OS Basics for Security

- Goals: restrict access to register, RAM & limit processing time.
- How to restrict access to memory:
 o Segment Register
 1. 0 to 1000 process A and 1000 to 2000 process P
 2. Real CPU don’t work this way
 o We use virtual memory: TLB – virtual address table (translation look aide buffer)
 1. Address are divided to 2 parts, first part address translated, 2nd is offset
 2. 32 bit address 20—which page || 12 which offset of the page
 3. The offset have to account for the page size, \(4^{12} = 4096\) (average page size)
- How to load OS into the virtual memory at boot time
 o OS has access to all of memory
 o At start x86 machines start in real mode – no TLB: has access to all memory as physical address
 o TLB set to default entries
 o Address entries for itself in the TLB
 o Switch into “Protected Mode”
- TLB manipulation is privileged
 o Privileged register indicate if TLB instructions and Interrupt Handler instructions are allowed.
 o OS has privilege ==1.
 o OS can set privilege =0;
- How to run an Application
 o Idea 1
 1. Clear all entries from TLB
 2. Add current application entries to the TLB
 3. Set clock interrupt 100 mil second
 4. Set Privileged bit = 0
 o Interrupt restore private bit = 1
 o Ok loads few entries in TLB for its reload
 • Support for read only page for the OS is needed, so application can’t change it
 o In real systems PID is used and every application is in the TLB as well as the OS
 o OS can’t be read or access by applications.
 o Applications use Interrupts in order to interact with I/O like the hard drive