Side Channel Attacks
- Timing
- Power
- Sound
- Light

- Usability and Security
 - Depending on Users
 - Role playing

- Modular Exponentiation

```
ModExp(m,e,n)  // M^e mod n
  Let e_l ... e_0 = e  // the bits of e
  Let acc = 1
  For i=0 … l
    if e_i = 1
      acc = acc*m mod n
      m = m^2 mod n
  return acc;
```

\[
m^e \mod n = m^{(2^0*e_0 + 2^1*e_1 + 2^2*e_2 + ... + 2^l*e_l)} \mod n
= m^{e_0} * (m^2)^{e_1} * (m^4)^{e_2} * (m^{(2^l)})^{e_l} \mod n
\]

- Power Analysis (smart cards)
- timing attack against square and multiply
 some reductions take longer than others
 - fast reductions
 - slow reductions
 - if attackers knows acc*m, he can predict whether reduction is fast or slow

attacker input \(m_0 \) \(m_1 \) \(m_2 \) \(m_3 \) \(\ldots \) \(m_k \)
time \(t_0 \) \(t_1 \) \(t_2 \) \(t_3 \) \(\ldots \) \(t_k \)

suppose \(e_0 = 1 \)
- can compute
 - acc and \(m \) at end of round 0
- predict whether end of round 1 will be fast or slow for each message \(m_i \)
- let
 - \(f \) = average time of "fast" messages
 - \(s \) = average time of "slow" messages

- two cases
 - \(| s_1 - f_1 | \) is small and \(| s_0 - f_0 | \) is small
 \(\Rightarrow e_1 = 0 \)
 - suppose \(| s_b - f_b | \) is large and \(| s(-b) - f(-b) | \) is small
 \(\Rightarrow e_1 = 1 \) and \(e_0 = b \)

repeat for round 2, \(\ldots \), \(l \)

- defense
 - for \(i=0 \) \(\ldots \) \(l \)
 - if \(e_i = 1 \)
 \[\text{acc} = \text{acc} \times m \mod n \]
 - else
 \[\text{tmp} = \text{acc} \times m \mod n \]
 \[m = m^2 \mod n \]
- RSA binding
to compute $m^e \mod n$
 o pick random r
 o compute $x = (rm)^e \mod n$
 o compute $y = r^e \mod n$
 o return $x/y \mod n$