What is security?
- restriction from unauthorized access
 - manipulate/use
 - safety / non-malicious
 - integrity (can’t change data)
 - availability (for authorized users)
 - denial of service
 - confidentiality (can’t read data)

- Confidentiality
 - attacker can’t read password/credit card over network
 - thieves can’t read data from a stolen laptop
 - hide process time/CPU usage/ram usage
 - hide the fact that you communicated at all
 - anonymity/privacy

- Integrity
 - only authorized users can modify file/database
 - only authorized users can modify process memory
 - only authorized users can detect DB violation constraints
 - execute/file access permissions
 - attacker can’t modify messages in transit
 - only accept unmodified messages from Bob
• **Availability**
 - attacker can’t deny users access to amazon.com
 - attacker can’t use my CPU time, disk, printer, RAM, etc.
 - attacker can’t use/drain power

Security (Adversary) vs. Reliability
- adversary: faults can occur in worst possible combination
- reliability: faults are random/independent

Threat Model: defines the capabilities, limitations, and possible goals of an attacker

- computation
 - 1 pentium —— 2^{32} cycles/second
 - super computer —— 2^{16} CPUs
 - = 2^{48} cycles/sec
 - one year —— 2^{25} seconds/year
 - = 2^{73} cycles/year
 - 100 years —— 2^{7} years
 - (with no increase in computational power)
 - = 2^{80} cycles/100-years

AES: 128-bit key

$Pr[success] = 2^{-48}$

- **bandwidth**
 - DOS amazon.com
 - Assume the attacker has
 - one dialup connection
 - one million other users' desktops with DSL

On today's internet, attacker can have mucho bandwidth
- **time** "attack at dawn"

- **money** if a message is worth $1m, the attacker will only spend < $1m to break it

- **expertise** e.g. script kiddies

- **knowledge**
 - hardware configuration
 - OS version
 - application versions
 - configuration info
 - don't know
 - password
 - random number generator output

- **Local vs. Remote**
 - local: attacker has account on system
 - remote: attack over network

- **Active vs. Passive**
 - active: may send, modify, or suppress messages
 - passive: listens to messages (harder to catch)

Defender

Goals

Attacker

Capabilities

"Threat model"

email 2 page paper reviews (plain text in body)

rtjohnson509c @ cs