Name: ________________________________

- You may not use any reference materials during this exam.
- Electronic devices, including calculators, cell phones, mp3 players, and laptops are all prohibited.
- You may not use your own scratch paper. The exam has plenty and you can ask for more if needed.
- You may not leave the classroom once the exam has been distributed.
- Communicating with other students in any way is prohibited.

Academic Honesty: I understand that if I cheat on this exam in any way, I will receive the maximum possible penalty, including an F in this course.

Signature: ________________________________

<table>
<thead>
<tr>
<th>Problem</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>/20</td>
</tr>
<tr>
<td>2</td>
<td>/15</td>
</tr>
<tr>
<td>3</td>
<td>/15</td>
</tr>
<tr>
<td>4</td>
<td>/25</td>
</tr>
<tr>
<td>5</td>
<td>/20</td>
</tr>
<tr>
<td>6</td>
<td>/15</td>
</tr>
<tr>
<td>Total</td>
<td>/110</td>
</tr>
</tbody>
</table>
Basic Number Theory

(a) (3 points) What is $\phi(23)$?

(b) (3 points) What is $\phi(15)$?

(c) (3 points) What is $7^2 \mod 15$?

(d) (3 points) What is $7^{642} \mod 15$?

(e) (4 points) What is $7^{-1} \mod 15$?

(f) (4 points) Find integers s and t such that $15s + 23t = 1$.
Induction

(15 points) Let \(x_0 = 1 \) and define \(x_n = \frac{1}{x_{n-1}} \). Prove by induction that, for all \(k \in \mathbb{N} \), \(x_{2k} > \frac{\sqrt{5} - 1}{2} \) and \(x_{2k+1} < \frac{\sqrt{5} - 1}{2} \).
Cardinality

(15 points) Indicate whether each set is finite, countably infinite, or uncountable.

(a) $\mathbb{N} \times \mathbb{Q}$

(b) $\prod_{n=0}^{\infty} \{0,1\}$

(c) $\{0,1\}^n$, where $n \in \mathbb{N}$

(d) $\bigcup_{n=0}^{\infty} \{0,1\}^n$

(e) $\mathbb{Q} \cup \bigcup_{n=0}^{\infty} \{0,1\}^n$
Analyzing the Euclidean Algorithm

(a) (7 points) Prove that if $b \leq a$, then $a \mod b < \frac{a}{2}$.

(b) (8 points) Assume computing $a \mod b$ takes 1 time unit. Let $T(a, b)$ be the amount of time it takes to compute $\gcd(a, b)$, when $b \leq a$. By using the fact that $\gcd(a, b) = \gcd(b, a \mod b)$, prove that $T(a, b) \leq 1 + T(b, a/2)$.
(c) (10 points) Assume that for any $a > 0$, we can compute $gcd(a, 0)$ in 1 time unit. Prove by strong induction that, when $ab \neq 0$, $T(a, b) \leq 2 + \log_2 ab$. (Hint: Remember that $\log_2 \frac{x}{2} = \log_2 x - 1$).
Implementing Multiplication

Let x_1x_0 and y_1y_0 be 2-bit numbers, where x_i is the ith bit of x and y_i is the ith bit of y. For example, if $x = 2$, then $x_1 = 1$ and $x_0 = 0$.

(a) (2 points) Since x can each be represented using only 2 bits, what is the largest possible value for x?

(b) (2 points) Let $m = xy$. What’s the max possible value for m? How many bits do we need to represent m?

(c) (16 points) Derive boolean logic formulas for each bit of m. You can use \land, \lor, \neg, and \oplus (exclusive-or) in your formulas.
Graph Theory

(15 points) Suppose an odd number of people attend a party. Prove that, no matter who shakes hands with whom, someone at the party must shake hands with an even number of people. (Hint: make a graph of who shakes hands; apply a theorem relating $|E|$ and the node degrees.)