Electronic Voting (Cont.)

Attacks:
- Multiple voting
 - Forged authorization card ➔ No secret keys; easy to do
- Forged Election description
 - Candidate shuffleing
 - Confusion attack
- Denial of Service ➔ forged admin/ender cards
 - Pin # is stored in the card
 - No information log
- Votes transmitted with no authentication
- De-anonymize vote via storage
Cryptanalysis of RFID devices

Authentication Protocol:

\[
\text{Fob} \quad k \quad \text{C} \quad \text{Car} \quad k \\
\text{R} = \text{E}(k, C) \quad \text{OK if} \quad \text{R} = \text{E}(k, C)
\]

For Power:
Reader & RFID should be few cm. apart

For information:
Reader & RFID can be few meters apart

RFID types:
1. Cryptographic
2. Barcode

Barcode:

![Barcode Diagram](barcode_diagram.png)

Applications:
- Retail
- Libraries
- Passports

Main concern: privacy
- Thieves prescan houses via RFID on goods inside
- Obtain patron’s reading book
- Identity theft
- Target screening

Defense:
- Authenticate readers
- Faraday cages
- Remove tags
- Disable tags

From the paper(reading):

Attacks:

1. Reverse engineering E
2. Build a key cracker
 1. given a Fob, V, query V on challenges, C_1 & C_2, and obtain response R_1 & R_2.

 $R_1 = E(k, C_1)$
 $R_2 = E(k, C_2)$
 2. for each possible k:
 if $E(k, C_1) = R_1$ & if $E(k, C_2) = R_2$
 output k