Security
- People breaking into systems
- Crypto
- Privilege
- Privacy
- Trust
- Authentication
- Denial of Service

Confidentiality
- People breaking into systems
- Crypto
- Privacy
- Eavesdropper can’t read mail
- Man-in-the-middle attacks
 - Truck company hijacked website of real truck company, criminals would make a deal to ship stuff, then they would pass it off to the real trucking company for a lower price, or sometimes they just took the money and ran.
- Message recipient secrecy/anonymity
- Timing information

Integrity
- People breaking into systems
- Crypto
- Client Information
- Pricing Info
 - Lower price of amazon.com’s Ipod to $1.
- Contents of RAM, Cookies
- Password
- User Database
 - Remote attacker’s possible first target to gain some local access to machine

Availability
- Denial of Service
- Website availability
- I/O
Integrity and Confidentiality are generally intertwined. If someone can change a key the Confidentiality is gone. If someone can recover a secret key, Integrity is gone. If you lose Confidentiality you might lose Integrity. Availability is a weaker goal because you generally don’t lose confidentiality or Integrity when you lose availability.

Security
Adversary/Enemy

Threat Models- describe capabilities and Limitations of the Adversary.

Adversary has limited CPU time
2^{32} instructions per second
2^{20} computers
Gives the hacker 2^{75} instructions per year

Local Vs Remote

- Generally initial set of privileges
 - Remote: can sent packets to victim system
 - Local: login
 - Run unprivileged arbitrary code
 - Can act as remote if desired for some reason

Bandwidth

- 56 KB/s in the old days
- botnet of 100k machines(at 56 KB/s)
 - 5.6 GB/s

Time limits: Ex: message “attack at dawn” if message is received by enemy after dawn it is useless.

Physics: Ex:
Quantum Crypto.
Devices that could verify that other device it was talking to is near by. This could be done by determining how long it takes for a message to travel between points (Round Trip Time)
Propagation Delay/Limits

Scale of adversary’s investment vs Value of system
If secret is worth $1 million, you won’t spend more than that to protect it, and they won’t spend more than that to get it (if they know the value beforehand).

Knowledge
- Generally underestimated
- Should assume knowledge of:
 - Hardware Configuration
 - OS Configuration
 - Source code
 - Password length
 - Open ports
 - Etc
- Should assume unknown:
 - Password
 - Secret keys
 - Random numbers

(Talking about publishing a paper about vulnerabilities in locks)
Benefits of publishing vulnerabilities (Full Disclosure)
- Manufacturers build better locks
- Fix bugs
- User can mitigate risks
- Users can buy different locks
- No back doors
- May deter attackers because knowledge is known (probably not)

Benefits of non-disclosure
- Give the manufacturers time to fix the problem before it is known
- Prevent exploitation of the bug
- Prevent script kiddies
- Preserve image of manufacturers
- “Ignorance is Bliss” - the users feel safer

Trust
- Trust == Dependence
- If we trust X and X fails, then attacker wins
- Example: Apache webserver on a linux machine
- Must Trust:
 - Disk (htaccess files)
 - developers
 - Keyboard
developers
 o Apache binary
 ▪ Apache developers
 o Cables
 o Trust OS to not let apache do things it shouldn’t
 ▪ OS developers
 o Users?
 o Certificate Authority (CA)
 o Cryptography
 ▪ Cryptographers
 o CPU
 o RAM
 o Compiler
 o Admin
 o ISP

• Transitive trust, if you trust Admin and Admin trusts Apache then you trust apache, and apache trusts X then you trust X etc.
• Mitigate disk trust by using check summing, mirroring (put data on 2 drives, to make sure that one company isn’t modifying the data.
• Trusted Computing Base (TCB)

We import a lot of parts, and trust them with no real “reason” to.