Problem 1

Recall that for a function \(f : A \to B \) and \(X \subseteq A \) and \(Y \subseteq B \),
\[
f(X) = \{ y \in B | y = f(x), x \in X \}
\]
and
\[
f^{-1}(Y) = \{ x \in A | f(x) \in Y \}
\]
For each pair of sets listed below, indicated whether the first is always a subset of (\(\subseteq \)), strict subset of (\(\subset \)), superset of (\(\supseteq \)), strict superset of (\(\supset \)), equal to (\(= \)), or not equal to (\(\neq \)) the second subset, for each type of function. Make the strongest claim that you can.

<table>
<thead>
<tr>
<th>Set 1</th>
<th>Set 2</th>
<th>Any function</th>
<th>Injection</th>
<th>Surjection</th>
<th>Bijection</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(f^{-1}(Y)))</td>
<td>(Y)</td>
<td>(X \subseteq Y)</td>
<td>(\subseteq)</td>
<td>(\subset)</td>
<td>(\supseteq)</td>
</tr>
<tr>
<td>(f^{-1}(f(X)))</td>
<td>(X)</td>
<td>(X \subseteq f^{-1}(f(X)))</td>
<td>(\subseteq)</td>
<td>(\subset)</td>
<td>(\supseteq)</td>
</tr>
<tr>
<td>(f(f^{-1}(f(X))))</td>
<td>(f(X))</td>
<td>(f(X) \subseteq f(f^{-1}(f(X))))</td>
<td>(\subseteq)</td>
<td>(\subset)</td>
<td>(\supseteq)</td>
</tr>
<tr>
<td>(f^{-1}(f(f^{-1}(Y))))</td>
<td>(f^{-1}(Y))</td>
<td>(f^{-1}(Y) \subseteq f^{-1}(f(f^{-1}(Y))))</td>
<td>(\subseteq)</td>
<td>(\subset)</td>
<td>(\supseteq)</td>
</tr>
<tr>
<td>(f(X_1 \cup X_2))</td>
<td>(f(X_1) \cup f(X_2))</td>
<td>(f(X_1 \cup X_2) \subseteq (f(X_1) \cup f(X_2)))</td>
<td>(\subseteq)</td>
<td>(\subset)</td>
<td>(\supseteq)</td>
</tr>
<tr>
<td>(f(X_1 \cap X_2))</td>
<td>(f(X_1) \cap f(X_2))</td>
<td>(f(X_1 \cap X_2) \subseteq f(X_1) \cap f(X_2))</td>
<td>(\subseteq)</td>
<td>(\subset)</td>
<td>(\supseteq)</td>
</tr>
<tr>
<td>(f^{-1}(Y_1 \cup Y_2))</td>
<td>(f^{-1}(Y_1) \cup f^{-1}(Y_2))</td>
<td>(f^{-1}(Y_1 \cup Y_2) \subseteq f^{-1}(Y_1) \cup f^{-1}(Y_2))</td>
<td>(\subseteq)</td>
<td>(\subset)</td>
<td>(\supseteq)</td>
</tr>
<tr>
<td>(f^{-1}(Y_1 \cap Y_2))</td>
<td>(f^{-1}(Y_1) \cap f^{-1}(Y_2))</td>
<td>(f^{-1}(Y_1 \cap Y_2) \subseteq f^{-1}(Y_1) \cap f^{-1}(Y_2))</td>
<td>(\subseteq)</td>
<td>(\subset)</td>
<td>(\supseteq)</td>
</tr>
</tbody>
</table>

Problem 2

An Eulerian cycle is a path through a graph that crosses each edge exactly once. Suppose \(G \) is a connected graph. Prove that \(G \) has an Eulerian cycle if and only if every vertex of \(G \) has even degree.

Problem 3

Let \(k \) be a fixed positive integer. Put the following functions in increasing asymptotic order. Indicate which functions, if any, are asymptotically equivalent (i.e. \(\Theta() \)).

\[
\begin{align*}
f_1(n) & = (\log n)^{\log n} \\
f_2(n) & = 5^n \\
f_3(n) & = \sum_{i=0}^{k} n^i \\
f_4(n) & = n^{k+1} \\
f_5(n) & = (\log n)^{\log \log n} \\
f_6(n) & = 2^n \\
f_7(n) & = \sum_{i=0}^{n} i^k \\
f_8(n) & = \binom{n}{k}
\end{align*}
\]
Problem 4

As you have noticed, a proof of a theorem consists of a finite sequence of letters and symbols. Let S be the set of all symbols that can occur in a proof, e.g. S would contain all the English letters and punctuation, Greek letters, and various mathematical symbols. Argue that if some theorem has a proof, you can always find the proof eventually.

Problem 5

If $A[0, \ldots, n-1]$ is a permutation of $0, \ldots, n-1$, then we can view A as a function $A : \{0, \ldots, n-1\} \rightarrow \{0, \ldots, n-1\}$. Write an algorithm that finds $B[0, \ldots, n-1]$ such that $A \circ B$ is the identity function.

Problem 6

Use the partition algorithm to write a function `find-kth-smallest(A, n, k)` that, given an array, A, of n integers, returns the kth smallest integer in the array. In other words, your algorithm should return the integer that would be in position k after the array is sorted. A trivial solution to this problem is

```plaintext
procedure find-kth-smallest(A, n, k)
    qsort(A, n)
    return A[k]
```

This algorithm would have running time $O(n \log n)$. Your algorithm should be faster.