Name: _____________________________________

SID: _____________________________________

- You may not use any reference materials during this exam.
- Electronic devices, including calculators, cell phones, mp3 players, and laptops are all prohibited.
- You may not use your own scratch paper. The exam has plenty and you can ask for more if needed.
- You may not leave the classroom once the exam has been distributed.
- Communicating with other students in any way is prohibited.

Academic Honesty: I understand that if I cheat on this exam in any way, I will receive the maximum possible penalty, including an F in this course.

Signature: _____________________________________

<table>
<thead>
<tr>
<th>Problem</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>/10</td>
</tr>
<tr>
<td>2</td>
<td>/10</td>
</tr>
<tr>
<td>3</td>
<td>/20</td>
</tr>
<tr>
<td>4</td>
<td>/15</td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>
1 Finding the k smallest elements

(10 points) Write a deterministic algorithm that, given an array, A, of n items, returns an array B, of the k smallest items in A. The items in B do not need to be sorted. What is the asymptotic running time of your algorithm? You may use any algorithm discussed in class as a sub-routine.
2 Root finding

(10 points) Suppose \(f(n) \) is a monotonically increasing function on the positive integers. Give an algorithm to find the smallest integer \(x \) such that \(f(x) > 0 \). Your algorithm should run in \(O(\log x) \) time.
3 Randomized matrix equality testing

Suppose you are given three $n \times n$ matrices, A, B, and C, and you want to test whether $AB = C$.

- (5 points) Suppose v is a vector whose entries are each 0 or 1 with probability $1/2$. Prove that, if M is any non-zero $n \times n$ matrix, then $\Pr[Mv = 0] \leq 1/2$.

- (5 points) Prove that if $AB \neq C$, then for a random vector v as above, $\Pr[ABv = Cv] \leq 1/2$.

- (5 points) Give a randomized algorithm for determining whether $AB = C$. Your algorithm may have a small error probability (i.e. it may occasionally say that $AB = C$ even though they are not equal). However, your algorithm should output the correct answer w.h.p.

- (5 points) What is the running time of your algorithm.
This page intentionally left blank.
4 Linear probing

Many hash table implementations store items in the slots of the table, as shown in the following code:

```
insert(x)
  i = hash(x);
  while A[i].occupied
    i = i + 1;
  A[i].occupied = true;
  A[i].value = x;
```

- (5 points) Write the code for the lookup function.
- (10 points) Prove that inserts and lookups run in $O(\log n)$ time w.h.p.