Lemma: \(CBC^E \) and \(CBC^P \) are indistinguishable.

Proof:

So, \(CBC^E \) and \(CBC^P \) as \(E \) and \(P \) are distinct.

By some argument as before, \(CBC^E \) and \(CBC^P \) are indistinguishable.

Lemma: \(CBC^E \) and \(CBC^P \) are indistinguishable if \(E \) is a \((+q, E)\) PRP.

Proof: Suppose \(A \) can distinguish \(CBC^E \) and \(CBC^P \). Then, \(B^E = A^{cbc^E} \) can distinguish \(E \) and \(P \), running time of \(B^E \) is \(t \) running time of \(A + cbc \) operations.

Then: \(CBC^E \) is \((+q, E)\) \(R\)-or-\(R\) secure if \(E \) is \((+q, E)\) \(R\)-or-\(R\) secure.

Proof: \(CBC^E \) is \((+q, E)\) \(R\)-or-\(R\) secure if \(E \) is \((+q, E)\) \(R\)-or-\(R\) secure.

Alternative Definitions of Security:

Def.: \(T_i(x_i) = x_i \)

Def.: (Left Right (LR) security) \(E \) is \((+q, E)\) LR secure if

\[\text{Ex o T}_0 \rightarrow \text{Ex o T}_1 \]

Thm: \(E \) is \((+q, E)\) \(R\)-or-\(R\) secure iff \(E \) is \((+q, E)\) LR secure.

Queries must be for pairs of equal length.
Proof: \(LR \Rightarrow R-or-R \) (by contrapositive)

Suppose \(A \) can \((+q, E)\) \(R-or-R \) break \(E \).

Then let \(B E \to \nu_i = A E \to \nu_i \circ (\cdot, g(\cdot)) \).

\[
\begin{array}{c}
\text{B} \\
\downarrow \\
\text{A} \\
\end{array}
\begin{array}{c}
\rightarrow \nu_i \\
\rightarrow E \\
\end{array}
\]

\(E \to \nu_i \circ (\cdot, g(\cdot)) = E \) \quad \(E \to \nu_i = E \cdot g \)

So, \(B \) can \((+O(g), q, E)\) \(LR \) break \(E \).

\(R-or-R \Rightarrow LR \) (direct proof)

\[(\text{type} E) R-or-R \Rightarrow E \xrightarrow{g} E \cdot \nu_i \]

\[E \to \nu_i \circ g = E \cdot \nu_i \circ \nu_i \] \quad \text{if } |m_a| = |m_i|

and \(E \to \nu_i \circ \nu_i \)

If \(A \) distinguishes \(E \to \nu_i \) and \(E \to \nu_i \circ \nu_i \)

\[
\begin{array}{c}
\text{B} \\
\downarrow \\
\text{A} \\
\end{array}
\begin{array}{c}
\rightarrow \nu_i \\
\rightarrow E \\
\end{array}
\]

A is good at telling \(E \) and \(E \cdot \nu_i \) apart.

\[E \cdot \nu_i \circ \nu_i = E \cdot \nu_i \circ \nu_i \] \quad \text{if } |m_a| = |m_i|

By transitivity, \(E \to \nu_i \xrightarrow{g} E \cdot \nu_i \).
Semantic Security

Oracle $E_K \circ S_b$

$S_b(M)$

$m \leftarrow M$

$m' \leftarrow M$

(return $T_b(m, m')$)

$Adv_A = \left| Pr[A^{E_K S_b} = (f, f(m, m_2, \ldots, m_g))] - Pr[A^{E_K S_b} = (f, f(m, m_2, \ldots, m_g))] \right|$

given ciphertext & messages

given garbage

Then Semantic Security is equivalent to LR security

Proof Semantic \Rightarrow LR (by contrapositive)

turn each single query into two