Problem Set 1
CSE 373 Fall 2015
September 2015

1 Degenerate sorting

Given an input array of length n, where each element has a value of 1, describe the run times of the sorting algorithms covered in class (selectionSort, mergeSort, quickSort), using the $O(n)$ notation.

2 Merge sort

Given an unsorted list of integers [15, 19, 0, 2, 1, 17, 100, 0, 12, 5, 18], show the list of intermediate arrays that will be produced during merge sort.

3 Binary search

A recursive binary search runs on an a sorted array A of integers [1, 4, 6, 8, 9, 12, 14, 15, 19, 20]. We want to find $key=17$. List the sequence of elements of A that will be compared with 17 during the search.

4 Recurrences

Solve the following recurrences. Assume $T(n) \leq c$ for some constant c and for all $n \leq 10$.

- $T(n) \leq 4T(n/2) + n$
- $T(n) \leq 4T(n/2) + n \log n$
- $T(n) \leq 2T(n/4) + \sqrt{n}$
• \(T(n) \leq \sqrt{n}T(\sqrt{n}) + n \)
• \(T(n) \leq 7T(n/8) + n^{0.935784974} \)

5 Partition

The following array has been partitioned. Which elements could have been the pivot value?

\[[31, 0, 25, 47, 53, 82, 79, 64, 98] \]

6 Duplicates

Write an algorithm that, given an array \(A \), outputs an array \(B \) that has the same set of elements as \(A \), but does not have any duplicate elements. \(B \) need not list the elements of \(A \) in the same order they occur in \(A \). What is the running time of your algorithm.

Now suppose you want \(B \) to have the same order as the first occurrence of each element in \(A \). Write an algorithm and give its running time.

7 2D searching

You are given a two-dimensional matrix \(A \) of size \(m \times n \). Each row of \(A \) is sorted. Each column of \(A \) is sorted. Analyze the running time of the following algorithms for searching for an element \(t \) in \(A \).

• Check each element of \(A \) to see if it is equal to \(x \).
• Perform binary search for \(x \) in each row of \(A \).
• Perform binary search for \(x \) in each column of \(A \).
• recursiveSearch1(\(A \), \(xlo \), \(xhi \), \(ylo \), \(yhi \), \(t \))
 - if \(xhi < xlo \) or \(yhi < ylo \), then return NOTFOUND
 - let \(xmid = \lfloor (xhi - xlo)/2 \rfloor \)
 - let \(ymid = \lfloor (yhi - ylo)/2 \rfloor \)
 - if \(A[xmid][ymid] == t \) then return \((xmid, ymid)\)
– else if $A[xmid][ymid] < t$
 * $a = \text{recursiveSearch1}(A, xmid + 1, xhi, ylo, ymid, t)$
 * $b = \text{recursiveSearch1}(A, xlo, xmid, ymid + 1, yhi, t)$
 * $c = \text{recursiveSearch1}(A, xmid + 1, xhi, ymid + 1, yhi, t)$
– else
 * $a = \text{recursiveSearch1}(A, xmid, xhi, ylo, ymid - 1, t)$
 * $b = \text{recursiveSearch1}(A, xlo, xmid - 1, ymid, yhi, t)$
 * $c = \text{recursiveSearch1}(A, xlo, xmid - 1, ylo, ymid - 1, t)$
– if any of a, b, or c is not NOTFOUND, return it
– else return NOTFOUND

• Define and analyze an algorithm similar to the above, except that instead of picking the midpoint of A, it performs binary search on the diagonal of A and recurses based on that.