
map that is implemented with an array, sorted by key
 similar to the high-low children’s game
 at each step, the number of candidate items is halved
 terminates after O(log n) steps

 Example: find(7)

© 2014 Goodrich, Tamassia,
Goldwasser

Binary Search Trees

111

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

0

0

0

0

m l h

m l h

m l h

l=m =h

BINARY SEARCH TREES

 We define binary search tree
as a proper binary tree
storing keys (or key-value
entries) at its internal nodes
and satisfying the following
property:
 Let u, v, and w be three

nodes such that u is in the
left subtree of v and w is in
the right subtree of v. We
have
key(u) ≤ key(v) ≤ key(w)

 External nodes do not store
items
 We use the leaves as

“placeholders” (sentinels)
 Represented as null references

in practice,

 An inorder traversal of a
binary search trees visits
the keys in increasing
order

© 2014 Goodrich, Tamassia,
Goldwasser

Binary Search Trees

112

ANALYSIS OF BINARY TREE SEARCHING

 Algorithm TreeSearch is recursive and executes a
constant number of primitive operations for each
recursive call.

© 2014 Goodrich, Tamassia,
Goldwasser

Binary Search Trees

113

We’ll talk about various
strategies to maintain an
upper bound of O(logn) on
the height soon

executes in
time O(h)

INSERTION
 To perform operation put(k, o), we search for key k (using TreeSearch)
 insertions, which always occur at a leaf).
 Assume a proper binary tree supports the following update operation

 expandExternal(p, e): Stores entry e at the external position p, and
expands p to be internal, having two new leaves as children.

© 2014 Goodrich, Tamassia,
Goldwasser

Binary Search Trees

114

executes in
time O(h)

DELETION

 Deleting an entry from a binary search tree might
happen anywhere in the tree

 To perform operation remove(k), we search for key k
by calling TreeSearch(root(), k) to find the position p
storing an entry with key equal to k (if any).
 If search returns an external node, then there is no entry to

remove.
 Otherwise,

 at most one of the children of position p is internal,
 Or position p has two internal children

© 2014 Goodrich, Tamassia,
Goldwasser

Binary Search Trees

115

DELETION CONT.

 Deletion when at most one of the children of position
p is internal.
 Let position r be a child of p that is internal (or an arbitrary

child, if both are leaves).
 Remove p and the leaf that is r’s sibling, while promoting r

upward to take the place of p.

© 2014 Goodrich, Tamassia,
Goldwasser

Binary Search Trees

116 before the deletion of 32 after the deletion of 32

executes in
time O(h)

DELETION CONT.
 Deletion position p has two internal children

 Locate position r containing the entry having the greatest key
that is strictly less than that of position p (the rightmost internal
position of the left subtree of position p)

 Use r’s entry as a replacement for the one being deleted at
position p.

 Delete the node at position r from the tree.

© 2014 Goodrich, Tamassia,
Goldwasser

Binary Search Trees

117 Before deleting 88 After deleting 88

executes in
time O(h)

PERFORMANCE OF A BINARY SEARCH TREE

© 2014 Goodrich, Tamassia,
Goldwasser

Binary Search Trees

118

* subMap implementation can be shown to run in O(s+h)
worst-case bound for a call that reports s results

BALANCED SEARCH TREES

 Augmenting a standard binary search tree with occasional
operations to reshape the tree and reduce its height
 Examples> AVL trees, splay trees, and red-black trees

 The primary operation to rebalance a binary search tree is
known as a rotation
 allows the shape of a tree to be modified while maintaining the

search-tree property.

© 2014 Goodrich, Tamassia,
Goldwasser

Binary Search Trees

119

“rotate” a child to be
above its parent

O(1) time with a
linked binary tree
representation

TRINODE RESTRUCTURING.

 Trinode restructuring is a compound rotation operations with
the goal to restructure the subtree rooted at the grandparent z
in order to reduce the overall path length to current node x and
its subtrees.

© 2014 Goodrich, Tamassia,
Goldwasser

Binary Search Trees

120

EXAMPLE OF A TRINODE RESTRUCTURING OPERATION 1

© 2014 Goodrich, Tamassia,
Goldwasser

Binary Search Trees

121

EXAMPLE OF TRINODE RESTRUCTURING OPERATION 2

© 2014 Goodrich, Tamassia,
Goldwasser

Binary Search Trees

122

DEFINITION OF AN AVL TREE

 Any binary search tree T that
satisfies the height-balance
property is said to be an AVL tree,
named after the initials of its
inventors: Adel’son-Vel’skii and
Landis.

 Height-Balance Property: For
every internal position p of T, the
heights of the children of p differ
by at most 1.

© 2014 Goodrich, Tamassia,
Goldwasser

AVL Tree

123

PROPERTIES OF AVL TREE

 height-balance property allows
 subtree of an AVL tree is itself an AVL tree.
 The height of an AVL tree storing n entries is O(logn).
 (view 11.3 for the proof)

 height-balance property characterizing AVL trees is

equivalent to saying that every position is balanced.
 Given a binary search tree T, we say that a position is

balanced if the absolute value of the difference between
the heights of its children is at most 1,

 AVL tree guarantees worst-case logarithmic running time
for all the fundamental map operations

© 2014 Goodrich, Tamassia,
Goldwasser

AVL Tree

124

UPDATE OPERATIONS: INSERTION

 The insertion and deletion operations starts off with
corresponding operations of (standard) binary search
trees, but with post-processing for each operation to
restore the balance
 After insertion, the height-balance property may violated
 Restructure T to fix any unbalance with a “search-and-repair”

strategy.

 Any ancestor of z that became temporarily unbalanced
becomes balanced again, and this one restructuring
restores the height-balance property globally.

© 2014 Goodrich, Tamassia,
Goldwasser

AVL Tree

125

© 2014 Goodrich, Tamassia,
Goldwasser

AVL Tree

126

before the insertion

after an insertion in subtree T3
causes imbalance at z

after restoring balance with
trinode restructuring

• Let z be the first position we encounter
in going up from p toward the root of T
such that z is unbalanced

• let y denote the child of z with greater
height

• let x be the child of y with greater
height (there cannot be a tie)

• Perform restructure(x)

EXAMPLE OF INSERT

© 2014 Goodrich, Tamassia,
Goldwasser

AVL Tree

127

insertion of an entry with key 54 in the AVL tree

after adding a new node for key
54, the nodes storing keys 78
and 44 become unbalanced;

a trinode restructuring restores
the height-balance
property

UPDATE OPERATIONS: DELETION

 As with insertion, we use trinode restructuring to restore
balance in the tree T after deletion.

 let z be the first unbalanced position encountered going up
from p toward the root of T,

 let y be that child of z with greater height
 let x be the child of y defined as follows:

 if one of the children of y is taller than the other, let x be the taller child
of y;

 else (both children of y have the same height), let x be the child of y on
the same side as y

 Run restructure(x) operation.
 After rebalancing z, we continue walking up T looking for

unbalanced positions
 The height-balance property is guaranteed to be locally restored within

the subtree of b but not globally.

© 2014 Goodrich, Tamassia,
Goldwasser

AVL Tree

128

EXAMPLE

© 2014 Goodrich, Tamassia,
Goldwasser

AVL Tree

129

Deletion of the entry with key 32 from the AVL tree

after removing the node storing
key 32, the root becomes
unbalanced

A trinode restructuring of x, y,
and z restores the height-balance
property.

PERFORMANCE OF AVL TREES

 the height of an AVL tree with n entries is guaranteed
to be O(logn).

© 2014 Goodrich, Tamassia,
Goldwasser

AVL Tree

130

GRAPHS
 A graph is a pair (V, E), where

 V is a set of nodes, called vertices (aka nodes)
 E is a collection of pairs of vertices, called edges (aka arcs)
 Vertices and edges are positions and store elements

 Example:
 A vertex represents an airport and stores the three-letter airport

code
 An edge represents a flight route between two airports and stor

es the mileage of the route

Graphs

131

ORD PVD

MIA
DFW

SFO

LAX

LGA

HNL

EDGE TYPES

 Directed edge
 ordered pair of vertices (u,v)
 first vertex u is the origin
 second vertex v is the destination
 e.g., a flight

 Undirected edge
 unordered pair of vertices (u,v)
 e.g., a flight route

 Directed graph
 all the edges are directed
 e.g., route network

 Undirected graph
 all the edges are undirected
 e.g., flight network

 Mixed graph : graph that has
both directed and undirected
edges

Graphs

132

ORD PVD
flight
AA 1206

ORD PVD 849
miles

TERMINOLOGY

 End vertices (or endpoints) of an
edge
 U and V are the endpoints of a

 Edges incident on a vertex
 a, d, and b are incident on V

 Adjacent vertices
 U and V are adjacent

 Degree of a vertex
 deg(X)= 5; X has degree 5

 Parallel edges (multiple edges)
 h and i are parallel edges
 Edges are collections (not sets)

 Self-loop
 j is a self-loop

 outgoing edges of a vertex:
 directed edges whose origin is

that vertex.
 incoming edges of a vertex:

 directed edges whose
destination is that vertex.

 in-degree & out-degree of a vertex v
 the number of the incoming and

outgoing edges of v,
 Denoted indeg(v) and outdeg(v)

Graphs

133

X U

V

W

Z

Y

a

c

b

e

d

f

g

h

i

j

TERMINOLOGY (CONT.)

 Path
 sequence of alternating

vertices and edges
 begins with a vertex
 ends with a vertex
 each edge is preceded and

followed by its endpoints
 Simple path

 path such that all its vertices
and edges are distinct

 Examples
 P1=(V,b,X,h,Z) is a simple path
 P2=(U,c,W,e,X,g,Y,f,W,d,V) is a

path that is not simple

 Graphs are said to be simple if they
do not have parallel edges or self-
loops

 Most graphs are simple; we will
assume that a graph is simple
unless otherwise specified

Graphs

134

P1

X U

V

W

Z

Y

a

c

b

e

d

f

g

h P2

TERMINOLOGY (CONT.)

 Cycle
 circular sequence of alternating

vertices and edges
 each edge is preceded and

followed by its endpoints
 Simple cycle

 cycle such that all its vertices
and edges are distinct, except
for the first and the last

 Examples
 C1=(V,b,X,g,Y,f,W,c,U,a,↵) is a

simple cycle
 C2=(U,c,W,e,X,g,Y,f,W,d,V,a,↵) is

a cycle that is not simple

Graphs

135

C1

X U

V

W

Z

Y

a

c

b

e

d

f

g

h C2

TERMINOLOGY (CONT.)

 Given vertices u and v of a
(directed) graph G,

 u reaches v, and that v is
reachable from u, if G has
a (directed) path from u to
v.

 reachability :
 undirected graph

reachability is symmetric,
that is to say, u reaches v if
an only if v reaches u.

 directed graph reachability is
asymmetric, it is possible
that u reaches v but v does
not reach u,

Graphs

136

strongly connected subgraph a directed path

subgraph of
the vertices and
edges reachable from
ORD

removal of the
dashed edges results
in a directed acyclic
graph

Depth-First Search

137

SUBGRAPHS

 A subgraph S of a graph G
is a graph such that
 The vertices of S are a subset

of the vertices of G
 The edges of S are a subset

of the edges of G

 A spanning subgraph of G is
a subgraph that contains all
the vertices of G

Subgraph

Spanning subgraph

Depth-First Search

138

CONNECTIVITY

 A graph is connected if,
for any two vertices, there
is a path between them.

 A directed graph G is
strongly connected if for
any two vertices u and v
of G, u reaches v and v
reaches u.

 A connected component
of a graph G is a
maximal connected
subgraph of G

Connected graph

Non connected graph with two
connected components

Depth-First Search

139

TREES AND FORESTS

 A (free) tree is an
undirected graph T such
that
 T is connected
 T has no cycles
This definition of tree is

different from the one of a
rooted tree

 A forest is an undirected
graph without cycles

 The connected
components of a forest
are trees

Tree

Forest

Depth-First Search

140

SPANNING TREES AND FORESTS

 A spanning tree of a
connected graph is a
spanning subgraph that is a
tree

 A spanning tree is not unique
unless the graph is a tree

 A spanning forest of a graph
is a spanning subgraph that
is a forest

Graph

Spanning tree

PROPERTIES

Notation
 n number of vertices
 m number of edges
deg(v) degree of vertex v

Let G be an undirected graph
 If G is connected, then m ≥

n−1.
 If G is a tree, then m = n−1.
 If G is a forest, then m ≤ n−1.

Property 1: If G is a graph with m edges and
vertex set V, then

� 𝐝𝐝𝐝 𝒗
𝒗 𝐢𝐧 𝑽

= 𝟐𝟐

Proof: each edge is counted twice
Property 2: If G is a directed graph with m

edges and vertex set V, then

� 𝐢𝐢𝐝𝐝𝐝 𝒗
𝒗 𝐢𝐧 𝑽

= � 𝐨𝐨𝐨𝐝𝐝𝐝 𝒗
𝒗 𝐢𝐧 𝑽

= 𝒎

Property 3: Let G be a simple graph with n

vertices and m edges. If G is undirected,
then

 m ≤ n (n - 1)/2

 Proof: each vertex has degree at most (n - 1)

=> A simple graph with n vertices has O(n2)
edges.

Graphs

141

Example
 n = 4
 m = 6
 deg(v) = 3

DATA STRUCTURES FOR GRAPHS

 In an edge list, we maintain an unordered list of all edges.
 This minimally suffices, but there is no efficient way to locate a particular

edge (u,v), or the set of all edges incident to a vertex v.
 In an adjacency list, we additionally maintain, for each vertex, a

separate list containing those edges that are incident to the vertex.
 This organization allows us to more efficiently find all edges incident to a

given vertex.
 An adjacency map is similar to an adjacency list, but the secondary

container of all edges incident to a vertex is organized as a map,
rather than as a list, with the adjacent vertex serving as a key.
 This allows more efficient access to a specific edge (u,v), for example, in O(1)

expected time with hashing.
 An adjacency matrix provides worst-case O(1) access to a specific

edge (u,v) by maintaining an n×n matrix, for a graph with n vertices.
 Each slot is dedicated to storing a reference to the edge (u,v) for a particular

pair of vertices u and v; if no such edge exists, the slot will store null.

Graphs

142

PERFORMANCE OF THE EDGE LIST STRUCTURE

Graphs

143

space usage is O(n+m)

Exhaustive
inspection of
all edges
needed.

when a vertex v is
removed from the
graph, all edges
incident to v must
also be removed

PERFORMANCE OF THE ADJACENCY LIST STRUCTURE

Graphs

144

adjacency list Iout(v) assuming that the primary collection V and E,
and all secondary collections I(v) are
implemented with doubly linked lists.

using O(n+m) space

based on use
of I(v).

search through
either I(u) or
I(v)

DATA STRUCTURES FOR GRAPHS: ADJACENCY MATRIX
 adjacency matrix A allows us to locate an edge

between a given pair of vertices in worst-case
O(1) time.

 cell A[i][j] holds a reference to the edge (u,v),
if it exists, where u is the vertex with index i
and v is the vertex with index j

 Edge list structure
 Augmented vertex objects

 Integer key (index) associated with vertex
 2D-array adjacency array

 Reference to edge object for adjacent verti
ces

 Null for non nonadjacent vertices
 The “old fashioned” version just has 0 for no e

dge and 1 for edge

Graphs

145

O(n2) space usage

PERFORMANCE: SIMPLE GRAPH

Graphs

146

adjacency matrix uses O(n2) space, while all other structures use
O(n+m) space

GRAPH TRAVERSAL

 A traversal is a systematic procedure for exploring a
graph by examining all of its vertices and edges.

 A traversal is efficient if it visits all the vertices and
edges in time proportional to their number, that is, in
linear time.

 We will look at two efficient graph traversal algorithms
 depth-first search (DFS)
 breadth-first search (BFS)

Graphs

147

Example of a Depth-First Search
(cont.)

0 visited 0 being visited 0 unvisited

0

1
2

3 4 5 6

Mark 0 as visited

Finish order:
4, 3, 1, 6, 5, 2, 0

Discovery (Visit) order:
0, 1, 3, 4, 2, 5, 6, 0

Breadth-First
Search

149

Breadth-First Search
 A BFS traversal of a

graph G
 Visits all the vertices and

edges of G
 Determines whether G is

connected
 Computes the connected

components of G
 Computes a spanning

forest of G

 BFS on a graph with n
vertices and m edges
takes O(n + m) time

 BFS can be further
extended to solve other
graph problems
 Find and report a path

with the minimum number
of edges between two
given vertices

 Find a simple cycle, if
there is one

Example of a Breadth-First Search
(cont.)

The queue is
empty; all vertices
have been visited

Visit sequence:
0, 1, 3, 2, 4, 6, 7, 8, 9, 5

Queue:

0 visited 0 identified 0 unvisited

0

2

3 1

9 8

4

7

6

5

151

Breadth-First Search Properties

Notation
Gs: connected component of s

Property 1
 BFS(G, s) visits all the vertices and

edges of Gs
Property 2
 The discovery edges labeled by

BFS(G, s) form a spanning tree Ts of
Gs

Property 3
 For each vertex v in Li

 The path of Ts from s to v has i
edges

 Every path from s to v in Gs has at
least i edges

C B

A

E

D

L0

L1

F
L2

C B

A

E

D

F

© 2014 Goodrich, Tamassia, Goldwasser

152

SORTING ALGORITHMS

COMPARISON-BASED SORTING

 Many sorting algorithms are comparison based.
 They sort by making comparisons between pairs of objects
 Examples: selection-sort, insertion-sort, heap-sort, merge-sort,

quick-sort, ...
 Let us therefore derive a lower bound on the running

time of any algorithm that uses comparisons to sort n
elements, x1, x2, …, xn.

Sorting Lower Bound

153

Is xi < xj?

yes

no

COUNTING COMPARISONS

 Let us just count comparisons then.
 Each possible run of the algorithm corresponds to

a root-to-leaf path in a decision tree

Sorting Lower Bound

154

xi < xj ?

xa < xb ?

xm < xo ? xp < xq ?xe < xf ? xk < xl ?

xc < xd ?

THE LOWER BOUND

 Any comparison-based sorting algorithms takes at
least log (n!) time

 Therefore, any such algorithm takes time at least

 That is, any comparison-based sorting algorithm must
run in Ω(n log n) lower bound on its running time.

Sorting Lower Bound

155

).2/(log)2/(
2

log)!(log
2

nnnn
n

=





≥

INSERTION-SORT ALGORITHM (IN-PLACE INSERTION-SORT)

© 2014 Goodrich, Tamassia, Goldwasser

156

The algorithm proceeds by considering one element at
a time, placing the element in the correct order relative
to those before it.

© 2014 Goodrich, Tamassia, Goldwasser

157

INSERTION-SORT

 Insertion-sort is the variation of PQ-sort where the
priority queue is implemented with a sorted
sequence

 Running time of Insertion-sort:
1. Inserting the elements into the priority queue with n insert

operations takes time proportional to

2. Removing the elements in sorted order from the priority
queue with a series of n removeMin operations takes O(n)
time

 Insertion-sort runs in O(n2) time

© 2014 Goodrich, Tamassia,
Goldwasser

Priority Queues

158

SELECTION-SORT

 Selection-sort is the variation of PQ-sort where the
priority queue is implemented with an unsorted
sequence

 Running time of Selection-sort:
1. Inserting the elements into the priority queue with n insert

operations takes O(n) time
2. Removing the elements in sorted order from the priority queue

with n removeMin operations takes time proportional to

 Selection-sort runs in O(n2) time

© 2014 Goodrich, Tamassia,
Goldwasser

Priority Queues

159

HEAP SORT

 Consider the pqSort scheme, this time using a heap-
based implementation of the priority queue

 Phase 1: insert all data into heap:
 takes O(nlog n) time. (Could be improved to O(n) with

bottom-up construction)
 Phase 2: removeMin all data in the heap

 j th removeMin operation runs in O(log(n− j+1)), since the
heap has n− j+1 entries at the time the operation

 Summing over all j, this phase takes O(nlog n) time
 Overall: The heap-sort algorithm sorts a sequence S of

n elements in O(nlog n) time, assuming two elements
of S can be compared in O(1) time.

© 2014 Goodrich, Tamassia,
Goldwasser

Heaps

160

Merge Sort

161

MERGE-SORT

 Merge-sort on an input
sequence S with n elements
consists of three steps:
 Divide: If S has zero or one element,

return S. Otherwise partition S into
two sequences S1 and S2 of about
n/2 elements each

 Conquer: recursively sort S1 and S2

 Combine: merge sorted S1 and
sorted S2 into a unique sorted
sequence

Algorithm mergeSort(S)
 Input sequence S with n
 elements
 Output sequence S sorted

 according to C
if S.size() > 1
 (S1, S2) ← partition(S, n/2)
 mergeSort(S1)
 mergeSort(S2)
 S ← merge(S1, S2)

Merge Sort

162

MERGING TWO SORTED SEQUENCES

 The conquer step of
merge-sort consists of
merging two sorted
sequences A and B into a
sorted sequence S
containing the union of the
elements of A and B

 Merging two sorted
sequences, each with n/2
elements and implemented
by means of a doubly
linked list, takes O(n) time

Algorithm merge(A, B)
 Input sequences A and B with
 n/2 elements each
 Output sorted sequence of A ∪ B

S ← empty sequence
while ¬A.isEmpty() ∧ ¬B.isEmpty()
 if A.first().element() < B.first().element()
 S.addLast(A.remove(A.first()))
 else
 S.addLast(B.remove(B.first()))
while ¬A.isEmpty()
 S.addLast(A.remove(A.first()))
while ¬B.isEmpty()
 S.addLast(B.remove(B.first()))
return S

Merge Sort

163

MERGE-SORT TREE
 An execution of merge-sort is depicted by a binary tree

T, called the merge-sort tree
 Each node represents a recursive call of merge-sort and stores

 unsorted sequence before the execution and its partition
 sorted sequence at the end of the execution

 the root is the initial call
 the leaves are calls on subsequences of size 0 or 1

7 2  9 4 → 2 4 7 9

7  2 → 2 7 9  4 → 4 9

7 → 7 2 → 2 9 → 9 4 → 4

Merge Sort

164

EXECUTION EXAMPLE (CONT.)

 Merge

 7 2  9 4 → 2 4 7 9 3 8 6 1 → 1 3 6 8

7  2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4  3 8 6 1 → 1 2 3 4 6 7 8 9

ARRAY-BASED IMPLEMENTATION OF MERGE-SORT 1

Merge Sort

165

ARRAY-BASED IMPLEMENTATION OF MERGE-SORT 2

Divide-and-Conquer

166

A step in the merge of two sorted arrays for which S2[j] < S1[i].

indices i &j
represents the
number of
elements of S1 &
S2 that have
been copied to S

Merge Sort

167

ANALYSIS OF MERGE-SORT

 The height h of the merge-
sort tree is O(log n)
 at each recursive call we

divide in half the sequence,

 The overall work done at
the nodes of depth i is O(n)
 we partition and merge 2i

sequences of size n/2i
 we make 2i+1 recursive calls

 Thus, the total running
time of merge-sort is
O(nlog n)

Quick-Sort

168

QUICK-SORT

 Quick-sort is a randomized
sorting algorithm based on the
divide-and-conquer paradigm:
 Divide: pick a random element x

(called pivot) and partition S into
 L elements less than x
 E elements equal x
 G elements greater than x

 Conquer: Recursively sort L and G
 Combine: join L, E and G

Quick-Sort

169

PARTITION

 We partition an input sequence as
follows:
 We remove, in turn, each element

y from S and
 We insert y into L, E or G,

depending on the result of the
comparison with the pivot x

 Each insertion and removal is at
the beginning or at the end of a
sequence, and hence takes O(1)
time

 Thus, the partition step of quick-
sort takes O(n) time

Algorithm partition(S, p)
 Input sequence S, position p of pivot
 Output subsequences L, E, G of the
 elements of S less than, equal to,
 or greater than the pivot, resp.
 L, E, G ← empty sequences

x ← S.remove(p)
while ¬S.isEmpty()
 y ← S.remove(S.first())
 if y < x
 L.addLast(y)
 else if y = x
 E.addLast(y)
 else { y > x }
 G.addLast(y)
return L, E, G

Quick-Sort

170

QUICK-SORT TREE
 An execution of quick-sort is depicted by a binary tree called

quick-sort tree.
 Each node represents a recursive call of quick-sort and stores

 Unsorted sequence before the execution and its pivot
 Sorted sequence at the end of the execution

 The root is the initial call
 The leaves are calls on subsequences of size 0 or 1

Quick-Sort

171

EXECUTION EXAMPLE (CONT.)

 Join, join

7 9 7 → 17 7 9

7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 7 9

2 4 3 1 → 1 2 3 4

1 → 1 4 3 → 3 4

4 → 4

9 → 9

Quick-Sort

172

WORST-CASE RUNNING TIME
 The worst case for quick-sort occurs when the pivot is the unique minim

um or maximum element
 One of L and G has size n − 1 and the other has size 0
 The running time is proportional to the sum

n + (n − 1) + … + 2 + 1
 Thus, the worst-case running time of quick-sort is O(n2)

depth time

0 n

1 n − 1

… …

n − 1 1

LINEAR TIME SORTING

 We showed that the lower bound of sorting with
comparison is Ω (nlog n) time.

 Can we do better? Yes, with special assumptions
about the input sequence to be sorted.

 We will consider the problem of sorting a sequence of
entries, each a key-value pair, where the keys have a
restricted type
 Bucket-Sort
 Radix-Sort

Bucket-Sort and Radix-Sort

173

BUCKET-SORT

 Let be S be a sequence of n (key, element) entries with integer keys in the
range [0, N-1], for some integer N≥2,

 Bucket-sort uses the keys as indices into an auxiliary array B of size N
(buckets)
Phase 1: Empty sequence S by moving each entry (k, o) into its bucket B[k]
Phase 2: For i = 0, …, N - 1, move the entries of bucket B[i] to the end of sequence

S
 Analysis:

 Phase 1 takes O(n) time
 Phase 2 takes O(n + N) time

 Bucket-sort takes O(n + N) time

Bucket-Sort and Radix-Sort

174

EXAMPLE

 Key range [0, 9]

Bucket-Sort and Radix-Sort

175

7, d 1, c 3, a 7, g 3, b 7, e

1, c 3, a 3, b 7, d 7, g 7, e

Phase 1

Phase 2
0 1 2 3 4 5 6 7 8 9

B

1, c 7, d 7, g 3, b 3, a 7, e

∅ ∅ ∅ ∅ ∅ ∅ ∅

PROPERTIES AND EXTENSIONS

 Key-type Property
 The keys are used as indices

into an array and cannot be
arbitrary objects

 No external comparator

 Stable Sort Property
 The relative order of any two

items with the same key is
preserved after the execution
of the algorithm

 Extensions
 Integer keys in the range [a,

b]
 Put entry (k, o) into bucket

B[k − a]
 String keys from a set D of

possible strings, where D has
constant size (e.g., names of
the 50 U.S. states)
 Sort D and compute the rank

r(k) of each string k of D in
the sorted sequence

 Put entry (k, o) into bucket
B[r(k)]

Bucket-Sort and Radix-Sort

176

STABLE SORTING

 When sorting key-value pairs, an important issue is
how equal keys are handled. Let S = ((k0,v0), . . . , (kn-

1,vn-1)) be a sequence of such entries.
 We say that a sorting algorithm is stable if, for any two

entries (ki,vi) and (kj ,vj) of S such that ki = kj and (ki,vi)
precedes (kj ,vj) in S before sorting (that is, i < j), entry
(ki,vi) also precedes entry (kj ,vj) after sorting.

 Stability is important for a sorting algorithm because
applications may want to preserve the initial order of
elements with the same key.

 Bucket-sort guarantees stability as long as we ensure
that all sequences act as queues

Bucket-Sort and Radix-Sort

177

RADIX-SORT

 Radix-sort is a specialization of
lexicographic-sort that uses
bucket-sort as the stable sorting
algorithm in each dimension

 Radix-sort is applicable to tuples
where the keys in each dimension
i are integers in the range [0, N −
1]

 Radix-sort runs in time O(d(n+N))
where the d is the dimension of
keys, n is the number of data, and
keys range is [0…N-1]

Bucket-Sort and Radix-Sort

178

Algorithm radixSort(S, N)
 Input sequence S of d-tuples such
 that (0, …, 0) ≤ (x1, …, xd) and
 (x1, …, xd) ≤ (N − 1, …, N − 1)
 for each tuple (x1, …, xd) in S
 Output sequence S sorted in
 lexicographic order
 for i ← d downto 1

 bucketSort(S, N)

Quick-Sort

179

SUMMARY OF SORTING ALGORITHMS
Algorithm Time Notes

selection-sort O(n2)
 in-place
 slow (good for small inputs)

insertion-sort O(n2)  in-place
 slow (good for small inputs)

quick-sort
O(n log n)
expected

 in-place, randomized
 fastest (good for large inputs)

heap-sort O(n log n)
 in-place
 fast (good for large inputs)

merge-sort O(n log n)
 sequential data access
 fast (good for huge inputs)

bucket-sort O(n+N)  integer keys of range [0 … N]

radix-sort O(d(n+N))  d integer keys of range [0 … N]

What would work best when the set is already sorted or almost sorted?

	Final’s Review�
	Algorithms: �Analysis, Solution Patterns, and Sorting
	Big-Oh Notation
	Big-Oh Example
	Slide Number 5
	Intuition for Asymptotic Notation
	Advance Topic: Comparison of the Strategies
	The Recursion Pattern Example
	Content of a Recursive Method
	Binary Search
	Types of recursion
	BaSe DataStructures
	Array Lists
	Insertion
	Element Removal
	Performance of array list
	Dynamic Array:
	Implementing a Dynamic Array
	Incremental Strategy Analysis
	Doubling Strategy Analysis
	Singly Linked List
	Inserting at the Head
	Inserting at the Tail
	Removing at the Head
	Removing at the Tail
	Circularly Linked List
	Rotate() on a Circularly Linked List
	Doubly Linked List
	Insertion in Doubly Linked List
	Deletion in Doubly Linked List
	Positional Lists
	Positional List Implementation �Using Doubly Liked List
	Insertion
	Deletion
	Basic Datastructures
	Stacks
	Array-based Stack
	Performance & Limitations of Array-based Stack
	Implementing a Stack with a Singly Linked List
	Adapting Single Linked List on stack ADT
	Example: Matching Parentheses�
	Evaluating Postfix Expressions
	Queue
	The Queue ADT
	Array-based Queue 1
	Array-based Queue 3: Circular Array
	Queue Operations (cont.): enqueue
	Queue Operations (cont.): dequeue
	Implementing a Queue with a Singly Linked List
	Double-Ended Queue: Deque
	Sets
	Storing a Set in a List
	Maps
	A Simple Unsorted Map Implementation:�UnsortedTableMap
	simple implementation of a sorted map
	FindIndex method
	Analysis of our SortedTableMap
	Hash Codes and Index Calculation
	Hash Functions
	Hash Codes: Bit Representation as an Integer
	Polynomial Hash Codes
	Cyclic-Shift Hash Codes
	Cyclic-Shift Hash Codes
	Compression Functions
	Compression Function: Division Method
	Compression Function: MAD Method
	Collision-Handling Schemes
	Collision-Handling Schemes: Separate Chaining
	Collision-Handling Schemes: Open Addressing
	Collision-Handling Schemes: Linear Probing
	Collision-Handling Schemes: �Variants of Linear Probing
	Problems with Quadratic Probing
	Double Hashing
	Map with Separate Chaining
	Map with Linear Probing
	Performance of Hash Tables versus Sorted Array and Binary Search Tree
	What is a Tree
	Tree Terminology
	Tree Terminology cont
	Binary Trees
	Tree ADT
	Tree ADT CONT.
	A Tree Interface in Java
	Computing Depth
	Computing Height cont
	Binary Trees
	Properties of Proper Binary Trees
	Euler Tour Traversal
	Linked Structure for Binary Trees
	Performance of the Linked Binary Tree Implementation �
	Array-Based Representation of a Binary Tree
	Array-Based Representation of a Binary Tree 2
	Priority Queue
	Priority Queue ADT
	Sequence-based Priority Queue
	Priority Queue Sorting “scheme”
	Heaps
	Height of a Heap
	Insertion into a Heap
	Upheap
	Removal from a Heap
	Downheap
	Updating the Last Node
	Array-based Heap Implementation
	Slide Number 105
	Analysis of a Heap-Based Priority Queue
	Bottom-Up Heap Construction
	Merging Two Heaps
	Analysis
	Ordered Maps
	Binary Search
	Binary Search Trees
	Analysis of Binary Tree Searching
	Insertion
	Deletion
	Deletion cont.
	Deletion cont.
	Performance of a Binary Search Tree
	Balanced Search Trees
	trinode restructuring.
	Example of a trinode restructuring operation 1
	Example of trinode restructuring operation 2
	Definition of an AVL Tree
	Properties of AVL Tree
	Update Operations: Insertion
	Slide Number 126
	Example of insert
	Update Operations: Deletion
	Example
	Performance of AVL Trees
	Graphs
	Edge Types
	Terminology
	Terminology (cont.)
	Terminology (cont.)
	Terminology (cont.)
	Subgraphs
	Connectivity
	Trees and Forests
	Spanning Trees and Forests
	Properties
	Data Structures for Graphs
	Performance of the Edge List Structure
	Performance of the Adjacency List Structure
	Data Structures for Graphs: Adjacency Matrix
	Performance: simple Graph
	Graph Traversal
	Example of a Depth-First Search (cont.)
	Breadth-First Search
	Example of a Breadth-First Search (cont.)
	Breadth-First Search Properties
	Sorting Algorithms
	Comparison-Based Sorting
	Counting Comparisons
	The Lower Bound
	Insertion-Sort Algorithm (In-Place Insertion-Sort)
	Slide Number 157
	Insertion-Sort
	Selection-Sort
	Heap Sort
	Merge-Sort
	Merging Two Sorted Sequences
	Merge-Sort Tree
	Execution Example (cont.)
	Array-Based Implementation of Merge-Sort 1
	Array-Based Implementation of Merge-Sort 2
	Analysis of Merge-Sort
	Quick-Sort
	Partition
	Quick-Sort Tree
	Execution Example (cont.)
	Worst-case Running Time
	Linear time Sorting
	Bucket-Sort
	Example
	Properties and Extensions
	Stable Sorting
	Radix-Sort
	Summary of Sorting Algorithms

