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ALGORITHMS:  
ANALYSIS, SOLUTION PATTERNS, AND SORTING 



BIG-OH NOTATION 

 Example: 2n + 10 is O(n) 
 2n + 10 ≤ cn 
 (c − 2) n ≥ 10 
 n ≥ 10/(c − 2) 
 Pick c = 3 and n0 = 10 
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Focus on the growth rate of the running time as a function of the 

input size n, taking a “big-picture” approach. 



BIG-OH EXAMPLE 

 Example: the function 
n2 is not O(n) 
 n2 ≤ cn 
 n ≤ c 
 The above inequality c

annot be satisfied since 
c must be a constant  
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Relatives of Big-Oh 

big-Omega 
 f(n) is Ω(g(n)) if there is a constant c > 0  

and an integer constant n0 ≥ 1 such that  
 f(n) ≥ c g(n) for n ≥ n0 

 

big-Theta 
 f(n) is Θ(g(n)) if there are constants c’ > 0 and 

c’’ > 0 and an integer constant n0 ≥ 1 such that 
c’g(n) ≤ f(n) ≤ c’’g(n) for n ≥ n0 



INTUITION FOR ASYMPTOTIC NOTATION 

© 2014 Goodrich, Tamassia, Goldwasser 

6 

 big-Oh 
 f(n) is O(g(n)) if f(n) is asymptotically 

less than or equal to g(n) 
 big-Omega 

 f(n) is Ω(g(n)) if f(n) is asymptotically 
greater than or equal to g(n) 

 big-Theta 
 f(n) is Θ(g(n)) if f(n) is asymptotically 

equal to g(n) 
 



ADVANCE TOPIC: COMPARISON OF THE STRATEGIES  

 We compare the incremental strategy and 
the doubling strategy by analyzing the total 
time T(n) needed to perform a series of n 
push operations (amortization) 

 We assume that we start with an empty list 
represented by a growable array of size 1 

 We call amortized time of a push operation 
the average time taken by a push operation 
over the series of operations, i.e.,  T(n)/n 
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THE RECURSION PATTERN EXAMPLE 

 Recursion: when a method calls itself 
 

 Classic example – the factorial function:  
  n! = 1· 2· 3· ··· · (n-1)· n 

 
 Recursive definition: 
 
 As a Java method: 





−⋅
=

=
elsenfn
n

nf
)1(

0 if1
)(
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Recursion 



CONTENT OF A RECURSIVE METHOD 

 Base case(s) 
 Values of the input variables for which we perform 

no recursive calls are called base cases (there 
should be at least one base case).  

 Every possible chain of recursive calls must 
eventually reach a base case. 

 Recursive calls 
 Calls to the current method.  
 Each recursive call should be defined so that it 

makes progress towards a base case. 
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BINARY SEARCH 

Search for an integer in an ordered list 
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TYPES OF RECURSION 

 Linear recursion : If a recursive call starts at most one 
other.  

 Binary recursion: If a recursive call may start two others. 
 Multiple recursion: If a recursive call may start three or 

more others. 
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Terminology reflects the structure of the recursion trace, not the 
asymptotic analysis of the running time. 

Recursion is important: Make sure you can trace the 
recursion code and figure it’s time complexity. 
Know everything about the recursion we have talked 
about!.   
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BASE DATASTRUCTURES 

Base Data-structure questions will be integrated with 
the questions in the advance datastructures (ex> how 
dequeue() works in a queue when implemented with 
singly-linked list. )   



ARRAY LISTS 

 An obvious choice for implementing the list ADT is to 
use an array, A, where A[i] stores (a reference to) the 
element with index i. 

 With a representation based on an array A, the get(i) 
and set(i, e) methods are easy to implement by 
accessing A[i] (assuming i is a legitimate index). 
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A 
0 1 2 n i 

 



INSERTION 

 In an operation add(i, o), we need to make room 
for the new element by shifting forward the n − i 
elements A[i], …, A[n − 1] 

 In the worst case (i = 0), this takes O(n) time 
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ELEMENT REMOVAL 

 In an operation remove(i), we need to fill the hole left by 
the removed element by shifting backward the n − i − 1 
elements A[i + 1], …, A[n − 1] 

 In the worst case (i = 0), this takes O(n) time 
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PERFORMANCE OF ARRAY LIST 

 In an array-based 
implementation of a list (array 
list): 
 The space used by the data 

structure is O(n) 
 Indexing the element at i takes 

O(1) time 
 add and remove run in O(n) time 

 In an add operation, when the 
array is full, instead of 
throwing an exception, we can 
replace the array with a larger 
one … 
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DYNAMIC ARRAY:  

 Let push(o) be the operation 
that adds element o at the 
end of the list 

 When the array is full, we 
replace the array with a 
larger one 

 How large should the new 
array be? 
 Incremental strategy: increase 

the size by a constant c 
 Doubling strategy: double the 

size 

© 2014 Goodrich, Tamassia, 
Goldwasser 

Lists and Iterators 

17 

Algorithm push(o) 
 if t = S.length − 1 then 
  A ← new array of 
     size … 
  for i ← 0 to n−1 do 
    A[i] ← S[i] 
  S ← A 
 n ← n + 1 
 S[n−1] ← o 



create new 
array B 

store 
elements of A 

in B 

reassign 
reference A to 
the new array 

IMPLEMENTING A DYNAMIC ARRAY 
 Provide means to “grow” the array A 
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1. Allocate a new array B with 
larger capacity. 

2. Set B[k]=A[k], for 
k=0, . . . ,n−1, where n 
denotes current number of 
items. 

3. Set A = B, that is, we 
henceforth use the new 
array to support the list. 

4. Insert the new element in 
the new array. 



INCREMENTAL STRATEGY ANALYSIS  

 Over n push operations, we replace the array k = 
n/c times, where c is a constant 

 The total time T(n) of a series of n push operations 
is proportional to 

n + c + 2c + 3c + 4c + … + kc = 
n + c(1 + 2 + 3 + … + k) = 

n + ck(k + 1)/2 
 Since c is a constant, T(n) is O(n + k2), i.e., O(n2) 
 Thus, the amortized time of a push operation is 

O(n) 
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Actual push op. 



DOUBLING STRATEGY ANALYSIS 

 We replace the array k = log2 n 
times (2k+1 -1=n; solve for k ) 

 The total time T(n) of a series of n 
push operations is proportional to 

  n + 1 + 2 + 4 + 8 + …+ 2k = 
 n + 2k + 1 − 1  =  

  3n − 1 
 T(n) is O(n) 
 The amortized time of a push 

operation is O(1) 
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SINGLY LINKED LIST 

 A singly linked list is a 
concrete data structure 
consisting of a sequence 
of nodes, starting from a 
head pointer 

 Each node stores 
 element 
 link to the next node 

Linked Lists 
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node 

element 

next 



INSERTING 
AT THE 
HEAD 

Linked Lists 
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Allocate new node 

Insert new element 

Have new node 
point to old 
head 

Update head to 
point to new node 



INSERTING 
AT THE TAIL 

• Allocate a new 
node 

• Insert new element 
• Have new node 

point to null 
• Have old last node 

point to new node 
• Update tail to point 

to new node 
 

Linked Lists 
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REMOVING AT 
THE HEAD 

• Update head to 
point to next 
node in the list 

• Allow garbage 
collector to 
reclaim the 
former first node 

Linked Lists 
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REMOVING AT THE TAIL  

• Removing at the tail of a singly linked list is not 
efficient! 

• There is no constant-time way to update the tail 
to point to the previous node 

Linked Lists 
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CIRCULARLY LINKED LIST 

Linked Lists 
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 A singularly linked list in which the next reference of the 
tail node is set to refer back to the head of the list (rather 
than null).  

 Supports all of the public behaviors of our SinglyLinkedList 
class and one additional update method 
 
 

 Nodes store: 
 element 
 link to the next node 



ROTATE() ON A CIRCULARLY LINKED LIST 

Linked Lists 

27 

We do not move any nodes or elements, we simply advance 
the tail reference to point to the node that follows it (the 
implicit head of the list). 

implicit head: tail.getNext( ). 



DOUBLY LINKED LIST 

 A doubly linked list can be traversed 
forward and backward 

 Nodes store: 
 element 
 link to the previous node 
 link to the next node 

 Special trailer and header nodes 

Linked Lists 
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prev next 

element 

trailer header nodes/positions 

elements 

node 



INSERTION IN DOUBLY LINKED LIST 

Linked Lists 
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DELETION IN DOUBLY LINKED LIST 

Linked Lists 
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POSITIONAL LISTS 

 To provide for a general abstraction of a sequence of elements 
with the ability to identify the location of an element, we define a 
positional list ADT.  

 A position acts as a marker or token within the broader positional 
list.  

 A position p is unaffected by changes elsewhere in a list; the only 
way in which a position becomes invalid is if an explicit command 
is issued to delete it. 

 A position instance is a simple object, supporting only the 
following method: 
 P.getElement( ): Return the element stored at position p. 
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POSITIONAL LIST IMPLEMENTATION  
USING DOUBLY LIKED LIST 

 The most natural way to 
implement a positional list is with 
a doubly-linked list. 

 NOTE: Not the same as the 
DoublyLinkedList class in Ch3 
 Difference in the management of the 

positional abstraction 
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node 



INSERTION 

 Insert a new node, q, between p and its successor. 
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A B X C 

A B C 

p 

A B C 

p 

X 

q 

p q 



DELETION 

 Remove a node, p, from a doubly-linked list. 
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BASIC DATASTRUCTURES 



STACKS 

 Main stack operations: 
 push(object): inserts an element 
 object pop(): removes and returns the last inserted 

element 

 Auxiliary stack operations: 
 object top(): returns the last inserted element without 

removing it 
 integer size(): returns the number of elements stored 
 boolean isEmpty(): indicates whether no elements are 

stored 
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ARRAY-BASED STACK 

 A simple way of 
implementing the Stack 
ADT uses an array 

 We add elements from 
left to right 

 A variable (t) keeps 
track of the  index of 
the top element  
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Algorithm size() 
 return t + 1 
 
Algorithm pop() 
 if isEmpty() then 
  return null 
  else   
  t ← t − 1 
  return S[t + 1] 

Bottom Top 

 



PERFORMANCE & LIMITATIONS OF ARRAY-BASED STACK 

 Performance 
 Let n be the number of elements in  
    the stack 
 The space used is O(n) 
 Each operation runs in time O(1) 

 
 Limitations 

 The maximum size of the stack must be defined a 
priori and cannot be changed (fixed size array) 

 Trying to push a new element into a full stack 
causes an implementation-specific exception 
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Stacks 



IMPLEMENTING A STACK WITH A SINGLY LINKED LIST 

 The linked-list approach has memory usage that is 
always proportional to the number of actual elements 
currently in the stack, and without an arbitrary 
capacity limit 

 Q: What the best choice for the top of the stack: the 
front or back of the list?  
 With the top of the stack stored at the front of the list, all 

methods execute in constant time. 
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ADAPTING SINGLE LINKED LIST ON STACK ADT 

 We will adapt SinglyLinkedList class of Section 3.2.1 to define a 
new LinkedStack class 
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SinglyLinkedList is named list as 
a private field, and uses the 
following correspondences:  



EXAMPLE: MATCHING PARENTHESES 
 

 Consider arithmetic expressions that may contain 
various pairs of grouping symbols:  
 Parentheses: “(” and “)” 
 Braces: “{” and “}” 
 Brackets: “[” and “]” 
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[(5+x)−(y+z) 



EVALUATING POSTFIX EXPRESSIONS 

 Write a class that evaluates a postfix expression 
 Use the space character as a delimiter between 

tokens 

Data Structures Abstraction and Design Using Java, 2nd Edition 
by Elliot B. Koffman &  Paul A. T. Wolfgang, Wiley, 2010 



QUEUE 

 The Queue ADT stores arbitrary objects 
 The queue, like the stack, is a widely used data structure 
 A queue differs from a stack in one important way Insertions 

and deletions follow  
 A stack is LIFO list – Last-In, First-Out 
 while a queue is FIFO list, First-In, First-Out 

 Insertions are at the rear of the queue and removals are at the 
front of the queue 
 

Data Structures Abstraction and Design Using Java, 2nd Edition 
by Elliot B. Koffman &  Paul A. T. Wolfgang, Wiley, 2010 

Know about application of queues and their base 
operations.  



THE QUEUE ADT 

 Main queue operations: 
 enqueue(object): inserts an 

element at the end of the 
queue 

 object dequeue(): removes 
and returns the element at the 
front of the queue 

 Auxiliary queue 
operations: 
 object first(): returns the 

element at the front without 
removing it 

 integer size(): returns the 
number of elements stored 

 boolean isEmpty(): 
indicates whether no 
elements are stored 

 Boundary cases: 
 Attempting the execution of 

dequeue or first on an 
empty queue returns null 
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ARRAY-BASED QUEUE 1 

 Replace a dequeued 
element in the array with 
a null reference 

 A variable to keep track 
of the front 
f  index of the front element 
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O(n) running time for the dequeue method. 

Using an array to store elements of a queue, such that the first element inserted, 
“A”, is at cell 0, the second element inserted, “B”, at cell 1, and so on. 

O(1) deque operation but, if we 
repeatedly let the front of the queue drift 
rightward over time, the back of the 
queue would reach the end of the 
underlying array even when there are 
fewer than N elements currently in the 
queue. 

ARRAY-BASED QUEUE 2 

 



ARRAY-BASED QUEUE 3: CIRCULAR ARRAY 
 Use an array of size N in a circular fashion 
 Two variables keep track of the front and size 

f  index of the front element 
sz number of stored elements 

 How to store additional elements in such a configuration:  
 When the queue has fewer than N elements, array location  
    r = (f + sz) mod N  is the first empty slot past the rear of the queue 
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normal configuration 

wrapped-around configuration 

 



QUEUE OPERATIONS (CONT.): ENQUEUE  

 Operation enqueue 
throws an exception if the 
array is full 

 This exception is 
implementation-dependent 
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Algorithm enqueue(o) 
 if size() = N − 1 then 
  throw IllegalStateException 
  else   
      r ← (f + sz) mod N 
  Q[r] ← o 
  sz ← (sz + 1) 

Q 
0 1 2 r f 

Q 
0 1 2 f r 

avail = (f + sz) % data.length;  



QUEUE OPERATIONS (CONT.): DEQUEUE  

 Note that operation 
dequeue returns NULL if 
the queue is empty 
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Algorithm dequeue() 
 if isEmpty() then 
  return null 
  else 
  o ← Q[f] 
  f ← (f + 1) mod N 
  sz ← (sz − 1) 
  return o 

Q 
0 1 2 r f 

Q 
0 1 2 f r 

f = (f+1) % data.length 



IMPLEMENTING A QUEUE WITH A SINGLY LINKED LIST  

 Supporting worst-case O(1)-time for all operations, 
and without any artificial limit on the capacity 

 Orientation for Queue using singly linked list  
 Align the front of the queue with the front of the list,  
 Align the back of the queue with the tail of the list,  
(because the only update operation that singly linked lists 
support at the back end is an insertion)  
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DOUBLE-ENDED QUEUE: DEQUE 

 A deque (pronounced "deck") is short for double-
ended queue 

 A double-ended queue allows insertions and removals 
from both ends  

 The deque abstract data type is more general than 
both the stack and the queue ADTs. 
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SETS 

 Consider another part of the Collection hierarchy: the Set 
interface  

 A set is an unordered collection of elements, without duplicates 
that typically supports efficient membership tests.  
 Elements of a set are like keys of a map, but without any auxiliary values. 
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STORING A SET IN A LIST 

 We can implement a set with a list 
 The space used is O(n) 

52 

∅ List 

Set elements 



MAPS 

Maps 
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 A map models a searchable  
    collection of  key-value pairs (k,v),  
    which we call entries 

 Keys are required to be unique 
 Maps are also known as associative arrays,  

 entry’s key serves somewhat like an index into the map, in that it assists the 
map in efficiently locating the associated entry.  

 Unlike a standard array, a key of a map need not be numeric, 
and is does not directly designate a position within the 
structure.  

 The Map is related to the Set, mathematically, a Map is a 
set of ordered pairs whose elements are known as the key 
and the value 

 The main operations are for searching, inserting, and deleting 
items 
 



A SIMPLE UNSORTED MAP IMPLEMENTATION: 
UNSORTEDTABLEMAP 

Maps 
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The use of the AbstractMap class with a very simple concrete 
implementation of the map ADT that relies on storing key-value pairs 
in arbitrary order within a Java ArrayList. 

Private findIndex(key) method 
that returns the 
index at which such an entry is 
found, or −1 if no such entry is 
found by scanning the array to 
determine whether an entry 
with key equal to k exists. 
 



SIMPLE IMPLEMENTATION OF A SORTED MAP 

Maps 
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Sorted search table: Store the map’s entries in an array list A so that 
they are in increasing order of their keys. 

• the sorted search table has a space requirement that is O(n). 
• array-based implementation allows us to use the binary search 

algorithm for a variety of efficient operations.  



FINDINDEX METHOD 

Maps 
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findIndex  method uses the recursive binary search algorithm,  
• returns the index of the leftmost entry in the search range 

having key greater than or equal to k;  
• if no entry in the search range has such a key, we return the 

index just beyond the end of the search range. 
 
⇒ If an entry has the target key, the search returns the index of 

that entry. (Recall that keys are unique in a map.)  
⇒ If the key is absent, the method returns the index at which a 

new entry with that key would be inserted 



ANALYSIS OF OUR SORTEDTABLEMAP 

Maps 
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HASH CODES AND INDEX CALCULATION 

 The basis of hashing is to transform the item’s key 
value into an integer value (its hash code) which is 
then transformed into a table index 



HASH FUNCTIONS 

 The goal of a hash function, h, is to map each key k to an 
integer in the range [0, N − 1], where N is the capacity of the 
bucket array for a hash table.  

 A hash function is usually specified as the composition of two 
functions: 
 Hash code (independent of hash table size – allow generic 

implementation): 
  h1: keys → integers 

 Compression function (dependent of hash table size): 
  h2: integers → [0, N - 1] 

© 2014 Goodrich, Tamassia, 
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HASH CODES: BIT REPRESENTATION AS AN INTEGER  
 Integer cast: 

 Java relies on 32-bit hash 
codes 

 We reinterpret the bits of 
the key as an integer 

 Suitable for keys of length 
less than or equal to the 
number of bits of the 
integer type (e.g., byte, 
short, int and float in Java) 

 Component sum: 
 Partition the bits of the key 

into components of fixed 
length (e.g., 16 or 32 bits) and 
we sum (or exclusive-or) the 
components (ignoring 
overflows) 

 Suitable for numeric keys of 
fixed length greater than or 
equal to the number of bits of 
the integer type (e.g., long and 
& double in Java) 
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Both not good for character strings or other variable-length objects that can 
be viewed as tuples of the form (x0,x1,...,xn−1), where the order of the xi’s is 
significant. Ex> "stop", "tops", "pots", and "spot".  
 



POLYNOMIAL HASH CODES  

 Polynomial accumulation: 
 Partition the bits of the key into 

a sequence of components of 
fixed length (e.g., 8, 16 or 32 
bits) 

 Evaluate the polynomial 
  
 
 where a!=1 is a nonzero 

constant, ignoring overflows 
 Especially suitable for strings  

 (33, 37, 39, and 41 are 
particularly good choices for a 
when working with character 
strings that are English words. ) 

 Polynomial p(a) can be 
evaluated in O(n) time using 
Horner’s rule: 
 The following polynomials are 

successively computed, each 
from the previous one in O(1) 
time 

  p0(a) = xn-1 

  pi (a) = xn-i-1 + axi-1(a) 
  (i = 1, 2, …, n -1) 

 We have p(a) = pn-1(a)  
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A polynomial hash code takes into consideration the positions of the xi’s 
by using multiplication by different powers as a way to spread out the 
influence of each component across the resulting hash code.  



CYCLIC-SHIFT HASH CODES  

 A variant of the polynomial hash code replaces 
multiplication by a with a cyclic shift of a partial 
sum by a certain number of bits.  
 Ex.> 5-bit cyclic shift of the 32-bit  
00111101100101101010100010101000 is achieved by 
taking the leftmost five bits and placing those on the rightmost 
side of the representation, resulting in  
10110010110101010001010100000111.  
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CYCLIC-SHIFT HASH CODES  

 A variant of the polynomial hash code replaces 
multiplication by a with a cyclic shift of a partial 
sum by a certain number of bits.  
 Ex.> 5-bit cyclic shift of the 32-bit  
00111101100101101010100010101000 is achieved by 
taking the leftmost five bits and placing those on the rightmost 
side of the representation, resulting in  
10110010110101010001010100000111.  
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COMPRESSION FUNCTIONS 
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• Compression function maps integer hash code i into an 
integer in the range of [0, N-1]   
 

• A good compression function: probability any two different keys 
collide is 1/N.  
• If a hash function is chosen well, it should ensure that the 

probability of two different keys getting hashed to the same 
bucket is 1/N.  

 
• Methods: 

• Multiplication method 
• MAD method  

 



COMPRESSION FUNCTION: DIVISION METHOD  

 Function:  
h2 (i) = i mod N  (i: the hash code ) 

 The size N of the hash table is usually chosen to be a 
prime 
 Prime numbers are shown to helps “spread out” the distribution of hashed 

values.  
 Example:  if we insert keys with hash codes 

{200,205,210,215,220,...,600} into a bucket array of size 100, then each 
hash code will collide with three others. But if we use a bucket array of size 
101, then there will be no collisions.  

 The reason has to do with number theory and is beyond the scope of this 
course 

 Choosing N to be a prime number is not always enough 
 If there is a repeated pattern of hash codes of the form pN + q fo

r several different prime numbers, p, then there will still be collis
ions.  
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COMPRESSION FUNCTION: MAD METHOD  

 Multiply-Add-and-Divide (MAD) Method: 
     h2 (i) = [(ai + b) mod p] mod N 
 where N is the size of the hash table, p is a prime number larger than N, 

and a and b are integers chosen at random from the interval [0, p − 1], 
with a > 0.  

 MAD is chosen in order to eliminate repeated patterns in the 
set of hash codes and get us closer to having a “good” hash 
function  
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COLLISION-HANDLING SCHEMES  
 The main idea of a hash table is to take a bucket array, A, and 

a hash function, h, and use them to implement a map by 
storing each entry (k,v) in the “bucket” A[h(k)].  

 Even with a good hash function, collisions happen, i.e., two 
distinct keys, k1 and k2, such that h(k1) = h(k2).  

 Collisions  
 Prevents us from simply inserting a new entry (k,v) directly into the 

bucket A[h(k)]  
 Complicates our procedure for insertion, search, and deletion operations.  

 Collision handling schemes: 
 Separate Chaining 
 Open Addressing 

 Linear Probing and Variants of Linear Probing  
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COLLISION-HANDLING SCHEMES: SEPARATE CHAINING  

 Separate Chaining Scheme: have each bucket A[ j] store its own 
secondary container, holding all entries (k,v) such that h(k) = j.  
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A hash table of size 13, storing 10 
entries with integer keys, with 
collisions resolved by separate 
chaining. The compression function is 
h(k) = k mod 13. Values omitted.  

• Advantage: simple implementations 
of map operations 
 

• Disadvantage: requires the use of 
an auxiliary data structure to hold 
entries with colliding keys 



COLLISION-HANDLING SCHEMES: OPEN ADDRESSING  

 Open Addressing: store each entry directly in a table 
slot.  
 This approach saves space because no auxiliary structures 

are employed 
 Requires a bit more complexity to properly handle collisions.  

 Open addressing requires  
 Load factor is always at most 1  
 Entries are stored directly in the cells of the bucket array 

itself.  

 
 EX> Linear Probing and Its Variants  
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COLLISION-HANDLING SCHEMES:  LINEAR PROBING 

 Deletion Scheme:  
 Cannot simply remove a found entry from its slot in the array 

 
 
 
 
 

 Resolve by replacing a deleted entry with a special “defunct” 
sentinel object.  
 Modify search algorithm so that the search for a key k will skip over 

cells containing the defunct  
 The put should remember a defunct locations during the search for k, 

and put  the new entry (k,v), if no existing entry is found beyond it.  
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 EX> after the insertion of key 15, if the 
entry with key 37 were trivially deleted, 
a subsequent search for 15 would fail 
because that search would start by 
probing at index 4, then index 5, and 
then index 6, at which an empty cell is 
found.  

 



COLLISION-HANDLING SCHEMES:   
VARIANTS OF LINEAR PROBING 

 Linear probing tends to cluster the entries of a map into 
contiguous runs, which may even overlap causing searches to 
slow down considerably.  

 Avoiding Clustering with variant of Linear Probing:  
 Quadratic Probing: iteratively tries the buckets 
  A[(h(k)+ f(i)) mod N], for i = 0,1,2,..., where f(i) = i2, until 
finding an empty bucket.   
 Double Hashing: choose a secondary hash function, h′, and 

if h maps some key k to a bucket A[h(k)] that is already 
occupied (no clustering effect) 
 

 
 
 

© 2014 Goodrich, Tamassia, 
Godlwasser 

Hash Tables 

71 



PROBLEMS WITH QUADRATIC PROBING 

 Quadratic probing strategy complicates the removal o
peration. 

 It does avoid the kinds of clustering patterns that occ
ur with linear probing but still suffers from secondary 
clustering 
 Secondary Clustering: set of filled array cells still has a non

uniform pattern, even if we assume that the original hash c
odes are distributed uniformly.  

 Calculation of next index ((h(k)+ f(i)) mod N) is time-
consuming, involving multiplication, addition, and 
modulo division 



DOUBLE HASHING 

 Open addressing strategy that does 
not cause clustering of the kind prod
uced by linear probing or the kind pr
oduced by quadratic probing  
 

 Double hashing uses a secondary hash 
function h’(k) and handles collisions by 
placing an item in the first available cel
l of the series 

 (h(k) + i*h’(k)) mod N 
      for i = 0,  1, … , N � 1 
 
 The table size N must be a prime to all

ow probing of all the cells 
 

 The secondary hash function 
h’(k) cannot have zero values 
 

 Common choice of compressio
n function for the secondary h
ash function:   
h'(k) = q − (k mod q) 

  for some prime q < N. 
 

 The possible values for h’(k) ar
e 
  1, 2, … , q 
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MAP WITH SEPARATE CHAINING 

 To represent each bucket for separate chaining, we 
use an instance of the simpler UnsortedTableMap 
class.  

 Entire hash table is then represented as a fixed-
capacity array A of thevsecondary maps.  

 Each cell, A[h], is initially a null reference;  
 We only create a secondary map when an entry is first 

hashed to a particular bucket. 
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MAP WITH LINEAR PROBING 

 Open addressing: the collidi
ng item is placed in a differ
ent cell of the table 

 Linear probing: handles collisio
ns by placing the colliding item 
in the next (circularly) available 
table cell 

 Each table cell inspected is refe
rred to as a “probe” 

 Colliding items lump together, c
ausing future collisions to cause 
a longer sequence of probes 

 Example: 
 h(x) = x mod 13 
 Insert keys 18, 41, 2

2, 44, 59, 32, 31, 73, 
in this order 
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0 1 2 3 4 5 6 7 8 9 10 11 12 

    41     18 44 59 32 22 31 73   
0 1 2 3 4 5 6 7 8 9 10 11 12 



PERFORMANCE OF HASH TABLES VERSUS 
SORTED ARRAY AND BINARY SEARCH TREE 

 The number of comparisons required for a binary 
search of a sorted array is O(log n) 
 A sorted array of size 128 requires up to 7 probes (27 is 

128) which is more than for a hash table of any size 
that is 90% full 

 A binary search tree performs similarly 
 Insertion or removal  

 
 
    

 
hash table O(1) expected; worst case 

O(n) 
unsorted array O(n) 

binary search tree O(log n); worst case O(n) 



WHAT IS A TREE 

 
 Trees consists of nodes with a 

parent-child relation 
 

 Trees also provide a natural or
ganization for data,  
 Organization charts 
 File systems 
 Programming environment

s 
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In computer science, a tree is an abstract 
model of hierarchical structure  (a type of 
nonlinear data structure) 



TREE TERMINOLOGY 

 Root: node without parent (A) 
 Internal node: node with at least 

one child (A, B, C, F) 
 External node (a.k.a. leaf ): node 

without children (E, I, J, K, G, H, D) 
 Ancestors of a node: parent, 

grandparent, grand-grandparent, 
etc. 

 Descendant of a node: child, 
grandchild, grand-grandchild, etc. 

 Subtree: tree consisting of a node 
and its descendants 
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 organization of a fictitious corporation. 



TREE TERMINOLOGY CONT 

 Siblings: two nodes that are children of the same 
parent  

 Depth of a node: number of ancestors 
 Height of a tree: maximum depth of any node (3) 
 Edge: a pair of nodes (u,v) such that u is the parent 

of v, or vice versa.  
 Path: a sequence of nodes such that any two 

consecutive nodes in the sequence form an edge  
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BINARY TREES 

 A binary tree is a tree with the following 
properties: 
 Each internal node has at most two children (exactly 

two for proper binary trees) 
 The children of a node are an ordered pair 

 (Alternative recursive definition ) A set of nodes T 
is a binary tree if either of the following is true 
 T is empty  
 Its root node has two subtrees, TL and TR, such that TL 

and TR are binary trees 
    (TL = left subtree;  TR = right subtree) 
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TREE ADT 

 We use positions as an abstraction for a node of a tree 
 A position object for a tree supports the method:  

 getElement(): Returns the element stored at this position.  
 

 Accessor methods for navigating through positions of a tree T  
 root(): Returns the position of the root of the tree (or null if empty).  
 parent(p): Returns the position of the parent of position p (or null if p is 

the root).  
 children(p): Returns an iterable collection containing the children of 

position p (if any). 
 numChildren(p): Returns the number of children of position p.  
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TREE ADT CONT. 

 Query methods, which are often used with conditionals 
statements: 
 isInternal(p): Returns true if position p has at least one child.  
 isExternal(p): Returns true if position p does not have any children.  
 isRoot(p): Returns true if position p is the root of the tree.  

 General methods, unrelated to the specific structure of the tree:  
 size(): Returns the number of positions (and hence elements) that 

are contained in the tree.  
 isEmpty(): Returns true if the tree does not contain any positions 

(and thus no elements).  
 iterator(): Returns an iterator for all elements in the tree (so that 

the tree itself is Iterable).  
 positions(): Returns an iterable collection of all positions of the 

tree.  
 Additional update methods may be defined by data 

structures implementing the Tree ADT. (Discussed later) 
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A TREE INTERFACE IN JAVA  

Methods for a Tree interface: 
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Accessor 
methods  

Query 
methods 

General 
method
s 



COMPUTING DEPTH 

 Let p be a position within tree T. The depth of p is the 
number of ancestors of p, other than p itself.  

 The depth of p can also be recursively defined as 
follows:  
 If p is the root, then the depth of p is 0.  
 Otherwise, the depth of p is one plus the depth of the 

parent of p. 
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COMPUTING HEIGHT CONT 

© 2014 Goodrich, Tamassia, 
Goldwasser 

Trees 

85 

O(n) worst-case time 

 The overall height of a nonempty tree can be computed by sending the root of the 
tree as a parameter. 

 Assuming that children(p) executes in O(cp + 1) time, where cp 
denotes the number of children of p. Algorithm height(p) 
spends O(cp +1) time at each position p to compute the 
maximum, and its overall running time is  

O(∑p(cp +1)) = O(n+∑p cp).  
 Let T be a tree with n positions, and let cp denote the number of children of a 
position p of T. Then, summing over the positions of T, ∑pcp =n−1.  



BINARY TREES  
 A binary tree is an ordered tree with the following properties:  

 Every node has at most two children. 
 Each child node is labeled as being either a left child or a right 

child.  
 A left child precedes a right child in the order of children of a 

node.  
 The subtree rooted at a left or right child of an internal node v 

is called a left subtree or right subtree, respectively, of v. 
 A binary tree is proper (full) if each node has either zero or two 

children.  
 Every internal node has exactly two children.  

 A binary tree that is not proper is improper 
 Alternative recursive definition: a binary tree is either 

 a tree consisting of a single node, or 
 a tree whose root has an ordered pair of children, each of which is a 

binary tree 
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PROPERTIES OF PROPER BINARY TREES 

 Notation 
n number of nodes 
e number of externa

l nodes 
i number of internal 

nodes 
h height 
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Properties: 
 e = i + 1 
 n = 2e − 1 
 h ≤ i 
 h ≤ (n − 1)/2 
 e ≤ 2h 

 h ≥ log2 e 
 h ≥ log2 (n + 1) − 1 

 



EULER TOUR TRAVERSAL 

 Generic traversal of a binary tree 
 Includes a special cases the preorder, postorder and inorder traversals 
 Walk around the tree and visit each node three times: 

 on the left (preorder traversal) 
 from below (inorder traversal) 
 on the right (postorder traversal) 
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LINKED STRUCTURE FOR BINARY TREES  
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l inked structure, with a node that maintains references to the element 
stored at a position p and to the nodes associated with the children and 
parent of p. 



PERFORMANCE OF THE LINKED BINARY TREE IMPLEMENTATION  
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Running times for the methods of an n-node binary 
tree implemented with a linked structure. The space 
usage is O(n). dp is depth of node.  



ARRAY-BASED REPRESENTATION OF A BINARY TREE  

 Utilize the way of numbering 
the positions of T.  

 For every position p of T , let 
f(p) be the of integer defined 
as follows.  
 If p is the root of T, then f(p)=0. 
 If p is the left child of position 

q, then f(p) = 2f(q)+1.  
 If p is the right child of position 

q, then f(p) = 2f(q)+2.  
 f is known as level 

numbering of the positions 
in a binary tree T , for it 
numbers the positions on 
each level of T in increasing 
order from left to right.  
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ARRAY-BASED REPRESENTATION OF A BINARY TREE 2 
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an array-based structure A, with the 
element at position p of T stored at 
index f(p) of the array. 



PRIORITY QUEUE 

 Queue ADT is a collection of objects that are added and 
removed according to the first-in, first-out (FIFO) principle.  

 However, sometimes a FIFO policy does not suffice.  
 Ex> “first come, first serve” policy might seem reasonable, but 

other priorities also come into play.  
 A priority queue is a data structure for storing prioritized 

elements that allows arbitrary insertion, and allows the removal 
of the element that has first priority (minimal key). 

 Applications: 
 Standby flyers 
 Auctions 
 Stock market 
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PRIORITY QUEUE ADT 

 A priority queue stores a 
collection of entries 

 Each entry is a pair    
    (key, value) 
 Priority is stored in the key 

 Main methods 
 insert(k, v): inserts an entry with key k and value v 
 removeMin(): removes and returns the entry with smallest key, or 

null if the the priority queue is empty 
 Additional methods 

 min(): returns, but does not remove, an entry with smallest key, or 
null if the the priority queue is empty 

 size(), isEmpty() 
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SEQUENCE-BASED PRIORITY QUEUE 

 Implementation with an 
unsorted list 

 
 Performance: 

 insert takes O(1) time since 
we can insert the item at the 
beginning or end of the 
sequence 

 removeMin and min take 
O(n) time since we have to 
traverse the entire sequence 
to find the smallest key  

 Implementation with a 
sorted list 

 
 Performance: 

 insert takes O(n) time since 
we have to find the place 
where to insert the item 

 removeMin and min take 
O(1) time, since the smallest 
key is at the beginning 
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PRIORITY QUEUE SORTING “SCHEME” 

 We can use a priority queue to sort a list of comparable elements 
1. Insert the elements one by one with a series of insert operations 
2. Remove the elements in sorted order with a series of removeMin operations 

 The running time of this sorting method depends on the priority queue 
implementation 
 
 
 
 
 
 
 

 
 

 The pqSort scheme is the paradigm of several popular sorting algorithms, 
including selection-sort, insertion-sort, and heap-sort 
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HEAPS 
 A binary heap is a binary tree storing 

keys at its nodes and satisfying the 
following properties: 

 (min) Heap-Order: for every internal 
node v other than the root, 
key(v) ≥ key(parent(v))  

 Complete Binary Tree: let h be the 
height of the heap 
 for i = 0, … , h − 1, there are 2i nodes 

of depth i 
 at depth h − 1, the internal nodes are 

to the left of the external nodes 

 The last node of a heap is the 
rightmost node of maximum 
depth 
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HEIGHT OF A HEAP 

 Theorem: A heap T storing n entries has height h = ⌊log n⌋. 
 Proof: (we apply the complete binary tree property) 

 Let h be the height of a heap storing n keys 
 Since there are 2i keys at depth i = 0, … , h − 1 and at least one key at 

depth h, we have n ≥ 1 + 2 + 4 + … + 2h−1  + 1  

 Thus, n ≥ 2h , i.e., h ≤ log n 
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INSERTION INTO A HEAP 

 Method insert(k, v) of the 
priority queue ADT 
corresponds to the insertion 
of a key k to the heap 
 

 The insertion algorithm 
consists of three steps to 
maintain the complete binary 
tree property, 
 Find the insertion node z (the n

ew last node) 
 Store k at z 
 Restore the heap-order 

property 
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UPHEAP 

 After the insertion of a new key k, the heap-order property may be 
violated 

 Algorithm upheap restores the heap-order property by swapping k 
along an upward path from the insertion node 

 Upheap terminates when the key k reaches the root or a node 
whose parent has a key smaller than or equal to k  

 Since a heap has height O(log n), upheap runs in O(log n) time 
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REMOVAL FROM A HEAP 

 Method removeMin of the 
priority queue ADT 
corresponds to the removal 
of the root key from the 
heap 

 The removal algorithm 
consists of three steps 
 Replace the root key with the 

key of the last node w 
 Remove w  
 Restore the heap-order 

property (discussed next) 
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DOWNHEAP 

 After replacing the root key with the key k of the last node, the 
heap-order property may be violated 

 Algorithm downheap restores the heap-order property by swapping 
key k along a downward path from the root 

 Upheap terminates when key k reaches a leaf or a node whose 
children have keys greater than or equal to k  

 Since a heap has height O(log n), downheap runs in O(log n) time 
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UPDATING THE LAST NODE 

 The last node is the rightmost node at the bottom level of the tree, or 
as the leftmost position of a new level  

 The last node can be found by traversing a path of O(log n) nodes 
 Go up until a left child or the root is reached 
 If a left child is reached, go to the right child 
 Go down left until a leaf is reached 

 Similar algorithm for updating the last node after a removal 
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ARRAY-BASED HEAP IMPLEMENTATION 

 We can represent a heap with n keys by means of an array of length n  
 For the node at rank i 

 the left child is at rank 2i + 1 
 the right child is at rank 2i + 2 

 Links between nodes are not explicitly stored 
 Methods insert and removeMin depend on locating the last position of a h

eap (in heap of size n, the last position at index n−1.) 
 insert corresponds to inserting at rank n + 1 
 removeMin corresponds to removing at rank n 

 Space usage of an array-based representation of a complete binary 
tree with n nodes is O(n),  

 Time bounds of methods for adding or removing elements become 
amortized. (occasional resizing of array needed) 

 Yields in-place heap-sort 
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ANALYSIS OF A HEAP-BASED PRIORITY QUEUE 
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Assuming that two keys can be compared in O(1) time and 
that the heap T is implemented with an array-based or 
linked-based tree representation. 



BOTTOM-UP HEAP CONSTRUCTION  

 If we start with an initially empty heap, n successive calls 
to the insert operation will run in O(nlog n) time in the 
worst case.  

 However, if all n key-value pairs to be stored in the heap 
are given in advance, such as during the first phase of the 
heap-sort algorithm, there is an alternative bottom-up 
construction method that runs in O(n) time. 

 we describe this bottom-up heap construction assuming 
the number of keys, n, is an integer such that n = 2h+1 − 1.  
 That is, the heap is a complete binary tree with every level being 

full, so the heap has height h = log(n+1)−1.  
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MERGING TWO HEAPS 

 We are given two heaps and a 
key k 

 We create a new heap with the 
root node storing k and with the 
two heaps as subtrees 

 We perform downheap to restore 
the heap-order property  
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ANALYSIS 

 We visualize the worst-case time of a downheap with a proxy path 
that goes first right and then repeatedly goes left until the bottom 
of the heap (this path may differ from the actual downheap path) 

 Since each node is traversed by at most two proxy paths, the total 
number of nodes of the proxy paths is O(n)  

 Thus, bottom-up heap construction runs in O(n) time  
 Bottom-up heap construction is faster than n successive insertions 

and speeds up the first phase of heap-sort 
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ORDERED MAPS 

Keys are assumed to come from a total order. 
Items are stored in order by their keys 
This allows us to support nearest neighbor queries
: 

Item with largest key less than or equal to k 
Item with smallest key greater than or equal to k 
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BINARY SEARCH 

 Binary search can perform nearest neighbor queries on an ordered 
map that is implemented with an array, sorted by key 
 similar to the high-low children’s game 
 at each step, the number of candidate items is halved 
 terminates after O(log n) steps 

 Example: find(7) 
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BINARY SEARCH TREES 

 We define binary search tree 
as a proper binary tree 
storing keys (or key-value 
entries) at its internal nodes 
and satisfying the following 
property: 
 Let u, v, and w be three 

nodes such that u is in the 
left subtree of v and w is in 
the right subtree of v. We 
have  
key(u) ≤ key(v) ≤ key(w) 

 External nodes do not store 
items 
 We use the leaves as 

“placeholders” (sentinels) 
 Represented as null references 

in practice, 

 An inorder traversal of a 
binary search trees visits 
the keys in increasing 
order 
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ANALYSIS OF BINARY TREE SEARCHING 

 Algorithm TreeSearch is recursive and executes a 
constant number of primitive operations for each 
recursive call. 

© 2014 Goodrich, Tamassia, 
Goldwasser 

Binary Search Trees 

113 

We’ll talk about various 
strategies to maintain an 
upper bound of O(logn) on 
the height soon 

executes in 
time O(h) 



INSERTION 
 To perform operation put(k, o), we search for key k (using TreeSearch) 
 insertions, which always occur at a leaf). 
 Assume a proper binary tree supports the following update operation 

 expandExternal(p, e): Stores entry e at the external position p, and 
expands p to be internal, having two new leaves as children. 
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executes in 
time O(h) 



DELETION 

 Deleting an entry from a binary search tree might 
happen anywhere in the tree 

 To perform operation remove(k), we search for key k 
by calling TreeSearch(root( ), k) to find the position p 
storing an entry with key equal to k (if any). 
 If search returns an external node, then there is no entry to 

remove.  
 Otherwise, 

 at most one of the children of position p is internal, 
 Or position p has two internal children 
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DELETION CONT.  

 Deletion when at most one of the children of position 
p is internal.  
 Let position r be a child of p that is internal (or an arbitrary 

child, if both are leaves).  
 Remove p and the leaf that is r’s sibling, while promoting r 

upward to take the place of p. 
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executes in 
time O(h) 



DELETION CONT.  
 Deletion position p has two internal children 

 Locate position r containing the entry having the greatest key 
that is strictly less than that of position p (the rightmost internal 
position of the left subtree of position p) 

 Use r’s entry as a replacement for the one being deleted at 
position p. 

 Delete the node at position r from the tree. 
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executes in 
time O(h) 



PERFORMANCE OF A BINARY SEARCH TREE 

© 2014 Goodrich, Tamassia, 
Goldwasser 

Binary Search Trees 

118 

* subMap implementation can be shown to run in O(s+h) 
worst-case bound for a call that reports s results 



BALANCED SEARCH TREES 

 Augmenting a standard binary search tree with occasional 
operations to reshape the tree and reduce its height 
 Examples> AVL trees, splay trees, and red-black trees 

 The primary operation to rebalance a binary search tree is 
known as a rotation 
 allows the shape of a tree to be modified while maintaining the 

search-tree property. 
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“rotate” a child to be 
above its parent 

O(1) time with a 
linked binary tree 
representation 



TRINODE RESTRUCTURING. 

 Trinode restructuring is a compound rotation operations with 
the goal to restructure the subtree rooted at the grandparent z 
in order to reduce the overall path length to current node x and 
its subtrees. 
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EXAMPLE OF A TRINODE RESTRUCTURING OPERATION 1 
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EXAMPLE OF TRINODE RESTRUCTURING OPERATION 2 
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DEFINITION OF AN AVL TREE 

 Any binary search tree T that 
satisfies the height-balance 
property is said to be an AVL tree, 
named after the initials of its 
inventors: Adel’son-Vel’skii and 
Landis. 

 Height-Balance Property: For 
every internal position p of T, the 
heights of the children of p differ 
by at most 1. 
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PROPERTIES OF AVL TREE 

 height-balance property allows  
 subtree of an AVL tree is itself an AVL tree. 
 The height of an AVL tree storing n entries is O(logn). 
    (view 11.3 for the proof) 

 height-balance property characterizing AVL trees is 

equivalent to saying that every position is balanced.  
 Given a binary search tree T, we say that a position is 

balanced if the absolute value of the difference between 
the heights of its children is at most 1, 

 AVL tree  guarantees worst-case logarithmic running time 
for all the fundamental map operations 
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UPDATE OPERATIONS: INSERTION 

 The insertion and deletion operations  starts off with 
corresponding operations of (standard) binary search 
trees, but with post-processing for each operation to 
restore the balance 
 After insertion, the height-balance property may violated 
 Restructure T to fix any unbalance with a “search-and-repair” 

strategy.  

 Any ancestor of z that became temporarily unbalanced 
becomes balanced again, and this one restructuring 
restores the height-balance property globally. 
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before the insertion 

after an insertion in subtree T3 
causes imbalance at z 

after restoring balance with 
trinode restructuring 

• Let z be the first position we encounter 
in going up from p toward the root of T 
such that z is unbalanced  

• let y denote the child of z with greater 
height 

• let x be the child of y with greater 
height (there cannot be a tie) 

• Perform restructure(x) 



EXAMPLE OF INSERT 
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insertion of an entry with key 54 in the AVL tree 

after adding a new node for key 
54, the nodes storing keys 78 
and 44 become unbalanced; 

a trinode restructuring restores 
the height-balance 
property 



UPDATE OPERATIONS: DELETION 

 As with insertion, we use trinode restructuring to restore 
balance in the tree T after deletion.  

 let z be the first unbalanced position encountered going up 
from p toward the root of T,  

 let y be that child of z with greater height 
 let x be the child of y defined as follows: 

 if one of the children of y is taller than the other, let x be the taller child 
of y;  

 else (both children of y have the same height),  let x be the child of y on 
the same side as y  

 Run restructure(x) operation. 
 After rebalancing z, we continue walking up T looking for 

unbalanced positions 
 The height-balance property is guaranteed to be locally restored within 

the subtree of b but not globally.  
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EXAMPLE  
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Deletion of the entry with key 32 from the AVL tree 

after removing the node storing 
key 32, the root becomes 
unbalanced 

A trinode restructuring of x, y, 
and z restores the height-balance 
property. 



PERFORMANCE OF AVL TREES 

 the height of an AVL tree with n entries is guaranteed 
to be O(logn). 
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GRAPHS 
 A graph is a pair (V, E), where 

 V is a set of nodes, called vertices (aka nodes) 
 E is a collection of pairs of vertices, called edges (aka arcs) 
 Vertices and edges are positions and store elements 

 Example: 
 A vertex represents an airport and stores the three-letter airport 

code 
 An edge represents a flight route between two airports and stor

es the mileage of the route 
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ORD PVD 

MIA 
DFW 

SFO 

LAX 

LGA 

HNL 

 



EDGE TYPES 

 Directed edge 
 ordered pair of vertices (u,v) 
 first vertex u is the origin 
 second vertex v is the destination 
 e.g., a flight 

 Undirected edge 
 unordered pair of vertices (u,v) 
 e.g., a flight route 

 Directed graph 
 all the edges are directed 
 e.g., route network 

 Undirected graph 
 all the edges are undirected 
 e.g., flight network 

 Mixed graph : graph that has 
both directed and undirected 
edges 
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ORD PVD 
flight 
AA 1206 

ORD PVD 849 
miles 



TERMINOLOGY 

 End vertices (or endpoints) of an 
edge 
 U and V are the endpoints of a 

 Edges incident on a vertex 
 a, d, and b are incident on V 

 Adjacent vertices 
 U and V are adjacent 

 Degree of a vertex 
 deg(X)= 5;  X has degree 5  

 Parallel edges (multiple edges)  
 h and i are parallel edges 
 Edges are collections (not sets) 

 Self-loop 
 j is a self-loop 

 outgoing edges of a vertex:  
 directed edges whose origin is 

that vertex.  
 incoming edges of a vertex: 

 directed edges whose 
destination is that vertex.  

 in-degree  & out-degree of a vertex v  
 the number of the incoming and 

outgoing edges of v,  
 Denoted indeg(v) and outdeg(v) 
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TERMINOLOGY (CONT.) 

 Path 
 sequence of alternating 

vertices and edges  
 begins with a vertex 
 ends with a vertex 
 each edge is preceded and 

followed by its endpoints 
 Simple path 

 path such that all its vertices 
and edges are distinct 

 Examples 
 P1=(V,b,X,h,Z) is a simple path 
 P2=(U,c,W,e,X,g,Y,f,W,d,V) is a 

path that is not simple 

 Graphs are said to be simple if they 
do not have parallel edges or self-
loops 

 Most graphs are simple; we will 
assume that a graph is simple 
unless otherwise specified 
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TERMINOLOGY (CONT.) 

 Cycle 
 circular sequence of alternating 

vertices and edges  
 each edge is preceded and 

followed by its endpoints 
 Simple cycle 

 cycle such that all its vertices 
and edges are distinct, except 
for the first and the last 

 Examples 
 C1=(V,b,X,g,Y,f,W,c,U,a,↵) is a 

simple cycle 
 C2=(U,c,W,e,X,g,Y,f,W,d,V,a,↵) is 

a cycle that is not simple 
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TERMINOLOGY (CONT.) 

 Given vertices u and v of a 
(directed) graph G,  

 u reaches v, and that v is 
reachable from u, if G has 
a (directed) path from u to 
v.  

 reachability :  
 undirected graph 

reachability is symmetric, 
that is to say, u reaches v if 
an only if v reaches u. 

 directed graph reachability is 
asymmetric, it is possible 
that u reaches v but v does 
not reach u, 
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strongly connected subgraph a directed path 

subgraph of 
the vertices and 
edges reachable from 
ORD 

removal of the 
dashed edges results 
in a directed acyclic 
graph 
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SUBGRAPHS 

 A subgraph S of a graph G 
is a graph such that  
 The vertices of S are a subset 

of the vertices of G 
 The edges of S are a subset 

of the edges of G 

 A spanning subgraph of G is 
a subgraph that contains all 
the vertices of G 

Subgraph 

Spanning subgraph 
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CONNECTIVITY 

 A graph is connected if, 
for any two vertices, there 
is a path between them.  

 A directed graph G is 
strongly connected if for 
any two vertices u and v 
of G, u reaches v and v 
reaches u. 

 A connected component 
of a graph G is a 
maximal connected 
subgraph of G 
 

Connected graph 

Non connected graph with two 
connected components 
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TREES AND FORESTS 

 A (free) tree is an 
undirected graph T such 
that 
 T is connected 
 T has no cycles 
This definition of tree is 

different from the one of a 
rooted tree 

 A forest is an undirected 
graph without cycles 

 The connected 
components of a forest 
are trees 

Tree 

Forest 
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SPANNING TREES AND FORESTS 

 A spanning tree of a 
connected graph is a 
spanning subgraph that is a 
tree 

 A spanning tree is not unique 
unless the graph is a tree 

 A spanning forest of a graph 
is a spanning subgraph that 
is a forest 

Graph 

Spanning tree 



PROPERTIES 

Notation 
   n number of vertices 
   m number of edges 
deg(v) degree of vertex v 
 
 
 
 
 

Let G be an undirected graph  
 If G is connected, then m ≥ 

n−1. 
 If G is a tree, then m = n−1. 
 If G is a forest, then m ≤ n−1. 

Property 1: If G is a graph with m edges and 
vertex set V, then 

� 𝐝𝐝𝐝 𝒗
𝒗 𝐢𝐧 𝑽

= 𝟐𝟐 

Proof: each edge is counted twice 
Property 2: If G is a directed graph with m 

edges and vertex set V, then 

� 𝐢𝐢𝐝𝐝𝐝 𝒗
𝒗 𝐢𝐧 𝑽

= � 𝐨𝐨𝐨𝐝𝐝𝐝 𝒗
𝒗 𝐢𝐧 𝑽

= 𝒎 

 
Property 3: Let G be a simple graph with n 

vertices and m edges. If G is undirected, 
then 

  m ≤ n (n - 1)/2 

    Proof: each vertex has degree at most (n - 1) 
 

=> A simple graph with n vertices has O(n2) 
edges. 
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Example 
 n = 4 
 m = 6 
 deg(v) = 3 



DATA STRUCTURES FOR GRAPHS 

 In an edge list, we maintain an unordered list of all edges.  
 This minimally suffices, but there is no efficient way to locate a particular 

edge (u,v), or the set of all edges incident to a vertex v. 
 In an adjacency list, we additionally maintain, for each vertex, a 

separate list containing those edges that are incident to the vertex.  
 This organization allows us to more efficiently find all edges incident to a 

given vertex. 
 An adjacency map is similar to an adjacency list, but the secondary 

container of all edges incident to a vertex is organized as a map, 
rather than as a list, with the adjacent vertex serving as a key.  
 This allows more efficient access to a specific edge (u,v), for example, in O(1) 

expected time with hashing. 
 An adjacency matrix provides worst-case O(1) access to a specific 

edge (u,v) by maintaining an n×n matrix, for a graph with n vertices.  
 Each slot is dedicated to storing a reference to the edge (u,v) for a particular 

pair of vertices u and v; if no such edge exists, the slot will store null. 
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PERFORMANCE OF THE EDGE LIST STRUCTURE 
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space usage is O(n+m) 

Exhaustive 
inspection of 
all edges 
needed. 

when a vertex v is 
removed from the 
graph, all edges 
incident to v must 
also be removed 



PERFORMANCE OF THE ADJACENCY LIST STRUCTURE 
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adjacency list Iout(v) assuming that the primary collection V and E, 
and all secondary collections I(v) are 
implemented with doubly linked lists. 

using O(n+m) space 

based on use 
of I(v). 

search through 
either I(u) or 
I(v) 



DATA STRUCTURES FOR GRAPHS: ADJACENCY MATRIX 
 adjacency matrix A allows us to locate an edge 

between a given pair of vertices in worst-case 
O(1) time. 

 cell A[i][ j] holds a reference to the edge (u,v), 
if it exists, where u is the vertex with index i 
and v is the vertex with index j  

 Edge list structure 
 Augmented vertex objects 

 Integer key (index) associated with vertex 
 2D-array adjacency array 

 Reference to edge object for adjacent verti
ces 

 Null for non nonadjacent vertices 
 The “old fashioned” version just has 0 for no e

dge and 1 for edge 
 

Graphs 

145 

O(n2) space usage 



PERFORMANCE: SIMPLE GRAPH  

Graphs 
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adjacency matrix uses O(n2) space, while all other structures use 
O(n+m) space 



GRAPH TRAVERSAL 

 A traversal is a systematic procedure for exploring a 
graph by examining all of its vertices and edges. 

 A traversal is efficient if it visits all the vertices and 
edges in time proportional to their number, that is, in 
linear time. 

 We will look at two efficient graph traversal algorithms 
 depth-first search (DFS) 
 breadth-first search (BFS) 
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Example of a Depth-First Search 
(cont.) 

0 visited 0 being visited 0 unvisited 

0 

1 
2 

3 4 5 6 

Mark 0 as visited 

Finish order: 
4, 3, 1, 6, 5, 2, 0 

Discovery (Visit) order: 
0, 1, 3, 4, 2, 5, 6, 0 



Breadth-First 
Search 
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Breadth-First Search 
 A BFS traversal of a 

graph G  
 Visits all the vertices and 

edges of G 
 Determines whether G is 

connected 
 Computes the connected 

components of G 
 Computes a spanning 

forest of G 

 BFS on a graph with n 
vertices and m edges 
takes O(n + m ) time 

 BFS can be further 
extended to solve other 
graph problems 
 Find and report a path 

with the minimum number 
of edges between two 
given vertices  

 Find a simple cycle, if 
there is one 



Example of a Breadth-First Search 
(cont.) 

The queue is 
empty; all vertices 
have been visited 

Visit sequence: 
0, 1, 3, 2, 4, 6, 7, 8, 9, 5 

Queue: 

0 visited 0 identified 0 unvisited 

0 

2 

3 1 

9 8 

4 

7 

6 

5 
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Breadth-First Search Properties 

Notation 
Gs: connected component of s 

Property 1 
 BFS(G, s) visits all the vertices and 

edges of Gs  
Property 2 
 The discovery edges labeled by 

BFS(G, s) form a spanning tree Ts of 
Gs 

Property 3 
 For each vertex v in Li 

 The path of  Ts from s to v has i 
edges  

 Every path from s to v in Gs has at 
least i edges 

C B 

A 

E 

D 

L0 

L1 

F 
L2 

C B 

A 

E 

D 

F 
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SORTING ALGORITHMS 



COMPARISON-BASED SORTING 

 Many sorting algorithms are comparison based. 
 They sort by making comparisons between pairs of objects 
 Examples: selection-sort, insertion-sort, heap-sort, merge-sort, 

quick-sort, ... 
 Let us therefore derive a lower bound on the running 

time of any algorithm that uses comparisons to sort n 
elements, x1, x2, …, xn. 
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Is xi < xj? 

yes 

no 

 



COUNTING COMPARISONS 

 Let us just count comparisons then. 
 Each possible run of the algorithm corresponds to 

a root-to-leaf path in a decision tree 

Sorting Lower Bound 

154 

xi < xj ?

xa < xb ?

xm < xo ? xp < xq ?xe < xf ? xk < xl ?

xc < xd ?

 



THE LOWER BOUND 

 Any comparison-based sorting algorithms takes at 
least log (n!) time 

 Therefore, any such algorithm takes time at least 
 
 
 
 
 

 That is, any comparison-based sorting algorithm must 
run in Ω(n log n) lower bound on its running time. 
 

Sorting Lower Bound 

155 

).2/(log)2/(
2

log)!(log
2

nnnn
n

=





≥



INSERTION-SORT ALGORITHM (IN-PLACE INSERTION-SORT) 

© 2014 Goodrich, Tamassia, Goldwasser 

156 

The algorithm proceeds by considering one element at 
a time, placing the element in the correct order relative 
to those before it. 
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INSERTION-SORT 

 Insertion-sort is the variation of PQ-sort where the 
priority queue is implemented with a sorted 
sequence 

 Running time of Insertion-sort: 
1. Inserting the elements into the priority queue with n insert 

operations takes time proportional to 
 
 

2. Removing the elements in sorted order from the priority 
queue with  a series of n removeMin operations takes O(n) 
time 

 Insertion-sort runs in O(n2) time  
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SELECTION-SORT 

 Selection-sort is the variation of PQ-sort where the 
priority queue is implemented with an unsorted 
sequence 

 Running time of Selection-sort: 
1. Inserting the elements into the priority queue with n insert 

operations takes O(n) time 
2. Removing the elements in sorted order from the priority queue 

with n removeMin operations takes time proportional to 
 
 

 
 

  Selection-sort runs in O(n2) time  
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HEAP SORT 

 Consider the pqSort scheme, this time using a heap-
based implementation of the priority queue 

 Phase 1: insert all data into heap:  
 takes O(nlog n) time. (Could be improved to O(n) with 

bottom-up construction) 
 Phase 2: removeMin all data in the heap  

 j th removeMin operation runs in O(log(n− j+1)), since the 
heap has n− j+1 entries at the time the operation 

 Summing over all j, this phase takes O(nlog n) time 
 Overall: The heap-sort algorithm sorts a sequence S of 

n elements in O(nlog n) time, assuming two elements 
of S can be compared in O(1) time. 
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MERGE-SORT 

 Merge-sort on an input 
sequence S with n elements 
consists of three steps: 
 Divide: If S has zero or one element, 

return S. Otherwise partition S into 
two sequences S1 and S2 of about 
n/2 elements each 

 Conquer: recursively sort S1 and S2 

 Combine: merge sorted S1 and 
sorted S2 into a unique sorted 
sequence 

Algorithm mergeSort(S) 
 Input sequence S with n    
  elements  
 Output sequence S sorted 

 according to C 
if S.size() > 1 
 (S1, S2) ← partition(S, n/2)  
 mergeSort(S1) 
 mergeSort(S2) 
 S ← merge(S1, S2) 



Merge Sort 

162 

MERGING TWO SORTED SEQUENCES 

 The conquer step of 
merge-sort consists of 
merging two sorted 
sequences A and B into a 
sorted sequence S 
containing the union of the 
elements of A and B 

 Merging two sorted 
sequences, each with n/2 
elements and implemented 
by means of a doubly 
linked list, takes O(n) time 

Algorithm merge(A, B) 
 Input sequences A and B with 
   n/2 elements each  
 Output sorted sequence of A ∪ B 

 

S ← empty sequence 
while ¬A.isEmpty()  ∧ ¬B.isEmpty() 
 if A.first().element() < B.first().element() 
  S.addLast(A.remove(A.first())) 
 else 
  S.addLast(B.remove(B.first())) 
while ¬A.isEmpty() 
 S.addLast(A.remove(A.first())) 
while ¬B.isEmpty() 
 S.addLast(B.remove(B.first())) 
return S 
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MERGE-SORT TREE 
 An execution of merge-sort is depicted by a binary tree 

T, called the merge-sort tree  
 Each node represents a recursive call of merge-sort and stores 

 unsorted sequence before the execution and its partition 
 sorted sequence at the end of the execution 

 the root is the initial call  
 the leaves are calls on subsequences of size 0 or 1 

7  2  9  4  →  2  4  7  9 

7  2  →  2  7 9  4  →  4  9 

7 → 7 2 → 2 9 → 9 4 → 4 
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EXECUTION EXAMPLE (CONT.) 

 Merge 

 7  2  9  4 →  2  4  7  9 3  8  6  1  →  1  3  6  8 

7  2 → 2  7 9  4  →  4  9 3  8  →  3  8 6  1  →  1  6 

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1 

7  2  9  4  3  8  6  1  →  1  2  3  4  6  7  8  9 



ARRAY-BASED IMPLEMENTATION OF MERGE-SORT 1 
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ARRAY-BASED IMPLEMENTATION OF MERGE-SORT 2 

Divide-and-Conquer 
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A step in the merge of two sorted arrays for which S2[ j] < S1[i]. 

indices i &j  
represents the 
number of 
elements of S1 & 
S2 that have 
been copied to S 
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ANALYSIS OF MERGE-SORT 

 The height h of the merge-
sort tree is O(log n)  
 at each recursive call we 

divide in half the sequence,  

 The overall work done at 
the nodes of depth i is O(n)  
 we partition and merge 2i 

sequences of size n/2i  
 we make 2i+1 recursive calls 

 Thus, the total running 
time of merge-sort is 
O(nlog n) 



Quick-Sort 

168 

QUICK-SORT 

 Quick-sort is a randomized 
sorting algorithm based on the 
divide-and-conquer paradigm: 
 Divide: pick a random element x 

(called pivot) and partition S into  
 L elements less than x 
 E elements equal x 
 G elements greater than x 

 Conquer: Recursively sort L and G 
 Combine: join L, E and G 
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PARTITION 

 We partition an input sequence as 
follows: 
 We remove, in turn, each element 

y from S and  
 We insert y into L, E or G, 

depending on the result of the 
comparison with the pivot x 

 Each insertion and removal is at 
the beginning or at the end of a 
sequence, and hence takes O(1) 
time 

 Thus, the partition step of quick-
sort takes O(n) time 

Algorithm partition(S, p) 
 Input sequence S, position p of pivot  
 Output subsequences L, E, G of the  
  elements of S less than, equal to, 
  or greater than the pivot, resp. 
 L, E, G ← empty sequences 

x ← S.remove(p)  
while ¬S.isEmpty() 
 y ← S.remove(S.first()) 
 if y < x 
  L.addLast(y) 
 else if y = x 
   E.addLast(y) 
 else { y > x } 
  G.addLast(y) 
return L, E, G 
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QUICK-SORT TREE 
 An execution of quick-sort is depicted by a binary tree called 

quick-sort tree. 
 Each node represents a recursive call of quick-sort and stores 

 Unsorted sequence before the execution and its pivot 
 Sorted sequence at the end of the execution 

 The root is the initial call  
 The leaves are calls on subsequences of size 0 or 1 
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EXECUTION EXAMPLE (CONT.) 

 Join, join 

7  9  7   →  17  7  9 

7  2  9  4  3  7  6  1  → 1  2  3  4  6  7  7  9 

2  4  3  1  →  1  2  3  4 

1 → 1 4  3  →  3  4 

4 → 4 

9 → 9 
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WORST-CASE RUNNING TIME 
 The worst case for quick-sort occurs when the pivot is the unique minim

um or maximum element 
 One of L and G has size n − 1 and the other has size 0 
 The running time is proportional to the sum 

n + (n − 1) + … + 2 + 1 
 Thus, the worst-case running time of quick-sort is O(n2) 

depth time 

0 n 

1 n − 1 

… … 

n − 1 1 



LINEAR TIME SORTING 

 We showed that the lower bound of sorting with  
comparison is  Ω (nlog n) time.  

 Can we do better?  Yes, with special assumptions 
about the input sequence to be sorted. 

 We will consider the problem of sorting a sequence of 
entries, each a key-value pair, where the keys have a 
restricted type 
 Bucket-Sort 
 Radix-Sort 

Bucket-Sort and Radix-Sort 
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BUCKET-SORT 

 Let be S be a sequence of n (key, element) entries with integer keys in the 
range [0, N-1], for some integer N≥2, 

 Bucket-sort uses the keys as indices into an auxiliary array B of size N 
(buckets) 
Phase 1: Empty sequence S by moving each entry (k, o) into its bucket B[k] 
Phase 2: For i = 0, …, N - 1, move the entries of bucket B[i] to the end of  sequence 

S 
 Analysis: 

 Phase 1 takes O(n) time 
 Phase 2 takes O(n + N) time 

 Bucket-sort takes O(n + N) time  
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EXAMPLE 

 Key range [0, 9] 

Bucket-Sort and Radix-Sort 
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7, d 1, c 3, a 7, g 3, b 7, e 

1, c 3, a 3, b 7, d 7, g 7, e 

Phase 1 

Phase 2 
0 1 2 3 4 5 6 7 8 9 

B 

1, c 7, d 7, g 3, b 3, a 7, e 

∅ ∅ ∅ ∅ ∅ ∅ ∅ 



PROPERTIES AND EXTENSIONS 

 Key-type Property 
 The keys are used as indices 

into an array and cannot be 
arbitrary objects 

 No external comparator 

 Stable Sort Property 
 The relative order of any two 

items with the same key is 
preserved after the execution 
of the algorithm 
 

 Extensions 
 Integer keys in the range [a, 

b] 
 Put entry (k, o) into bucket 

B[k − a]  
 String keys from a set D of 

possible strings, where D has 
constant size (e.g., names of 
the 50 U.S. states) 
 Sort D and compute the rank 

r(k) of each string k of D in 
the sorted sequence  

 Put entry (k, o) into bucket  
B[r(k)] 

Bucket-Sort and Radix-Sort 
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STABLE SORTING 

 When sorting key-value pairs, an important issue is 
how equal keys are handled. Let S = ((k0,v0), . . . , (kn-

1,vn-1)) be a sequence of such entries.  
 We say that a sorting algorithm is stable if, for any two 

entries (ki,vi) and (kj ,vj) of S such that ki = kj and (ki,vi) 
precedes (kj ,vj) in S before sorting (that is, i < j), entry 
(ki,vi) also precedes entry (kj ,vj) after sorting.  

 Stability is important for a sorting algorithm because 
applications may want to preserve the initial order of 
elements with the same key. 

 Bucket-sort guarantees stability as long as we ensure 
that all sequences act as queues 

Bucket-Sort and Radix-Sort 
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RADIX-SORT 

 Radix-sort is a specialization of 
lexicographic-sort that uses 
bucket-sort as the stable sorting 
algorithm in each dimension 

 Radix-sort is applicable to tuples 
where the keys in each dimension 
i are integers in the range [0, N − 
1] 

 Radix-sort runs in time O(d(n+N)) 
where the d is the dimension of 
keys, n is the number of data, and 
keys range is [0…N-1]   

Bucket-Sort and Radix-Sort 
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Algorithm radixSort(S, N) 
 Input sequence S of  d-tuples such 
  that (0, …, 0) ≤ (x1, …, xd) and 
  (x1, …, xd) ≤ (N − 1, …, N − 1) 
  for each tuple (x1, …, xd) in S  
 Output sequence S sorted in 
  lexicographic order 
 for i ← d downto 1 

 bucketSort(S, N) 
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SUMMARY OF SORTING ALGORITHMS 
Algorithm Time Notes 

selection-sort O(n2) 
 in-place 
 slow (good for small inputs) 

insertion-sort O(n2)  in-place 
 slow (good for small inputs) 

quick-sort 
O(n log n) 
expected 

 in-place, randomized 
 fastest (good for large inputs) 

heap-sort O(n log n) 
 in-place 
 fast (good for large inputs) 

merge-sort O(n log n) 
 sequential data access 
 fast  (good for huge inputs) 

bucket-sort O(n+N)  integer keys of range [0 … N]  

radix-sort O(d(n+N))  d integer keys of range [0 … N]  

What would work best when the set is already sorted or almost sorted? 
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