
International Journal of Computer Mathematics

Vol. 80, No. 9, September 2003, pp. 1121–1129

IMPROVEMENTS IN DOUBLE ENDED
PRIORITY QUEUES*

M. ZIAUR RAHMANa,y, REZAUL ALAM CHOWDHURYb and M. KAYKOBADc

aDepartment of Computer Science and Engineering, Ahsanullah University of Science and
Technology, Dhaka, Bangladesh;

bDepartment of Computer Science, University of Texas at Austin, USA;
cDepartment of Computer Science and Engineering, Bangladesh University of Engineering and

Technology, Dhaka, Bangladesh

(Received 4 March 2002)

In this paper, we present improved algorithms for min–max pair heaps introduced by S. Olariu et al. (A Mergeable
Double-ended Priority Queue – The Comp. J. 34, 423–427, 1991). We also show that in the worst case, this structure,
though slightly costlier to create, is better than min–max heaps of Strothotte (Min–max Heaps and Generalized
Priority Queues – CACM, 29(10), 996–1000, Oct, 1986) in respect of deletion, and is equally good for insertion
when an improved technique using binary search is applied. Experimental results show that, in the average case,
with the exception of creation phase data movement, our algorithm outperforms min–max heap of Strothotte in
all other aspects.

Keywords: Algorithm; Heap; Min–Max pair heap; Min–Max heap; Priority queues

C.R. Categories: D.4.8, E.2. H.3.3

1 INTRODUCTION

A (single-ended) priority queue is a ‘‘largest in, first out’’ list. It is used to perform some or all

of the following operations.

� Create the structure (Create(Queue))

� Find the Maximum (FindMax)

� Delete the Maximum (DeleteMax)

� Add a new element (Insert(x))

� Merge two queues (Merge(Queue1, Queue2))

‘‘Smallest in, first out’’ priority queues can be defined analogously. These are called priority

queues since the key to each item reflects its relative ability to get out from the list quickly.

* An earlier version of this paper has been published in the proceedings of International Conference on Computer
and Information Technology, 1999.
y Corresponding author. E-mail: bapy_bd@yahoo.com

ISSN 0020-7160 print; ISSN 1029-0265 online # 2003 Taylor & Francis Ltd
DOI: 10.1080/207160310001599079

Several data structures exist for priority queue implementation. A sorted list is an obvious

choice, But it requires O(n) insertion cost. Though for small n ð<20Þ, sorted list is acceptable

[3], for larger values of n a more efficient data structure is required.

Max-heap is one such efficient data structure. It is a complete binary tree having the

property that root element is the maximum and its left and right sub heaps are also

max-heaps. A max-heap of size n can be constructed in linear time, and can be stored in

an n-element array. Hence it is referred to as an implicit data structure. Using max-heap

FindMax can be performed in constant time and both DeleteMax and Insert(x) in logarithmic

time. A double-ended priority queue is similar with the exception that both maximum and

minimum can be sought. Implementation of double ended priority queues using max-heap

requires linear time for FindMin (Find the Minimum element) operation.

A more efficient algorithm [12] was devised using a min-heap back-to-back with the max-

heap. This method leads to constant time find and logarithmic time insertion and deletion

operations but requires double (2n) space and is somewhat trickier to implement.

The MinMax Heap structure overcomes these limitations. A min–max heap is based on

heap structure under the notion of min-max ordering: values stored at nodes on even

(odd) levels are smaller than or equal to (respectively, greater than) values stored at their

descendants. This structure can be constructed in linear time. FindMin, FindMax operations

are performed in constant time and Insert(x), DeleteMin and DeleteMax in logarithmic time

using this structure. Also sub-linear merging algorithm is given with relaxation of strict

ordering [5].

The min–max pair heap was introduced by Olariu et al. [9]. It has the benefit that this

double-ended priority queue supports merging in sub-linear time. The algorithms for the

above data structure is improved in our paper.

2 MIN–MAX PAIR HEAPS

DEFINITION A min–max pair heap is a binary tree H featuring the heap-shape property;
such that every node in H ½i� has two fields; called the min field and the max field, and such

that H has a min–max ordering: for every ið1� i� nÞ; the value stored in the min field of H ½i�

is the smallest of all values in the sub-tree of H rooted at H ½i�; similarly the value stored in

the max field of H ½i� is the largest key stored in the sub-tree of H rooted at H ½i�.

However we can consider those two heaps separalely by taking min (max) elements. We

name the min heap as A and max heap as B. Then we can show their relationship by a

Hasse diagram.

For example a min–max pair heap is shown in Figure 1. Its corresponding Hasse diagram

is shown in Figure 2.

FIGURE 1 A sample min–max pair heap.

1122 M. Z. RAHMAN et al.

3 ALGORITHMS

The creation phase of min–max pair heap is similar to general heap in the respect that it also

proceeds from leaf to root. However, in contrast to general heap, here we cannot regard the

leaf nodes as already min–max pair heap and so adjustment is also applied to leaf nodes. This

is illustrated using the Hasse diagram.

Starting from level h in Hasse diagram (h is the height of the min–max pair heap) we

proceed towards level 1, adjusting min heap element followed by the adjustment of max

heap element. This is illustrated elaborately using an example of adjustment in level 2.

All the elements of level 3 are heapified before the adjustment of level 2 elements. Now to

adjust a level 2 min heap element we obtain chain of younger sons and its extension to max

heap ranging from a level 3 element in min heap to level 3 element in max heap. We insert

the level 2 min heap element at proper place in this chain. When we are done, we adjust cor-

responding level 2 max heap element. In this case we similarly obtain a chain of elder sons

and its extension to min heap ranging from level 3 element in max heap to level 2 element in

min heap. We insert the level 2 max-heap element in this chain. This is repeated for all level 2

elements.

The exact routines are as follows:

procedure Create_Min_Max_Pair_Heap

//Adjust the elements in H (1:n) to form a min–max pair heap//

for i n=2þ 1 to n do

if H ½i�:min > H ½i�:max

H ½i�:min$ H ½i�:max

end if

end for

for i n=2 downto 1 do

SiftdownðH ½i�Þ

end for

End //Create_Min_Max_Pair_Heap

FIGURE 2 The Hasse diagram of min–max pair heap of Figure 1.

PRIORITY QUEUES 1123

procedure Siftdown(node H ½i�)

Trickle_Down_Min_Field(H ½i�)

Trickle_Down_Max_Field(H ½i�.)

End //Siftdown

procedure Trickle_Down_Min_Field(node H ½i�)

b true

k i

p H ½i�

while ð2� k � n) //There is more child to consider

k 2� k //Select the minimum child node

if(K þ 1 � n and H ½k�:min > H ½k þ 1�:min)

k k þ 1

endif

ifðb ¼ trueÞ //This is used to save the first child of H ½i� upto which

adjustment will be requiredb false

f k

end if

end while

ifðp:min < H ½k�:minÞ

Check_Up_Minðp; i; k=2Þ

else

Move_Up_Minði; kÞ

j k

ifðH ½k�:max ¼ # Þ //The max filed may be absent wheen n is odd

k k=2

end if

ifðk ¼ iÞ

return

end if

ifðp:min � H ½k�:maxÞ

H ½j�:min p:min

return

else

H ½j�:min H ½k�:max

H ½k�:max p:min

Bubble_UP_Maxðf ; kÞ

end if

end if

end //Trickle_Down_Min_Field

Trickle_Down_Max_Field routine is almost similar to the Trickle_Down_Min_Field. There

are exceptions due to two reasons. The first reason is, it needs to adjust up to min field of H ½i�

and second there are some variation in the handling of the null max field whenever odd ele-

ment is handled.

Procedure Check_Up_Min(p, start_index, end_index) finds proper place for p in the chain

ranging from start_index to end_index and place p in that position. Procedure

Move_Up_Min(start_index, end_index) moves all elements on the chain ranging from

start_index to end_index one place up in the chain. Procedure Bubble_Up_Min(start_

index, end_index) adjusts H[end_index].min bottom up at the proper position in the chain

ranging from start_index to end_index.

1124 M. Z. RAHMAN et al.

The Check_Up_Max, Move_Up_Max and Bubble_Up_Max are identical to their Min

partners.

The Bottom_up_Min(start_index, end_index) (resp. Bottom_up_Max(start_index, end_index))

routine works in the same way. But this routine is used when a transition occurs from min-

heap to max-heap or vice-versa. In this case H ½end_index�:Min ðH ½end_index�:MinÞ is the

element for which we find a proper place in the chain ranging from start_index to

end_index. Then it is inserted at that place.

If the new element goes to the other heap, we use Move Up Min(start_index, end_index)

(resp. Move_Up_Max(start_index, end_index)) routine. This routine moves all elements on the

chain ranging from start_index to end_index one place up in the chain.

The Insertion operation is of logarithmic complexity. We copy the element at the last

position H ½n�. We refer to Hasse diagram for easier understanding of insertion operation.

Since insertion occurs in a leaf node element in the Hasse diagram, we compare it with

adjacent parent element in min heap. If it is smaller we insert it bottom up to the min

heap. Otherwise, we compare it with adjacent parent element on max heap and insert it

bottom up to max heap if required.

The Deletion from min-max pair heap is easy, justpick the minimum-H ½1�:min (resp. H ½1�:max)

and copy last element to H ½1�:min (H ½1�:max). Then perform Trickle_Down_Min_Fieid

(Trickle_Down_Max_Field) for reheapification.

4 WORST CASE COMPLEXITY ANALYSIS

We will calculate the number of comparisons required in the worst case by the min–max pair

heap creation algorithm described above.

Let there be n elements in the tree. If h is the height of the min–max pair heap then

2ð2h � 1Þ ¼ n. i.e. h ¼ lgðnþ 2Þ � 1.

The worst case number of comparisons required by the heap creation algorithm is

¼
Xh�1

i¼1

2i�1½2ðh� iÞ þ 1þ 2ðh� iÞ þ 2� þ 2h�i

¼ 4h
Xh�1

i¼1

2i�1 � 2
Xh�1

i¼1

i2i þ 3
Xh�1

i¼1

2i�1 þ 2h�1

¼ 4hð2h�1 � 1Þ � 2½ðh� 2Þ2h þ 2� þ 3ð2h�1 � 1Þ þ 2h�1

¼ 3:2hþ1 � 4h� 7

¼ 3ðnþ 2Þ � 4 lgðnþ 2Þ � 3

¼ 3n� 4 lgðnþ 2Þ þ 3

However, if we calculate the worst case complexity for heap creation by inserting elements

into the corresponding chain of younger (elder) sons using binary search, similar to Gonnet

and Munro [7], the number of comparisons becomes

¼
Xh

i¼1

2i�1½ð2ðh� iÞ þ lgð2ðh� iÞ þ 1Þ þ lgð2ðh� iÞ þ 2Þ�

¼ 2h
Xh

i¼1

2i�1 � 2
Xh

i¼1

i2i�1 þ
Xh

i¼1

2i�1½lgð2ðh� iÞ þ 1Þ þ lgð2ðh� iÞ þ 2Þ�

PRIORITY QUEUES 1125

¼ 2hð2h � 1Þ � 2½ðh� 1Þ2h þ 1� þ 1:566421n

¼ n� 2 lgðnþ 2Þ � 1þ 1:566421n

¼ 2:566 . . . n� 2 lgðnþ 2Þ � 1

In the heap creation phase, worst case number of movements is as follows

¼
Xh�1

i¼1

2i�1½2ðh� iÞ þ 2þ 2ðh� iÞ þ 3� þ 3:2h�1

¼ 4h
Xh�1

i¼1

2i�1 � 2
Xh�1

i¼1

i2i þ 5
Xh�1

i¼1

2i�1 þ 3:2h�1

¼ 4hð2h�1 � 1Þ � 2½ðh� 2Þ2h þ 2� þ 5ð2h�1 � 1Þ þ 3:2h�1

¼ 4:2hþ1 � 4h� 9

¼ 4ðnþ 2Þ � 4 lgðnþ 2Þ � 1

¼ 4n� 4 lgðnþ 2Þ þ 3

5 COMPARISONS BETWEEN MIN-HEAPS, MIN–MAX HEAPS AND MIN–MAX

PAIR-HEAPS

The worst-case complexities of improved algorithms for min-heaps, min–max heaps and

min–max pair heaps are shown in Table I.

In Table I the function gðxÞ is defined as follows: gðxÞ ¼ 0 for x � 1 and gðnÞ ¼

gðdlgðnÞeÞ þ 1.

6 EXPERIMENTAL RESULTS

Experimental results on the average number of comparisons and data movements in the heap

creation phase for the two algorithms are plotted in Figure 3.

From the above chart we observe that on the average comparison cost of min–max pair

heap is slightly lower than min–max heap. The result is justified since we have used bottom

up algorithms, which requires 1.299 comparisons on the average case [4]. Also we observe

that data movement cost is nearly 2.94 n for min–max pair heap – which is far better than

worst case 4 n.

The insertion and deletion costs are shown in Figure 4. We perform x number of insertions

in a heap of size x and perform x deletions from a heap of size 2x. From the above charts we

observe that, though in the worst case number of comparison required is twice in min–max

pair heap than min–max heap on average it is about 1.025 times and data movement is seems

to be 0.91 times as n increases. And if we consider the combined cost we found that the

performance is better in our algorithm than min–max heap.

In case of deletion, we observe that our algorithm shows further improvement in average

case. Min–max pair heap requires less than half of the comparisons than that of min–max

heap and almost same number of data movement.

1126 M. Z. RAHMAN et al.

T
A

B
L

E
I

W
o
rs

t-
C

as
e

C
o
m

p
le

x
it

ie
s

o
f

Im
p
ro

v
ed

A
lg

o
ri

th
m

s
fo

r
M

in
-h

ea
p
s,

M
in

–
M

ax
H

ea
p
s

an
d

M
in

–
M

ax
P

ai
r

H
ea

p
s.

D
a

ta
m

o
ve

m
en

t
co

st
C

o
m

p
a

ri
so

n
co

st

M
in

h
ea

p
s

M
in

–
M

a
x

h
ea

p
s

M
in

–
M

a
x

p
a
ir

h
ea

p
s

M
in

-h
ea

p
s

M
in

–
M

a
x

h
ea

p
s

M
in

–
M

a
x

p
a
ir

h
ea

p
s

C
re

at
e

N
n

4
n

1
.6

2
5
n

2
.1

5
..
.n

2
.5

6
6
..
.n

In
se

rt
lg

(n
þ

1
)

0
.5

lg
(n
þ

1
)

lg
(n
þ

2
)

lg
(l

g
(n
þ

1
))

lg
(l

g
(n
þ

1
))

lg
(l

g
(n
þ

2
))

D
el

et
eM

in
lg

(n
)

lg
(n

)
2

lg
(n
þ

2
)

lg
(n

)
þ

g
(n

)
1

.5
lg

(n
)
þ

lg
(l

g
(n

))
lg

(n
þ

2
)
þ

lg
(l

g
(n
þ

2
))

D
el

et
eM

ax
lg

(n
)

lg
(n

)
2

lg
(n
þ

2
)

0
.5

n
þ

lg
(l

g
(n

))
1

.5
lg

(n
)
þ

lg
(l

g
(n

))
lg

(n
þ

2
)
þ

lg
(l

g
(n
þ

2
))

PRIORITY QUEUES 1127

FIGURE 3 Comparison of creation cost (mm = min–max, mmp = min–max pair).

FIGURE 4 Insertion and deletion costs (mm = min–max, mmp = min–max pair).

1128 M. Z. RAHMAN et al.

7 CONCLUDING REMARKS

We have presented efficient algorithms for the implementation of implicit double-ended

priority queues using min–max pair-heap. The deletion cost for the above structure is a sig-

nificant improvement over min–max heap. All other costs for double-ended priority queues

are comparable to that of a min–max heap. We have shown that the min–max pair heap struc-

ture is very much similar to a conventional max-heap – there are just two heaps in it. This

similarity opens up possibilities for applying known applications and optimizations of

max-heap to double-ended priority queues. For example, the concept of fine heap can be

introduced here for further optimization of the above algorithm. The heap merging algo-

rithms [12] have been revised [9] to merge min–max pair heaps. However, using our efficient

algorithms the complexity coefficient will improve.

Acknowledgement

We would like to thank M. Manzur Murshed of the Australian National University for his

generous support.

References

[1] Aho, A. V., Hopcroft, J. E. and Ullman, J. D. (1974). The Design and Analysis of Computer Algorithms. Addison-
Wesley, Reading, MA.

[2] Atkinson, M. D., Scak, J.-R., Santoro, N. and Strothotte, Th. (1986). Min–max heaps and generalized priority
queues. Programming techniques and data structures. Comm. ACM, 29(10), 996–1000.

[3] Brown, M. R. (1980). The analysis of a practical and nearly optimal priority queue. Garland Publishing,
New York.

[4] Carlsson, S. (1987). Average-case results on heapsort. BIT, 27, 2–17.
[5] Ding, Yuzheng, Weiss and Mark Allen. (1993). The relaxed min–max heap – A mergeable double-ended priority

queue. Acta Informatica, 30, 215–231.
[6] Gonnet, G. H. (1984). Handbook of Algorithms and Data Structures. Addison-Wesley, Reading, MA.
[7] Gonnet, G. H. and Munro, J. I. (1982). Heaps on heaps. In: Proceedings of the ICALP, Aarhus, 9, July,

pp. 282–291.
[8] Knuth, D. E. (1973). The Art of Computer Programming, Vol III: Sorting and Searching. Addison-Wesley,

Reading MA.
[9] Olariu, S., Overstreet, C. M. and Wen, Z. (1991). A mergeable double-ended priority queue. Computer Journal,

34, 423–427.
[10] Sack, J.-R. and Strothotte, Th. (1985). An algorithm for merging heaps. Acta Informatica, 22, 171–186.
[11] Strothotte, Th. and Sack, J.-R. (1985). Heaps in heaps. Congressus Numerantium, 49, 223–235.
[12] Williams, J. W. J. (1964). Algorithm 232. CACM, 7(6), 347–348.

PRIORITY QUEUES 1129

