
The Cache-Oblivious Gaussian Elimination Paradigm: Theoretical Framework

and Experimental Evaluation ∗

Rezaul Alam Chowdhury Vijaya Ramachandran

UTCS Technical Report TR-06-04

March 29, 2006

Abstract

The cache-oblivious Gaussian Elimination Paradigm (GEP) was introduced by the authors in [6]
to obtain efficient cache-oblivious algorithms for several important problems that have algorithms
with triply-nested loops similar to those that occur in Gaussian elimination. These include
Gaussian elimination and LU-decomposition without pivoting, all-pairs shortest paths and matrix
multiplication.

In this paper, we prove several important properties of the cache-oblivious framework for GEP
given in [6], which we denote by I-GEP. We build on these results to obtain C-GEP, a completely
general cache-oblivious implementation of GEP that applies to any code in GEP form, and which
has the same time and I/O bounds as the earlier algorithm in [6], while using a modest amount of
additional space. We present an experimental evaluation of the caching performance of I-GEP and C-
GEP in relation to the traditional Gaussian elimination algorithm. Our experimental results indicate
that I-GEP and C-GEP outperform GEP on inputs of reasonable size, with dramatic improvement
in running time over GEP when the data is out of core.

‘Tiling’, an important loop transformation technique employed by optimizing compilers in order
to improve temporal locality in nested loops, is a cache-aware method that does not adapt to all levels
in a multi-level memory hierarchy. The cache-oblivious GEP framework (either I-GEP or C-GEP)
produces system-independent I/O-efficient code for triply nested loops of the form that appears in
Gaussian elimination without pivoting, and is potentially applicable to being used by optimizing
compilers for loop transformation.

∗Department of Computer Sciences, University of Texas, Austin, TX 78712. Email: {shaikat,vlr}@cs.utexas.edu. This work
was supported in part by NSF Grant CCF-0514876 and NSF CISE Research Infrastructure Grant EIA-0303609.

1 Introduction

Memory in modern computers is typically organized in a hierarchy with registers in the lowest level
followed by L1 cache, L2 cache, L3 cache, main memory, and disk, with the access time of each memory
level increasing with its level. The two-level I/O model [1] is a simple abstraction of this hierarchy that
consists of an internal memory of size M , and an arbitrarily large external memory partitioned into
blocks of size B. The I/O complexity of an algorithm is the number of blocks transferred between these
two levels.

The cache-oblivious model [10] is an extension of the two-level I/O model with the additional feature
that algorithms do not use knowledge of M and B. A cache-oblivious algorithm is flexible and portable,
and simultaneously adapts to all levels of a multi-level memory hierarchy. This model assumes an
optimal cache replacement policy is used; standard cache replacement methods such as LRU allow for a
reasonable approximation to this assumption. A well-designed cache-oblivious algorithm typically has
the feature that whenever a block is brought into internal memory it contains as much useful data as
possible (‘spatial locality’), and also that as much useful work as possible is performed on this data
before it is written back to external memory (‘temporal locality’).

In [6], we introduced a cache-oblivious framework, which we call GEP or the Gaussian Elimination
Paradigm, for several important problems that can be solved using a construct similar to the computation
in Gaussian elimination without pivoting. Traditional algorithms that use this construct fully exploit
the spatial locality of data but they fail to exploit the temporal locality, and they run in O

(

n3
)

time, use O
(

n2
)

space and incur O
(

n3

B

)

I/Os. In [6] we presented a framework for in-place cache-

oblivious execution of several important special cases of GEP including Gaussian elimination and LU-
decomposition without pivoting, all-pairs shortest paths and matrix multiplication; this framework
can also be adapted to solve important non-GEP dynamic programming problems such as sequence
alignment with gaps, and a class of dynamic programs termed as ‘simple-DP’ [4] which includes
algorithms for RNA secondary structure prediction [15], matrix chain multiplication and optimal binary
search tree construction. This framework takes full advantage of both spatial and temporal locality of

data to incur only O
(

n3

B
√

M

)

I/Os while still running in O
(

n3
)

time and without using any extra space.

In this paper we re-visit the in-place cache-oblivious framework for GEP, which we call I-GEP, and
we prove theorems that establish several important properties of I-GEP. We then build on these results
to derive C-GEP, which has the same time and I/O bounds as I-GEP, and is a provably correct and
optimal cache-oblivious version of GEP in its full generality (though it needs to use some extra space).
We present experimental results that show that both I-GEP and C-GEP significantly outperform GEP
especially in out-of-core computations, although improvements in computation time are already realized
during in-core computations.

We also consider generalized versions of three major I-GEP applications (Gaussian elimination
without pivoting, Floyd-Warshall’s APSP, and matrix multiplication) mentioned in [6]; short proofs
of correctness for these applications can be obtained using results we prove for I-GEP. We provide
a detailed description of the algorithm for transforming simple DP to I-GEP, which was only briefly
described in [6]. We also investigate the connection between the gap problem (i.e., sequence alignment
with gaps [11, 12, 24]) and GEP. In [6] we presented a GEP-like code derived from the classic gap
dynamic program, and its I-GEP implementation; but that result is not quite correct. In this paper
we present a GEP-like code and its I-GEP implementation that solve several special cases of the gap
problem, and show that a small transformation on this I-GEP code actually solves the gap problem in
its full generality.

One potential application of I-GEP and C-GEP framework is in compiler optimizations for the
memory hierarchy. ‘Tiling’ is a powerful loop transformation technique employed by optimizing

1

compilers that improves temporal locality in nested loops. However, this technique is cache-aware,
and thus does not produce machine-independent code nor does it adapt simultaneously to multiple
levels of the memory hierarchy. In contrast, the cache-oblivious GEP framework produces I/O-efficient
portable code for a form of triply nested loops that occurs frequently in practice.

1.1 The Gaussian Elimination Paradigm (GEP)
Let c[1 . . . n, 1 . . . n] be an n × n matrix with entries chosen from an arbitrary set S, and let

f : S × S × S × S → S be an arbitrary function. The algorithm G given in Figure 1 modifies c by
applying a given set of updates of the form c[i, j] ← f(c[i, j], c[i, k], c[k, j], c[k, k]), where i, j, k ∈ [1, n].
By 〈i, j, k〉 (1 ≤ i, j, k ≤ n) we denote an update of the form c[i, j]← f(c[i, j], c[i, k], c[k, j], c[k, k]), and
we let ΣG denote the set of such updates that the algorithm needs to perform.

In view of the structural similarity between the construct in G and the computation in Gaussian
elimination without pivoting, we refer to this computation as the Gaussian Elimination Paradigm or
GEP [6]. Many practical problems fall in this category, for example: all-pairs shortest paths, LU
decomposition, and Gaussian elimination without pivoting. Other problems can be solved using GEP
through structural transformation, including simple dynamic program [4] and matrix multiplication.

We note the following properties of G, which are easily verified by inspection: Given ΣG, G

applies each 〈i, j, k〉 ∈ ΣG on c exactly once, and in a specific order. Given any two distinct updates
〈i1, j1, k1〉 ∈ ΣG and 〈i2, j2, k2〉 ∈ ΣG, the update 〈i1, j1, k1〉 will be applied before 〈i2, j2, k2〉 if k1 < k2,
or if k1 = k2 and i1 < i2, or if k1 = k2 and i1 = i2 but j1 < j2.

The running time of G is O
(

n3
)

provided both the test 〈i, j, k〉 ∈ ΣG and the update 〈i, j, k〉 in line

4 can be performed in constant time. The I/O complexity is O
(

n3

B

)

provided the only cache misses,

if any, incurred in line 4 are for accessing c[i, j], c[i, k], c[k, j] and c[k, k]; i.e., neither the evaluation of
〈i, j, k〉 ∈ ΣG nor the evaluation of f incurs any additional cache misses.

In the rest of the paper we assume, without loss of generality, that n = 2p for some integer p ≥ 0.
The function G is a more general version of the GEP computation given in our earlier pa-

per [6] (in Figure 6 of [6]). The GEP code in [6] can be obtained from G by setting ΣG =
{ 〈i, j, k〉 | k ∈ [κ1, κ2] ∧ i ∈ [ι1(k), ι2(k)] ∧ j ∈ [ζ1(k, i), ζ2(k, i)] }, where κ1 and κ2 are problem-
specific constants, and ι1(·), ι2(·), ζ1(·, ·) and ζ2(·, ·) are problem-specific functions defined in [6].

1.2 Organization of the Paper

In Section 2, we present and analyze an O
(

n3

B
√

M

)

I/O in-place cache-oblivious algorithm, called I-GEP,

which is the cache-oblivious version of the GEP framework in [6] suitably generalized to handle the more
general nature of G. We prove some theorems relating the computation in I-GEP to the computation
in GEP. In Section 3, we present cache-oblivious C-GEP, which solves G in its full generality with the
same time and I/O bounds as I-GEP, but uses n2 + n extra space (recall that n2 is the size of the
input/output matrix c). Then in Section 4, we describe generalized versions of three major applications
of I-GEP (Gaussian elimination without pivoting, matrix multiplication and Floyd-Warshall’s APSP)
from [6]. Succinct proofs of correctness of these I-GEP implementations can be obtained using results
from Section 2.

We consider the potential application of the GEP framework in compiler optimizations in Section 5.
In Section 6, we present experimental results comparing the timing and caching performance of I-GEP
and C-GEP with that of the traditional GEP implementation. The study reveals that both I-GEP
and C-GEP outperform GEP for reasonably large inputs during in-core computations, and perform
significantly better than GEP when the computation is out-of-core.

Section 7 contains detailed treatment of two additional applications (simple DP and the gap problem)

2

G(c, 1, n)

(The input c[1 . . . n, 1 . . . n] is an n× n matrix. Function f(·, ·, ·, ·) is a problem-specific function, and
ΣG is a problem-specific set of updates to be applied on c.)

1. for k ← 1 to n do

2. for i← 1 to n do

3. for j ← 1 to n do

4. if 〈i, j, k〉 ∈ ΣG then c[i, j]← f(c[i, j], c[i, k], c[k, j], c[k, k])

Figure 1: GEP: Triply nested for loops typifying code fragment with structural
similarity to the computation in Gaussian elimination without pivoting.

F(X, k1, k2)

(X is a 2q × 2q square submatrix of c such that X[1, 1] = c[i1, j1] and X[2q, 2q] = c[i2, j2] for some integer q ≥ 0.
Function F assumes the following:

(a) i2 − i1 = j2 − j1 = k2 − k1 = 2q − 1
(b) [i1, i2] 6= [k1, k2] ⇒ [i1, i2] ∩ [k1, k2] = ∅ and [j1, j2] 6= [k1, k2] ⇒ [j1, j2] ∩ [k1, k2] = ∅.

The initial call to F is F(c, 1, n) for an n× n input matrix c, where n is assumed to be a power of 2.)

1. if TX,[k1,k2] ∩ΣG = ∅ then return
�
TX,[k1,k2] = {〈i, j, k〉|i ∈ [i1, i2] ∧ j ∈ [j1, j2] ∧ k ∈ [k1, k2]},
and ΣG is the set of updates performed by G in Figure 1}

2. if k1 = k2 then

3. c[i1, j1]← f(c[i1, j1], c[i1, k1], c[k1, j1], c[k1, k1])

4. else {The top-left, top-right, bottom-left and bottom-right quadrants

of X are denoted by X11, X12, X21 and X22, respectively.}

5. km ←
j

k1+k2

2

k
6. F (X11, k1, km), F (X12, k1, km), F (X21, k1, km), F (X22, k1, km) {forward pass}
7. F (X22, km + 1, k2), F (X21, km + 1, k2), F (X12, km + 1, k2), F (X11, km + 1, k2) {backward pass}

Figure 2: Cache-oblivious I-GEP. For several special cases of f and ΣG in Figure 1, we show
that F performs the same computation as G (see Section 4), though there are some cases of
f and ΣG where the computations return different results.

22

X 11 X 12

X

(a) (b)
kk1

<_ <_ km

X

km k<_ <_ k2+ 1

21 X 22

X 11 X 12

X 21

Figure 3: Processing order of quadrants of X
by F : (a) forward pass, (b) backward pass.

3

of I-GEP which were briefly mentioned in [6]. Finally, we present some concluding remarks in Section
8.

1.3 Related Work
The Gaussian Elimination Paradigm was introduced by the authors in [6], where an O

(

n3

B
√

M

)

I/O

in-place cache-oblivious algorithm was given for a restricted version (as explained in Section 1.1) of the
GEP code in Figure 1. This algorithm when suitably generalized to handle the general nature of G

in Figure 1, is referred to as I-GEP in the current paper. The applications of I-GEP we consider in
Section 4 are general versions of the three major applications (Gaussian elimination without pivoting,
matrix multiplication and Floyd-Warshall’s APSP) of the GEP framework originally mentioned in [6].
However, due to space limitations, all proofs of correctness were omitted from [6]. Brief descriptions of
simple DP and the gap problem as applications of GEP were also included in [6].

Other known cache-oblivious algorithms for Gaussian elimination for solving systems of linear

equations are based on LU decomposition. In [25, 3] cache-oblivious algorithms performing O
(

n3

B
√

M

)

I/O operations are given for LU decomposition without pivoting, while the algorithm in [20] performs
LU decomposition with partial pivoting within the same I/O bound. These algorithms use matrix
multiplication and solution of triangular linear systems as subroutines. Our algorithm for Gaussian
elimination without pivoting (see Section 4.1 and also [6]) is not based on LU decomposition, i.e., it
does not call subroutines for multiplying matrices or solving triangular linear systems, and is thus
arguably simpler than existing algorithms.

An O (mnp) time and O
(

m + n + p + mn+np+mp
B

+ mnp

B
√

M

)

I/O algorithm for multiplying an m×n

matrix by an n× p matrix is given in [10].

In [4], an O
(

n3
)

time and O
(

n3

B
√

M

)

I/O cache-oblivious algorithm based on Valiant’s context-free

language recognition algorithm [21], is given for simple-DP.
A cache-oblivious algorithm for Floyd-Warshall’s APSP algorithm is given in [17]. The algorithm

runs in O
(

n3
)

time and incurs O
(

n3

B
√

M

)

cache misses. Our I-GEP implementation of Floyd-Warshall’s

APSP (see Section 4.3 and also [6]) produces exactly the same algorithm.
The main attraction of the Gaussian Elimination Paradigm in [6] and in this paper is that it unifies

all problems mentioned above and possibly many others under the same framework, and presents a
single I/O-efficient cache-oblivious solution (see C-GEP in Section 3) for all of them.

2 Analysis of I-GEP

In this section we analyze I-GEP, a recursive function F given in Figure 2 that is cache-oblivious,
computes in-place, and as shown in [6], is a provably correct implementation of GEP in Figure 1 for
several important special cases of f and ΣG. (This function F does not solve GEP in its full generality,
however.) We call this implementation I-GEP to denote an initial attempt at a general cache-oblivious
version of GEP as well as an in-place implementation, in contrast to the new implementation (C-GEP)
which we give in Section 3 that solves GEP in its full generality but uses a modest amount of additional
space.

The inputs to F are a square submatrix X of c[1 . . . n, 1 . . . n], and two indices k1 and k2. The top-left
cell of X corresponds to c[i1, j1], and the bottom-right cell corresponds to c[i2, j2]. These indices satisfy
the following constraints:

Input Conditions 2.1. If X ≡ c[i1 . . . i2, j1 . . . j2], k1 and k2 are the inputs to F in Figure 2, then
(a) i2 − i1 = j2 − j1 = k2 − k1 = 2q − 1 for some integer q ≥ 0

(b) [i1, i2] 6= [k1, k2] ⇒ [i1, i2] ∩ [k1, k2] = ∅ and [j1, j2] 6= [k1, k2] ⇒ [j1, j2] ∩ [k1, k2] = ∅
4

Let Y ≡ c[i1 . . . i2, k1 . . . k2] and Z ≡ c[k1 . . . k2, j1 . . . j2]. Then for every entry c[i, j] ∈ X, c[i, k] can
be found in Y and c[k, j] can be found in Z. Input condition (a) requires that X, Y and Z must all
be square matrices of the same size. Input condition (b) requires that

(

X ≡ Y
)

∨
(

X ∩ Y = ∅
)

, i.e.,
either Y overlaps X completely, or does not intersect X at all. Similar constraints are imposed on Z,
too.

The base case of F occurs when k1 = k2, and the function updates c[i1, j1] to f(c[i1, j1], c[i1, k1],
c[k1, j1], c[k1, k1]). Otherwise it splits X into four quadrants (X11,X12,X21 and X22), and recursively
updates the entries in each quadrant in two passes: forward (line 6) and backward (line 7). The
processing order of the quadrants are shown in Figure 3. The initial function call is F(c, 1, n).

Properties of I-GEP. We prove two theorems that reveal several important properties of F. Theorem
2.1 states that F and G are equivalent in terms of the updates applied, i.e., both of them apply exactly
the same updates on the input matrix exactly the same number of times. The theorem also states that
both F and G apply the updates applicable to any fixed entry in the input matrix in exactly the same
order. However, it does not say anything about the total order of the updates. Theorem 2 identifies the
exact states of c[i, k], c[k, j] and c[k, k] (in terms of the updates applied on them) immediately before
c[i, j] is updated to f(c[i, j], c[i, k], c[k, j], c[k, k]). One implication of this theorem is that the total
order of the updates as applied by F and G can be different.

Recall that in Section 1.1 we defined ΣG to be the set of all updates 〈i, j, k〉 performed by the original
GEP algorithm G in Figure 1. Analogously, for the transformed cache-oblivious algorithm F, let ΣF be
the set of all updates 〈i, j, k〉 performed by F(c, 1, n).

We assume that each instruction executed by F receives a unique time stamp, which is implemented
by initializing a global variable t to 0 before the algorithm starts execution, and incrementing it by
1 each time an instruction is executed (we consider only sequential algorithms in this paper). By the
quadruple 〈i, j, k, t〉 we denote an update 〈i, j, k〉 that was applied at time t. Let ΠF be the set of all
updates 〈i, j, k, t〉 performed by F(c, 1, n).

The following theorem states that F applies each update performed by G exactly once, and no other
updates; it also identifies a partial order on the updates performed by F.

Theorem 2.1. Let ΣG, ΣF and ΠF be the sets as defined above. Then
(a) ΣF = ΣG, i.e., both F and G perform the same set of updates;
(b) 〈i, j, k, t1〉 ∈ ΠF ∧ 〈i, j, k, t2〉 ∈ ΠF ⇒ t1 = t2, i.e., function F performs each update 〈i, j, k〉

at most once; and
(c) 〈i, j, k′1, t1〉 ∈ ΠF ∧ 〈i, j, k′2, t2〉 ∈ ΠF ∧ k′2 > k′1 ⇒ t2 > t1, i.e., function F updates each c[i, j]

in increasing order of k values.

Proof. (Sketch.) 〈i, j, k〉 ∈ ΣF ⇒ 〈i, j, k〉 ∈ ΣG holds by the check in line 1 of Figure 2.
The reverse direction of (a) can be proved by forward induction on q, while parts (b) and (c) can be

proved by backward induction on q, where n = 2q. �
We now introduce some terminology as well as two functions π and δ which will be used later in

this section to identify the exact states of c[i, k], c[k, j] and c[k, k] at the time when F is about to apply
〈i, j, k〉 on c[i, j].

Definition 2.1. Let n = 2q for some integer q > 0.
(a) An aligned subinterval for n is an interval [a, b] with 1 ≤ a ≤ b ≤ n such that b − a + 1 = 2r

for some nonnegative integer r ≤ q and a = c · 2r + 1 for some integer c ≥ 0. The width of the aligned
subinterval is 2r.

(b) An aligned subsquare for n is a pair of aligned subintervals [a, b], [a′, b′] with b−a+1 = b′−a′+1.

5

.321 4 x

q
2

z.

. . . .321 4 x ... z.

. . . x321 4 . q
2

(x,z)π (z,x)π

.

1 4 x2

q
2

z.3
q

2

z

Figure 4: Evaluating π(x, z) and π(z, x) for x > z: Given x, z ∈ [1, 2q] such that x > z, we start with
an initial sequence of 2q consecutive integers in [1, 2q], and keep splitting the segment containing both
x and z at midpoint until x and z fall into different segments. The largest integer in z’s segment gives
the value of π(x, z), and that in x’s segment gives the value of π(z, x).

The following observation can be proved by (reverse) induction on r, starting with q, where n = 2q.

Observation 2.1. Consider the call F (c, 1, n). Every recursive call is on an aligned subsquare of c,
and every aligned subsquare of c of width 2r for r ≤ q is invoked in exactly n/2r recursive calls on
disjoint aligned subintervals [k1, k2] of length 2r each.

Definition 2.2. Let x, y, and z be integers, 1 ≤ x, y, z ≤ n.
(a) For x 6= z or y 6= z, we define δ(x, y, z) to be b for the largest aligned subsquare [a, b], [a, b] that

contains (z, z), but not (x, y). If x = y = z we define δ(x, y, z) to be z − 1.
We will refer to the [a, b], [a, b] subsquare as the aligned subsquare S(x, y, z) for z with respect to

(x, y); analogously, S′(x, y, z) is the largest aligned subsquare [c, d], [c′, d′] that contains (x, y) but not
(z, z).

(b) For x 6= z, the aligned subinterval for z with respect to x, I(x, z), is the largest aligned subinterval
[a, b] that contains z but not x; similarly the aligned subinterval for x with respect to z, I(z, x), is the
largest aligned subinterval [a′, b′] that contains x but not z;

We define π(x, z) to be the largest index b in the aligned subinterval I(x, z) if x 6= z, and
π(x, z) = z − 1 if x = z.

Figures 4 and 5 illustrate the definitions of π and δ respectively. For completeness, more formal
definitions of δ and π are given in the appendix. The following observation summarizes some simple
properties that follow from Definition 2.2.

Observation 2.2.

(a) If x 6= z or y 6= z then δ(x, y, z) ≥ z, and if x 6= z then π(x, z) ≥ z; I(x, z) and I(z, x) have the
same length while S(x, y, z) and S′(x, y, z) have the same size; and S(x, y, z) is always centered along
the main diagonal while S′(x, y, z) in general will not occur along the main diagonal.

(b) If x = y = z then δ(x, y, z) = z − 1, and if x = z then π(x, z) = z − 1.

Part (a) in the following lemma will be used to pin down the state of c[k, k] at the time when update
〈i, j, k〉 is about to be applied, and parts (b) and (c) can be used to pin down the states at that time
of c[i, k] and c[k, j], respectively. As with Observation 2.1, this lemma can be proved by backward
induction on q. As before the initial call is to F(c, 1, n).

6

(),(x,y,z)δ (x,y,z)δ≡c

(x,y)≡a

P

1
2
3

321

a
c

b

(z,z)≡b

q−1
2

q
2

q−1
2

q
2

Figure 5: Evaluating δ(x, y, z): Given x, y, z ∈ [1, 2q] (where q ∈ Z+), such that x 6= z ∨ y 6= z, we start
with an initial square P [1 . . . 2q, 1 . . . 2q], and keep splitting the square (initially the entire square P)
containing both P [x, y] and P [z, z] into subsquares (quadrants) until P [x, y] and P [z, z] fall into different
subsquares. The largest coordinate in P [z, z]’s subsquare at that point gives the value of δ(x, y, z).

Lemma 2.1. Let i, j, k be integers, 1 ≤ i, j, k ≤ n, with not all i, j, k having the same value.
(a) There is a recursive call F(X, k1, k2) with k ∈ [k1, k2] in which the aligned subsquares S(i, j, k)

and S′(i, j, k) will both occur as (different) subsquares of X being called in steps 6 and 7 of the I-GEP
pseudocode. The aligned subsquare S(i, j, k) will occur only as either X11 or X22 while S′(i, j, k) can
occur as any one of the four subsquares except that it is not the same as S(i, j, k).

If S(i, j, k) occurs as X11 then k ∈ [k1, km] and δ(i, j, k) = km; if S(i, j, k) occurs as X22 then
k ∈ [km + 1, k2] and δ(i, j, k) = k2.

(b) If j 6= k, let T (i, j, k) be the largest aligned subsquare that contains (i, k) but not (i, j) and let
T ′(i, j, k) be the largest aligned subsquare that contains (i, j) but not (i, k). There is a recursive call
F(X, k′1, k

′
2) with k ∈ [k′1, k

′
2] in which the aligned subsquares T (i, j, k) and T ′(i, j, k) will both occur as

(different) subsquares of X being called in steps 6 and 7 of the I-GEP pseudocode. The set {T (i, j, k),
T ′(i, j, k)} is either {X11, X12} or {X21, X22}, and π(j, k) = k′, where k′ is the largest integer such
that (i, k′) belongs to T (i, j, k).

(c) If i 6= k, let R(i, j, k) be the largest aligned subsquare that contains (k, j) but not (i, j) and let
R′(i, j, k) be the largest aligned subsquare that contains (i, j) but not (k, j). There is a recursive call
F(X, k′′1 , k′′2) with k ∈ [k′′1 , k′′2] in which the aligned subsquares R(i, j, k) and R′(i, j, k) will both occur as
(different) subsquares of X being called in steps 6 and 7 of the I-GEP pseudocode. The set {R(i, j, k),
R′(i, j, k)} is either {X11, X21} or {X12, X22}, and π(i, k) = k′′, where k′′ is the largest integer such
that (k′′, j) belongs to R(i, j, k).

Let ck(i, j) denote the value of c[i, j] after all updates 〈i, j, k′〉 ∈ ΣG with k′ ≤ k have been performed
by F, and no other updates have been performed on it. We now present the second main theorem of
this section.

7

Theorem 2.2. Let δ and π be as defined in Definition 2.2. Then immediately before function F performs
the update 〈i, j, k〉 (i.e., before it executes c[i, j]← f(c[i, j], c[i, k], c[k, j], c[k, k])), the following hold:

• c[i, j] = ck−1(i, j),

• c[i, k] = cπ(j,k)(i, k),

• c[k, j] = cπ(i,k)(k, j),

• c[k, k] = cδ(i,j,k)(k, k).

Proof. We prove each of the four claims by turn.
c[i, j]: By Theorem 2.1, for any given i, j ∈ [1, n] the value of c[i, j] is updated in increasing value of

k, hence at the time when update 〈i, j, k〉 is about to be applied, the state of c[i, j] must equal ck−1(i, j).
c[k, k]: Assume that either k 6= i or k 6= j, and consider the state of c[k, k] when update 〈i, j, k〉

is about to be applied. Let S(i, j, k) and S′(i, j, k) be as specified in Definition 2.2, and consider the
recursive call F(X, k1, k2) with k ∈ [k1, k2] in which S(i, j, k) and S′(i, j, k) are both called during the
execution of lines 6 and 7 of the I-GEP code (this call exists as noted in Lemma 2.1). Also, as noted
in Lemma 2.1, the aligned subsquare S(i, j, k) (which contains position (k, k) but not (i, j)) will occur
either as X11 or X22.

If S(i, j, k) occurs as X11 when it is invoked in the pseudocode, then by Lemma 2.1 we also know
that k ∈ [k1, km], and S′(i, j, k) will be invoked as X12,X21 or X22 in the same recursive call. Thus,
c[k, k] will have been updated by all 〈i, j, k′〉 ∈ ΣG for which (k′, k′) ∈ S(i, j, k), before update 〈i, j, k〉 is
applied to c[i, j] in the forward pass. By Definition 2.2 the largest integer k′ for which (k′, k′) belongs
to S(i, j, k) is δ(i, j, k). Hence the value of c[k, k] that is used in update 〈i, j, k〉 is cδ(i,j,k)(k, k).

Similarly, if S(i, j, k) occurs as X22 when it is invoked in the pseudocode, then k ∈ [km + 1, k2], and
S′(i, j, k) will be invoked as X11,X12 or X21 in the same recursive call. Since the value of k is in the
higher half of [k1, k2], the update 〈i, j, k〉 will be performed in the backward pass in line 7, and hence
c[k, k] will have been updated by all 〈i, j, k′〉 ∈ ΣG with k′ ≤ k2. As above, by Definition 2.2, δ(i, j, k) is
the largest value of k′ for which (k′, k′) belongs to S(i, j, k), which is k2, hence the value of c[k, k] that
is used in update 〈i, j, k〉 is cδ(i,j,k)(k, k).

Finally, if i = j = k, we have c[k, k] = ck−1(i, j) = cδ(i,j,k)(k, k) by definition of δ(i, j, k).

c[i, k] and c[k, j]: Similar to the proof for c[k, k] but using parts (b) and (c) of Lemma 2.1. �
I/O Complexity. Let I(n) be an upper bound on the number of I/O operations performed by F on
an input of size n× n. It is not difficult to see [6] that

I(n) ≤
{

O(n + n2

B
) if n2 ≤ γM ,

8I
(

n
2

)

otherwise;
(equation 2.1)

where γ is the largest constant sufficiently small that four
√

γM × √γM submatrices fit in the cache.

The solution to the recurrence is I(n) = O
(

n3

M
+ n3

B
√

M

)

= O
(

n3

B
√

M

)

(assuming a tall cache, i.e.,

M = Ω
(

B2
)

).
In [6] we show that this bound is, in fact, tight for any algorithm that performs Θ

(

n3
)

operations
in order to implement the general version of the GEP computation as defined in Section 1.1.

Below we prove a more general upper bound on the I/O operations performed by function F, which
will be used in Section 7.1 to determine the I/O complexity of the I-GEP implementation of ‘Simple-DP’.

8

The following theorem assumes that F is called on an n × n input matrix c (i.e., called as F(c, 1, n)),
but considers only the cache misses incurred for applying the updates 〈i, j, k〉 ∈ ΣG with c[i, j] ∈ Q,
where Q is an m×m submatrix of c. Thus the implicit assumption is that immediately before any such
update 〈i, j, k〉 is applied on c[i, j], each of c[i, k], c[k, j] and c[k, k] has the correct value (as implied by
Theorem 2.2) even if it does not belong to Q.

Theorem 2.3. Let Q be an m × m submatrix of c, where c is the n × n input matrix to F. Then
the number of cache misses incurred by F while applying all updates 〈i, j, k〉 ∈ ΣG with c[i, j] ∈ Q is

O
(

m2n

B
√

M

)

, assuming that Q is too large to fit in the cache, and that the cache is tall (i.e., M = Ω
(

B2
)

).

Proof. Let Qe be an aligned subsquare of c of largest width 2r such that four such subsquares completely
fit in the cache, i.e., λ · 4r ≤ M < λ · 4r+1 for some suitable constant λ. We know from Observation
2.1 that Qe will be invoked in exactly n

2r recursive calls of F on disjoint aligned subintervals of [k1, k2]
of length 2r each. The number of cache misses incurred in fetching Qe into the cache along with all
(at most three) other aligned subsquares required for updating the entries of Qe is O

(

2r + 2r×2r

B

)

,
since at most 1 cache miss will occur for accessing each row of the subsquares, and O

(

2r×2r

B

)

cache
misses for scanning in all entries. Thus the total cache misses incurred by all n

2r recursive calls on Qe is

O
(

n
2r ×

(

2r + 2r×2r

B

))

= O
(

n + n
√

M
B

)

, since 2r × 2r = Θ (M).

Now since Q is an m × m subsquare of c, and all recursive calls on an 2r × 2r subsquare incur

O
(

n + n
√

M
B

)

cache misses, the number of cache misses incurred by all recursive calls updating the

entries of Q is Θ
(

m2

2r×2r

)

×O
(

n + n
√

M
B

)

= O
(

m2n

B
√

M
+ m2n

M

)

= O
(

m2n

B
√

M

)

(since M = Ω
(

B2
)

). �
Static Pruning of I-GEP. In line 1 of Figure 2, function F(X, k1, k2) performs dynamic pruning of
its recursion tree by computing the intersection of TX,[k1,k2] (i.e., the set of all updates 〈i, j, k〉 with
k ∈ [k1, k2] that are applicable on the input submatrix X) with ΣG. However, sometimes it is possible
to perform some static pruning during the transformation of G to F, i.e., recursive calls for processing of
some quadrants of X in lines 6 and/or 7 of F can be eliminated completely from the code. In Appendix
B we describe how this static pruning of F can be performed. This is the version of I-GEP (with static
pruning) that we considered in our earlier paper [6].

3 C-GEP: Extension of I-GEP to Full Generality

In order to express mathematical expressions with conditionals in compact form, in this section we will
use Iverson’s convention [13, 14] for denoting values of Boolean expressions. In this convention we use
|E| to denote the value of a Boolean expression E , where |E| = 1 if E is true and |E| = 0 if E is false.

3.1 A Closer Look at I-GEP

Recall that ck(i, j) denotes the value of c[i, j] after all updates 〈i, j, k′〉 ∈ ΣG with k′ ≤ k, and no
other updates have been applied on c[i, j] by F, where i, j ∈ [1, n] and k ∈ [0, n]. Let ĉk(i, j) be the
corresponding value for G, i.e., let ĉk(i, j) be the value of c[i, j] immediately after the k-th iteration of
the outer for loop in G, where i, j ∈ [1, n] and k ∈ [0, n].

By inspecting the original GEP code in Figure 1, we observe that if 〈i, j, k〉 ∈ ΣG,

ĉk(i, j) = f(ĉk−1(i, j), ĉk−|j≤k|(i, k), ĉk−|i≤k|(k, j), ĉk−|(i<k) ∨ (i=k ∧ j≤k)|(k, k)) (equation 3.2)

9

H(X, k1, k2)

(X is a 2q × 2q submatrix of c such that X[1, 1] = c[i1, j1] and X[2q, 2q] = c[i2, j2] for some integer q ≥ 0. Matrices
u0, u1, v0 and v1 are global, and each initialized to c before the initial call to H is made. Similar to F in Figure 2, H

assumes the following: (a) i2 − i1 = j2 − j1 = k2 − k1 = 2q − 1
(b) [i1, i2] 6= [k1, k2] ⇒ [i1, i2]∩ [k1, k2] = ∅ and [j1, j2] 6= [k1, k2] ⇒ [j1, j2]∩ [k1, k2] = ∅

The initial call to H is H(c, 1, n) for an n× n input matrix c, where n is assumed to be a power of 2.)

1. if TX,[k1,k2] ∩ ΣG = ∅ then return
�
TX,[k1,k2] = {〈i, j, k〉|i ∈ [i1, i2] ∧ j ∈ [j1, j2] ∧ k ∈ [k1, k2]},
and ΣG is the set of updates performed by G in Figure 1}

2. if k1 = k2 then

3. i← i1, j ← j1, k ← k1

4. c[i, j]← f(c[i, j], u|j>k|[i, k], v|i>k|[k, j], u|(i>k) ∨ (i=k ∧ j>k)|[k, k])

5. if k = τij(j − 1) then u0[i, j]← c[i, j] {τij (l) = max l′ {l′ | l′ ≤ l ∧ 〈i, j, l′〉 ∈ ΣG ∪ {〈i, j, 0〉}}}
6. if k = τij(j) then u1[i, j]← c[i, j]

7. if k = τij(i− 1) then v0[i, j]← c[i, j]

8. if k = τij(i) then v1[i, j]← c[i, j]

9. else {The top-left, top-right, bottom-left and bottom-right quadrants

of X are denoted by X11, X12, X21 and X22, respectively.}

10. km ←
j

k1+k2

2

k
11. H(X11, k1, km), H(X12, k1, km), H(X21, k1, km), H(X22, k1, km) {forward pass}
12. H(X22, km + 1, k2), H(X21, km + 1, k2), H(X12, km + 1, k2), H(X11, km + 1, k2) {backward pass}

Figure 6: C-GEP: A cache-oblivious implementation of GEP (i.e., G in Figure 1) that works
for all f and ΣG.

with ĉk(i, j) = ĉk−1(i, j) if 〈i, j, k〉 /∈ ΣG. Similarly using Theorem 2.2, we can describe the updates
performed by F (Figure 2) as follows. If 〈i, j, k〉 ∈ ΣG,

ck(i, j) = f
(

ck−1(i, j), cπ(j,k)(i, k), cπ(i,k)(k, j), cδ(i,j,k)(k, k)
)

(equation 3.3)

with ck(i, j) = ck−1(i, j) if 〈i, j, k〉 /∈ ΣG.
Though both G and F start with the same input matrix, at some point of computation F and G

would supply different input values to f while applying the same update 〈i, j, k〉 ∈ ΣG, and consequently
f will return different output values, because we know from Observation 2.2(a) that for i, j < k,
π(j, k) > k − |j ≤ k|, π(i, k) > k − |i ≤ k| and δ(i, j, k) > k − |(i < k) ∨ (i = k ∧ j ≤ k)|. Whether
the final output matrix returned by the two algorithms are the same depends on the update function
f , the update set ΣG, and the input values.

As an example, consider a 2 × 2 input matrix c, and let ΣG = {〈i, j, k〉|1 ≤ i, j, k ≤ 2}. Then G

will compute the entries in the following order: ĉ1(1, 1), ĉ1(1, 2), ĉ1(2, 1), ĉ1(2, 2), ĉ2(1, 1), ĉ2(1, 2),
ĉ2(2, 1), ĉ2(2, 2); on the other hand, F will compute in the following order: c1(1, 1), c1(1, 2), c1(2, 1),
c1(2, 2), c2(2, 2), c2(2, 1), c2(1, 2), c2(1, 1). Since both G and F use the same input matrix, the first
5 values computed by F will be correct, i.e., c1(1, 1) = ĉ1(1, 1), c1(1, 2) = ĉ1(1, 2), c1(2, 1) = ĉ1(2, 1),
c1(2, 2) = ĉ1(2, 2) and c2(2, 2) = ĉ2(2, 2). However, the next value, i.e., the final value of c[2, 1], computed
by F is not necessarily correct, since F sets c2(2, 1)← f(c1(2, 1), c2(2, 2), c1(2, 1), c2(2, 2)), while G sets
ĉ2(2, 1) ← f(ĉ1(2, 1), ĉ1(2, 2), ĉ1(2, 1), ĉ1(2, 2)). For example, if initially c[1, 1] = c[1, 2] = c[2, 1] = 0 and
c[2, 2] = 1, and f just returns the sum of its input values, then F will output c[2, 1] = 8, while G will
output c[2, 1] = 2.

10

3.2 C-GEP using 4n2 Additional Space

Before explaining how I-GEP can be extended to handle arbitrary f and ΣG, we will define a function
τij which will play a crucial role in this extension.

Definition 3.1. For 1 ≤ i, j, l ≤ n, we define τij(l) to be the largest integer l′ ≤ l such that
〈i, j, l′〉 ∈ ΣG provided such an update exists, and 0 otherwise. More formally, for all i, j, l ∈ [1, n],
τij(l) = max l′ {l′ | l′ ≤ l ∧ 〈i, j, l′〉 ∈ ΣG ∪ {〈i, j, 0〉}}.

The significance of τ of can be explained as follows. We know from Theorem 2.1 that both F and
G apply the updates 〈i, j, k〉 in increasing order of k values. Hence, at any point of time during the
execution of F (or G) if c[i, j] is in state cl(i, j) (ĉl(i, j), resp.), where l 6= 0, then 〈i, j, τij(l)〉 is the
update that has left c[i, j] in this state. We also note the difference between π (defined in Definition
2.2) and τ : we know from Theorem 2.2 that immediately before applying 〈i, j, k〉 function F finds c[i, k]
in state cπ(j,k)(i, k), and from the definition of τ we know that 〈i, k, τik(π(j, k))〉 is the update that has
left c[i, k] in this state. Similar observation holds for δ defined in Definition 2.2.

We will extend I-GEP to full generality by modifying F in Figure 2 so that the updates performed
by it resemble equation 3.2 instead of equation 3.3. As described below, we achieve this by saving
suitable intermediate values of the entries of c in auxiliary matrices as F generates them. Note that
for all i, j, k ∈ [1, n], F computes ck−|j≤k|(i, k), ck−|i≤k|(k, j) and ck−|(i<k) ∨ (i=k ∧ j≤k)|(k, k) before it
computes ck(i, j) since we know from Observation 2.2 that π(j, k) ≥ k − |j ≤ k|, π(i, k) ≥ k − |i ≤ k|
and δ(i, j, k) ≥ k − |(i < k) ∨ (i = k ∧ j ≤ k)| for all i, j, k ∈ [1, n]. However, these values could be
overwritten before F needs to use them. In particular, we may lose certain key values as summarized
in the observation below which follows from Theorem 2.1 and the definition of τ .

Observation 3.1. Immediately before F applies the update 〈i, j, k〉 ∈ ΣG:
(a) if τik (π(j, k)) > k − |j ≤ k| then c[i, k] may not necessarily contain ck−|j≤k|(i, k);
(b) if τkj (π(i, k)) > k − |i ≤ k| then c[k, j] may not necessarily contain ck−|i≤k|(i, k); and
(c) if τkk (δ(i, j, k)) > k − |(i < k) ∨ (i = k ∧ j ≤ k)| then c[k, k] may not necessarily contain

ck−|(i<k) ∨ (i=k ∧ j≤k)|(k, k).

If the condition in Observation 3.1(a) holds, we must save ck−|j≤k|(i, k) as soon as it is generated
so that it can be used later by 〈i, j, k〉. However, ck−|j≤k|(i, k) is not necessarily generated by
〈i, k, k − |j ≤ k|〉 since this update may not exist in ΣG in the first place. If τij(k − |j ≤ k|) 6= 0,
then 〈i, k, τij(k − |j ≤ k|)〉 is the update that generates ck−|j≤k|(i, k), and we must save this value
after applying this update and before some other update modifies it. If τij(k − |j ≤ k|) = 0, then
ck−|j≤k|(i, k) = c0(i, k), i.e., update 〈i, j, k〉 can use the initial value of c[i, k]. A similar argument
applies to c[k, j] and c[k, k] as well.

Now in order to identify the intermediate values of each c[i, j] that must be saved, consider the
accesses made to c[i, j] when executing the original GEP code in Figure 1.

Observation 3.2. The GEP code in Figure 1 accesses each c[i, j]:
(a) as c[i, j] at most once in each iteration of the outer for loop for applying updates 〈i, j, k〉 ∈ ΣG;
(b) as c[i, k] only in the j-th iteration of the outer for loop, for applying updates 〈i, j′, j〉 ∈ ΣG for

all j′ ∈ [1, n];
(c) as c[k, j] only in the i-th iteration of the outer for loop, for applying updates 〈i′, j, i〉 ∈ ΣG for

all i′ ∈ [1, n]; and
(d) if i = j, as c[k, k] in the i-th iteration of the outer for loop for applying updates 〈i′, j′, i〉 ∈ ΣG

for all i′, j′ ∈ [1, n].

11

The updates in Observation 3.2(a) do not need to be stored separately, since we know from Theorem
2.1 that both GEP and I-GEP apply the updates on a fixed c[i, j] in exactly the same order.

Now consider the accesses to c[i, j] in parts (b), (c) and (d) of Observation 3.2. By inspecting the code
in Figure 1 (see also equation 3.2), we observe that immediately before G applies the update 〈i, j′, j〉
in Observation 3.2(b), c[i, j] = ĉj−1(i, j) = ĉτij(j−1)(i, j) if j′ ≤ j, and c[i, j] = ĉj(i, j) = ĉτij(j)(i, j)
otherwise. Similarly, immediately before applying the update 〈i′, j, i〉 in Observation 3.2(c), c[i, j] =
ĉi−1(i, j) = ĉτij(i−1)(i, j) if i′ ≤ i, and c[i, j] = ĉi(i, j) = ĉτij(i)(i, j) otherwise. When G is about to apply
an update 〈i′, j′, i〉 from Observation 3.2(d), c[i, j] = ĉi−1(i, j) = ĉτij(i−1)(i, j) if i′ < i ∨ (i′ = i ∧ j′ ≤ j),
and c[i, j] = ĉi(i, j) = ĉτij(i)(i, j) otherwise.

Therefore, F must be modified to save the value of c[i, j] immediately after applying the update
〈i, j, k〉 ∈ ΣG for k ∈ {τij(i− 1), τij(i), τij(j − 1), τij(j)}. Observe that since there are exactly n2 possible
(i, j) pairs, we need to save at most 4n2 intermediate values.

In Figure 6 we present the modified version of F, which we call H. The algorithm has exactly the
same structure as F, i.e., it accepts the same inputs as F (one square matrix X, and two integers k1

and k2) and assumes the same preconditions on inputs, it decomposes the input matrix in exactly the
same way, and processes the submatrices in the same order using similar functions as F does. The only
difference between F and H is in the way the updates are performed. In line 3, F updates c[i, j] using
entries directly from c, i.e., it updates c[i, j] using whatever values c[i, j], c[i, k], c[k, j] and c[k, k] have at
the time of the update. In contrast, H uses four n×n matrices u0, u1, v0 and v1 for saving appropriate
intermediate values computed for the entries of c as discussed above, which it uses for future updates.
We assume that each of the tests in lines 5–8 involving τij can be performed in constant time without
incurring any additional cache misses.

I/O Complexity & Running Time. The number of cache misses incurred by H can be described
using the same recurrence relation (equation 2.1) that was used to describe the cache misses incurred

by F in Section 2, and hence the I/O complexity remains the same, i.e., O
(

n3

B
√

M

)

. Function H also

has the same O
(

n3
)

running time as F, since it only incurs a constant overhead per update applied.

Correctness. Since Theorems 2.1 and 2.2 in Section 2 were proved based on the structural properties
of F and not on the actual form of the updates, they continue to hold for H.

The correctness of H, i.e., that it correctly implements equation 3.2 and thus G, follows directly
from the following lemma, which can be proved by induction on k using Theorems 2.1 and 2.2, and by
observing that H saves all required intermediate values in lines 5–8.

Lemma 3.1. Immediately before H performs the update 〈i, j, k〉, the following hold: c[i, j] =
ĉk−1(i, j), v|j>k|[i, k] = ĉk−|j≤k|(i, k), h|i>k|[k, j] = ĉk−|i≤k|(k, j) and v|(i>k) ∨ (i=k ∧ j>k)|[k, k]) =
ĉk−|(i<k) ∨ (i=k ∧ j≤k)|(k, k).

3.3 Reducing the Additional Space

We can reduce the amount of extra space used by H (Figure 6) by observing that at any point
during the execution of H we do not need to store more than n2 + n intermediate values for future use.
In fact, we will show that it is sufficient to use four n

2 × n
2 matrices and two vectors of length n

2 each for
storing intermediate values, instead of using four n× n matrices.

Let U ≡ u0[1 . . . n, 1 . . . n], U ≡ u1[1 . . . n, 1 . . . n], V ≡ v0[1 . . . n, 1 . . . n] and V ≡ v1[1 . . . n, 1 . . . n].
By U11, U12, U21 and U22 we denote the top-left, top-right, bottom-left and bottom-right quadrants of
U , respectively. We identify the quadrants of U , V and V similarly. For i ∈ [1, 2], let Di and Di denote
the diagonal entries of Uii and U ii, respectively.

12

Now consider the initial call to H, i.e., H(X, k1, k2) where X = c, k1 = 1 and k2 = n. We show
below that the forward pass in line 11 of this call can be implemented using only n2 + n extra space. A
similar argument applies to the backward pass (line 12) as well.

The first recursive call H(X11, k1, k2) in line 11 will generate U11, U11, V11, V 11, D1 and D1. The
amount of extra space used by this recursive call is thus n2+n. The entries in U11 and V11, however, will
not be used by any future updates, and hence can be discarded. The second recursive call H(X12, k1, k2)
will use U11, D1 and D1, and generate V12 and V 12 in the space freed by discarding U11 and V11. Each
update 〈i, j, k〉 applied by this recursive call retrieves u|j>k|[i, k] from U11, v|i>k|[k, j] from V12 or V 12,

and u|(i>k) ∨ (i=k ∧ j>k)|[k, k] from D1 or D1. Upon return from H(X12, k1, k2) we can discard the

entries in U11 and V12 since they will not be required for any future updates. The next recursive call
H(X12, k1, k2) will use V 11, D1 and D1, and generate U21 and U21 in the space previously occupied
by U11 and V12. Each update performed by this recursive call retrieves u|j>k|[i, k] from U21 or U21,

v|i>k|[k, j] from V 11, and u|(i>k) ∨ (i=k ∧ j>k)|[k, k] from D1 or D1. The last function call H(X22, k1, k2)

in line 11 will use U21, V 12, D1 and D1 for updates, and will not generate any intermediate values.
Thus line 11 can be implemented using only four additional n

2 × n
2 matrices and two vectors of length

n
2 each.

Therefore, H can be implemented to work with any arbitrary f and arbitrary ΣG at the expense
of only n2 + n extra space. The running time and the I/O complexity of this implementation remain

O
(

n3
)

and O
(

n3

B
√

M

)

, respectively.

4 Applications of Cache-Oblivious I-GEP

In this section we consider I-GEP for generalized versions of three major GEP applications considered
in [6]. Though the C-GEP implementation given in Section 3 works for all instances of f and ΣG, it uses
extra space, and is slightly more complicated than I-GEP. Our experimental results in Section 6 also
show that I-GEP performs slightly better than both variants of C-GEP. Hence an I-GEP implementation
is preferable to a C-GEP implementation if it can be proved to work correctly for a given GEP instance.

We consider the following applications of I-GEP in this section.

• In Section 4.1 we consider I-GEP for a class of applications that includes Gaussian elimination
without pivoting, where we restrict ΣG but allow f to be unrestricted.

• In Section 4.2 we consider a class of applications where we do not impose any restrictions on ΣG,
but restrict f to receive all its inputs except the first one (i.e., except c[i, j]) from matrices that
remain unmodified throughout the computation. An important problem in this class is matrix
multiplication.

• In Section 4.3 we consider I-GEP for path computations over closed semirings which includes
Floyd-Warshall’s APSP algorithm [9] and Warshall’s algorithm for finding transitive closures [23].
For this class of problems we restrict both f and ΣG.

At the end of this paper (Section 7) we consider the remaining two applications of I-GEP mentioned
in [6].

4.1 Gaussian Elimination without Pivoting
Gaussian elimination without pivoting is used in the solution of systems of linear equations and LU

decomposition of symmetric positive-definite or diagonally dominant real matrices [5]. We represent a
system of n− 1 equations in n− 1 unknowns (x1, x2, . . . , xn−1) using an n× n matrix c, where the i’th
(1 ≤ i < n) row represents the equation ai,1x1 + ai,2x2 + . . . + ai,n−1xn−1 = bi. The method proceeds in

13

G(c, 1, n)

(The input c[1 . . . n, 1 . . . n] is an n × n matrix. Function f(·, ·, ·, ·) is a problem-specific function, and for
Gaussian elimination without pivoting f(x, u, v, w) = x− u

w
× v.)

1. for k ← 1 to n do

2. for i← 1 to n do

3. for j ← 1 to n do

4. if (k ≤ n− 2) ∧ (k < i < n) ∧ (k < j) then c[i, j]← f(c[i, j], c[i, k], c[k, j], c[k, k])

Figure 7: A more general form of the first phase of Gaussian elimination without pivoting.

1. for k ← 1 to n do

2. for i← 1 to n do

3. for j ← 1 to n do

4. c[i, j]← c[i, j]+a[i, k]× b[k, j]

1. for k ← 1 to n do

2. for i← 1 to n do

3. for j ← 1 to n do

4. if 〈i, j, k〉 ∈ ΣG then

c[i, j]← f(c[i, j], a[i, k], b[k, j], d[k, k]) {a, b, d 6= c}
(a) (b)

Figure 8: (a) Modified matrix multiplication algorithm, (b) A more general form of the algorithm in
Figure 8(a).

two phases. In the first phase, an upper triangular matrix is constructed from c by successive elimination
of variables from the equations. This phase requires O(n3) time and O(n3

B
) I/Os. In the second phase,

the values of the unknowns are determined from this matrix by back substitution. It is straight-forward

to implement this second phase in O(n2) time and O
(

n2

B

)

I/Os, so we will concentrate on the first

phase.
The first phase is an instantiation of the GEP code in Figure 1. In Figure 7 we give a computation

that is a more general form of the computation in the first phase of Gaussian elimination without
pivoting in the sense that the update function f in Figure 7 is arbitrary. The if condition in
line 4 ensures that i > k and j > k hold for every update 〈i, j, k〉 applied on c, i.e., ΣG =
{〈i, j, k〉 : (1 ≤ k ≤ n− 2) ∧ (k < i < n) ∧ (k < j ≤ n)}.

The correctness of the I-GEP implementation of the code in Figure 7 can be proved by induction on
k using Theorem 2.2 and by observing that each c[i, j] (1 ≤ i, j ≤ n) settles down (i.e., is never modified
again) before it is ever used on the right hand side of an update.

As described in [6] and also in Appendix B, we can apply static pruning on the resulting I-GEP
implementation to remove unnecessary recursive calls from the pseudocode.

A similar method solves LU decomposition without pivoting within the same bounds. Both
algorithms are in-place. Our algorithm for Gaussian elimination which originally appeared in our
earlier paper [6], is arguably simpler than existing algorithms since it does not use LU decomposition
as an intermediate step, and thus does not invoke subroutines for multiplying matrices or solving
triangular linear systems, as is the case with other cache-oblivious algorithms for this problem [25, 3, 20].

4.2 Matrix Multiplication
We consider the problem of computing C = A × B, where A, B and C are n × n matrices. Though

standard matrix multiplication does not fall into GEP, it does after the small structural modification

14

Initial Values:

∀1≤i,j≤nc[i, j] =

�
1 if i = j,
l (vi, vj) otherwise.

(a)

Computation of Path Costs:

1. for k ← 1 to n do

2. for i← 1 to n do

3. for j ← 1 to n do

4. c[i, j]← c[i, j]⊕ (c[i, k]⊙ c[k, j])

(b)
Figure 9: Computation of path costs over a closed semiring (S,⊕,⊙, 0, 1): (a) Initialization of c, (b)
Computation of path costs.

shown in Figure 8(a) (index k is in the outermost loop in the modified algorithm, while in the standard
algorithm it is in the innermost loop); correctness of this transformed code is straight-forward. In [6]
we considered this transformed code (in Figure 8(a)) for I-GEP implementation.

The algorithm in Figure 8(b) generalizes the computation in step 4 of Figure 8(a) to update c[i, j]
to a new value that is an arbitrary function of c[i, j], a[i, k], b[k, j] and d[k, k], where matrices a, b, d 6= c.

The correctness of the I-GEP implementation of the code in Figure 8(b) follows from Theorem 2.1
and from the observation that matrices a, b and d remain unchanged throughout the entire computation.

4.3 Path Computations Over a Closed Semiring
An algebraic structure known as a closed semiring [2] serves as a general framework for solving path

problems in directed graphs. In [2], an algorithm is given for finding the set of all paths between each
pair of vertices in a directed graph. Both Floyd-Warshall’s algorithm for finding all-pairs shortest paths
[9] and Warshall’s algorithm for finding transitive closures [23] are instantiations of this algorithm.

Consider a directed graph G = (V,E), where V = {v1, v2, . . . , vn}, and each edge (vi, vj) is labeled
by an element l(vi, vj) of some closed semiring (S,⊕,⊙, 0, 1). If (vi, vj) /∈ E, l(vi, vj) is assumed to have
a value 0. The path-cost of a path is defined as the product (⊙) of the labels of the edges in the path,
taken in order. The path-cost of a zero length path is 1. For each pair vi, vj ∈ V , c[i, j] is defined to be
the sum of the path-costs of all paths going from vi to vj . By convention, the sum over an empty set of
paths is 0. Even if there are infinitely many paths between vi and vj (due to presense of cycles), c[i, j]
will still be well-defined due to the properties of a closed semiring.

The algorithm given in Figure 9(b), which is an instance of GEP, computes c[i, j] for all pairs
of vertices vi, vj ∈ V . This algorithm performs O

(

n3
)

operations and uses O
(

n2
)

space. In [6] we
considered Floyd-Warshall’s APSP which is a specialization of the algorithm in Figure 9(b) in that it
performs computations over a particular closed semiring (ℜ,min,+,+∞, 0).

Correctness of I-GEP Implementation of Figure 9(b). Recall that c0(i, j) is the initial value of
c[i, j] received by the I-GEP function F in Figure 2, and ck(i, j) (1 ≤ i, j ≤ n) denotes the value of c[i, j]
after all updates 〈i, j, k′〉 ∈ ΣG with k′ ≤ k, and no other updates have been performed on it by F.

For i, j ∈ [1, n] and k ∈ [0, n], let P k
i,j denote the set of all paths from vi to vj with no intermediate

vertex higher than vk, and let Qk
i,j be the set of all paths from vi to vj that have contributed to the

computation of ck(i, j).
The correctness of the I-GEP implementation of the code in Figure 9(b) follows from the following

lemma, which can be proved by induction on k using Theorems 2.1 and 2.2.

Lemma 4.1. For all i, j, k ∈ [1, n], Qk
i,j ⊇ P k

i,j.

Since for i, j ∈ [1, n], Pn
i,j contains all paths from vi to vj , we have Qn

i,j ⊆ Pn
i,j, which when combined

with Qn
i,j ⊇ Pn

i,j obtained from lemma 4.1, results in Qn
i,j = Pn

i,j.

15

1. for i← 1 to n do

2. for j ← 1 to n do

3. for k ← 1 to n do

4. c[i, j]← c[i, j] + a[i, k]× b[k, j]

1. for i← 1 to n by T do {T is the tile size}
2. for j ← 1 to n by T do

3. for k ← 1 to n by T do

4. for i′ ← i to min(i + T − 1, n) do

5. for j′ ← j to min(j + T − 1, n) do

6. for k′ ← k to min(k + T − 1, n) do

7. c[i′, j′]← c[i′, j′] + a[i′, k′]× b[k′, j′]

Figure 10: (a) Traditional matrix multiplication algorithm, (b) Tiled version of the matrix multiplica-
tion algorithm of part (a) [16].

5 Cache-Oblivious GEP and Compiler Optimization

‘Tiling’ is a powerful loop transformation technique employed by optimizing compilers for improving
temporal locality in nested loops [16]. This transformation partitions the iteration-space of nested loops
into a series of small polyhedral areas of a given tile size which are executed one after the other. Tiling
a single loop replaces it by a pair of loops, and if the tile size is T then the inner loop iterates T times,
and the outer loop has an increment equal to T (assuming that the original loop had unit increments).
This transformation can be applied to arbitrarily deep nested loops. Figure 10(b) shows a tiled version
of the triply nested loop shown in Figure 10(a) that occurs in matrix multiplication [16].

Cache performance of a tiled loop depends on the chosen tile size T . Choice of T , in turn, crucially
depends on (1) the type of the cache (direct mapped or set associative), (2) cache size, (3) block transfer
size (i.e., cache line size), and (4) the loop bounds [16, 26]. Thus tiling is a highly system-dependent
technique. Moreover, since only a single tile size is chosen, tiling cannot be optimized for all levels of a
memory hierarchy simultaneously.

The I-GEP code in Figure 2 and the C-GEP code given in Figure 6 can be viewed as cache-oblivious
versions of tiling for the triply nested loops of the form as shown in Figure 1. The nested loop in Figure
1 has an n×n×n iteration-space. Both I-GEP and C-GEP are initially invoked on this n×n×n cube,
and at each stage of recursion they partition the input cube into 8 equal-sized subcubes, and recursively
process each subcube. Hence, at some stage of recursion, they are guaranteed to generate subcubes of
size T ′×T ′×T ′ such that T

2 < T ′ ≤ T , where T is the optimal tile size for any given level of the memory
hierarchy. Thus for each level of the memory hierarchy both I-GEP and C-GEP cache-obliviously choose
a tile size that is within a constant factor of the optimal tile size for that level. We can, therefore, use
I-GEP and C-GEP as cache-oblivious loop transformations for the memory hierarchy.

C-GEP. C-GEP is a legal transformation for any nested loop that conforms to the GEP format given
in Figure 1. In order to apply this transformation the compiler must be able to evaluate τij(i − 1),
τij(i), τij(j − 1) and τij(j) for all i, j ∈ [1, n]. For most practical problems this is straight-forward; for
example, when ΣG = {〈i, j, k〉 | i, j, k ∈ [1, n]} which occurs in path computations over closed semirings
(see Section 4.3), or even if the computation is not over a closed semiring, we have τij(l) = l for all
i, j, l ∈ [1, n].

I-GEP. Though C-GEP is always a legal transformation for GEP loops, I-GEP is not. Due to the
space overhead of C-GEP, I-GEP should be the transformation of choice wherever it is applicable.
Moreover, experimental results (see Section 6) suggest that I-GEP outperforms C-GEP in both in-core
and out-of-core computations.

We discuss below several conditions based on which the compiler can decide whether I-GEP is a
legal transformation for a given GEP code.

First consider the special version of the GEP code presented in our earlier paper [6] (in Figure

16

6 of [6]) that occurs frequently in practice. In this version the outermost for loop for k runs from
κ1 to κ2, the middle for loop for i runs from ι1(k) to ι2(k), and the innermost loop for j runs
from ζ1(k, i) to ζ2(k, i), where κ1 and κ2 are problem-specific constants, and ι1(·), ι2(·), ζ1(·, ·) and
ζ2(·, ·) are problem-specific functions. This version can be obtained from GEP in Figure 1 by setting
ΣG = { 〈i, j, k〉 | k ∈ [κ1, κ2] ∧ i ∈ [ι1(k), ι2(k)] ∧ j ∈ [ζ1(k, i), ζ2(k, i)] }.

Based on the applications considered in Section 4, it is straight-forward to verify that I-GEP is
a legal transformation for the GEP version described above (and given in Figure 6 of [6]) under the
following conditions:

(i) for all k ∈ [κ1, κ2], ι1(k) > k hold, and for all k ∈ [κ1, κ2] and i ∈ [ι1(k), ι2(k)], ζ1(i, k) > k hold

(example: Gaussian elimination without pivoting in Section 4.1);

(ii) update 〈i, j, k〉 is of the form c[i, j]← f(c[i, j], a[i, k], b[k, j], d[k, k]), where a, b, d 6= c

(example: matrix multiplication in Section 4.2);

(iii) all three loop indices (i, j, k) range from 1 to n, and update 〈i, j, k〉 is of the form c[i1, j1] ←
c[i1, j1]⊕ (c[i1, k1]⊙ c[k1, j1]), where the computation is over a closed semiring (S,⊕,⊙, 0, 1)

(example: Floyd-Warshall’s APSP in Section 4.3).

Assuming that ζ1(i, k) is a nondecreasing function of i, the conditions in part (i) of the observation
above are equivalent to testing that neither ι1(k) ≤ k nor ζ1(ι1(k), k) ≤ k has a solution in [κ1, κ2]. This
verification requires time independent of n. Parts (ii) and (iii) can also be verified in constant time.

Now consider the general GEP code in Figure 1. Recall the definition of π from Section 2 (and
Appendix A), and the definition of τij from Section 3.2 (Definition 3.1). The following lemma follows
from Observations 3.1 and 3.2 in Section 3.2, and also from the observation that I-GEP will correctly
implement GEP if for each c[i, j] and each update in ΣG that uses c[i, j] on the right hand side, c[i, j]
retains the correct value needed for that update until I-GEP applies the update.

Lemma 5.1. If τij(π(k, i)) ≤ i − |k ≤ i| for all 〈i, k, j〉 ∈ ΣG, and τij(π(k, j)) ≤ j − |k ≤ j| for all
〈k, j, i〉 ∈ ΣG, then I-GEP is a legal transformation for the GEP code in Figure 1.

6 Experimental Results

We implemented I-GEP (Section 1.1) and both 4n2-space and (n2+n)-space variants of C-GEP (Section
3). We compared these three implementations with the original GEP implementation (Figure 1) for
both in-core (i.e., when all data completely fit in internal memory) and out-of-core (i.e., when only
portions of the data fit in internal memory) computations. We used ΣG = { 〈i, j, k〉 | i, j, k ∈ [1, n] },
and updates of the form c[i, j] ← min(c[i, j], c[i, k] + c[k, j]) which occur in Floyd-Warshall’s APSP
algorithm [9, 23].

For in-core computations we obtained timing and caching data on two state-of-the-art architectures:
Intel Xeon and SUN UltraSPARC-III+. We ran our out-of-core experiments on Intel Xeon machines
each equipped with a fast (4.5 ms average seek time) hard disk, and used the STXXL software library
[7, 8] for external memory accesses. Here is a summary of the results we obtained:

• GEP vs. I-GEP/C-GEP.

- In-Core Running Time: I-GEP and both variants of C-GEP ran upto 1.7 times faster than
GEP even when the entire input fit in internal memory.

17

- L2 Cache Misses: GEP incurred upto 100 times more L2 cache misses than I-GEP and both
variants of C-GEP.

- Out-of-Core I/O Wait Time: When the internal memory available to the algorithms was
restricted to half the size of the input matrix, GEP spent upto 500 times more time waiting
for I/Os than I-GEP, and upto 180 times more than either variant of C-GEP.

The relative performance of I-GEP/C-GEP with respect to GEP improved as the size of the input
increased.

• I-GEP vs. C-GEP. In general, in all of our experiments, I-GEP performed the best, followed
by the 4n2-space variant of C-GEP, which, in turn, performed slightly better than its (n2+n)-space
variant. I-GEP and both variants of C-GEP ran faster than GEP when n ≥ 211.

We describe our experiments in more details below.

6.1 In-Core Computation. We ran all implementations on n× n matrices initialized with random
floating point values (4 bytes each), for n = 2t, t ∈ [8, 13].

6.1.1 Computing Environment. The experiments were run on the following two architectures:

• Intel Xeon. A dual processor 3.06 GHz Intel Xeon shared memory machine with 4 GB of RAM
and running Ubuntu Linux 5.10 “Breezy Badger”. Each processor had an 8 KB L1 data cache
(4-way set associative) and an on-chip 512 KB unified L2 cache (8-way). The block size was 64
bytes for both caches.

• SUN Blade. A 1 GHz Sun Blade 2000/1000 (UltraSPARC-III+) with 1 GB of RAM and running
SunOS 5.9. The processor had an on-chip 64 KB L1 data cache (4-way) and an off-chip 8 MB L2
cache (2-way). The block sizes were 32 bytes for the L1 cache and 512 bytes for the L2 cache.

We used the Cachegrind profiler [19] for simulating cache effects on Intel Xeon. The caching data
on the Sun Blade was obtained using the cputrack utility that keeps track of hardware counters. All
algorithms were implemented in C using a uniform programming style and compiled using gcc 3.3.4
with optimization parameter -O3. Each machine was exclusively used for experiments (i.e., no other
programs were running on them), and on multi-processor machines only a single processor was used.

6.1.2 Implementation Details. We applied the following additional optimizations on our imple-
mentations:

• In both I-GEP and C-GEP, in order to reduce the overhead of recursion we solve the problem
directly using GEP once the input submatrix X received by the recursive functions becomes very
small. We call the size of the input submatrix at which we switch back to GEP the base-size. For
each implementation, the best value of base-size, i.e., for which the implementation ran the fastest,
was determined empirically on each machine. On Sun Blade we chose 16×16 as the base-size, while
on Intel Xeon it was 128× 128 for all three implementations of I-GEP and C-GEP.

The above optimization improves running time at the expense of non-optimal I/O complexity for
base-size. An alternative to this approach would be to unroll the recursion once the computation
reaches matrices of size base-size × base-size, and apply the sequence of updates obtained from
the unrolled recursion in a loop. This approach maintains optimal I/O complexity for base-size.
However, depending on how unrolling is implemented upto Θ

(

base-size3
)

space is required for
storing the unrolled update sequence, and thus it is suitable only when the unrolled sequence is
short enough to fit in the L1 cache.

18

n

256
512

1,024
2,048
4,096
8,192

GEP
L2 misses

(c0)

11
45

3,603
475,802

4,324,782
34,593,080

I-GEP
L2 misses ratio

(c1) (c0/c1)

11 1.00
56 0.80

404 8.92
3,888 122.38

32,075 134.83
249,236 138.80

C-GEP (4n2 space)
L2 misses ratio

(c2) (c0/c2)

29 0.38
155 0.29

1,065 3.38
5,734 82.98

42,272 102.31
334,306 103.48

C-GEP (n2 + n space)
L2 misses ratio

(c3) (c0/c3)

16 0.69
76 0.59

749 4.81
7,321 64.99

45,544 94.96
352,581 98.11

Table 1: L2 cache misses (×103) on Sun Blade 2000/1000 with an L2 cache
of size 8 MB and 512 B blocks. The figures are averages of 3 runs on random
inputs.

n

256
512

1,024
2,048
4,096
8,192

GEP
runtime

(t0)

0.34
2.71

22.09
229.37

1,893.89
15,352.28

I-GEP
runtime ratio

(t1) (t0/t1)

0.29 1.17
2.25 1.20

17.69 1.25
140.50 1.63

1,118.22 1.69
8,937.21 1.72

C-GEP (4n2 space)
runtime ratio

(t2) (t0/t2)

0.31 1.10
2.32 1.17

18.11 1.22
141.20 1.62

1,115.76 1.70
9,047.20 1.70

C-GEP (n2 + n space)
runtime ratio

(t3) (t0/t3)

0.31 1.10
2.36 1.15

18.00 1.23
141.22 1.62

1,113.34 1.70
8,851.79 1.73

Table 2: Running time (in seconds) on Sun Blade 2000/1000. The figures
are averages of 3 runs on random inputs.

n

256
512

1,024
2,048
4,096

GEP
L2 misses

(c0)

11
8,450

67,498
537,912

4,299,160

I-GEP
L2 misses ratio

(c1) (c0/c1)

21 0.52
167 50.60

1,286 52.49
10,157 52.96
80,857 53.17

C-GEP (4n2 space)
L2 misses ratio

(c2) (c0/c2)

97 0.11
456 18.53

2,413 27.97
14,584 36.88
98,354 43.71

C-GEP (n2 + n space)
L2 misses ratio

(c3) (c0/c3)

72 0.15
484 17.46

2,602 25.94
15,202 35.38
99,963 43.01

Table 3: L2 cache misses (×103) on Intel Xeon with an L2 cache of size 512
KB and 64 B blocks.

n

256
512

1,024
2,048
4,096
8,192

GEP
runtime

(t0)

0.08
0.72
5.38

43.46
350.06

2,766.64

I-GEP
runtime ratio

(t1) (t0/t1)

0.08 1.00
0.61 1.18
4.74 1.14

37.82 1.15
291.46 1.20

2,314.28 1.20

C-GEP (4n2 space)
runtime ratio

(t2) (t0/t2)

0.14 0.57
0.88 0.82
5.93 0.91

41.85 1.04
316.18 1.11

2,436.62 1.14

C-GEP (n2 + n space)
runtime ratio

(t3) (t0/t3)

0.15 0.53
0.98 0.73
6.22 0.86

43.26 1.00
324.12 1.08

2,459.65 1.12

Table 4: Running time (in seconds) on Intel Xeon. The figures are averages
of 3 runs on random inputs.

19

• Once the computation reached base-size, we copied all necessary base-size× base-size blocks from
the input matrix to static matrices of size base-size×base-size, and performed the GEP computation
on these smaller matrices. This optimization reduces cache-conflicts in set-associative caches by
always using the same non-conflicting blocks of memory for computation. Another approach to
reduce these cache-conflicts (which we did not use) would be to use matrices of size n× (n + c) to
store n × n input matrices, where c is a prime number. This latter approach reduces the chances
of mapping two different blocks (starting at different rows) of the input matrix to the same set in
the cache by making the distance between them not be a power of 2.

• We used a linear array to store the input matrix, and rearranged the entries of the matrix so
that all entries of each base-size × base-size block occupy consecutive locations in the array. This
optimization reduces the number of I/Os for reading off any base-size×base-size block from the input
matrix to O

(

1 + base-size×base-size
B

)

down from O
(

base-size + base-size×base-size
B

)

. It also increases the
effectiveness of the prefetcher.

• We optimized the kernel (lines 3–8) of C-GEP for base-size, so that very little unnecessary
computation is performed while solving it. For example, if j2 < k1 holds for some specific base case
computation, we know that v0 will never be accessed in line 4 during that computation, and so the
3rd parameter of f can be fixed to v1[k, j].

6.1.3 Results. We summarize our results below.

• L2 Misses. In Tables 1 and 3 we tabulate the L2 cache misses incurred by all implementations
on SUN Blade and Intel Xeon, respectively. On SUN Blade we obtained caching data for n upto
213. However, since the Cachegrind profiler slows down the running program considerably, we
did not obtain caching data for n larger than 212 on Intel Xeon. On both machines, I-GEP and
both implementations of C-GEP make better use of the L2 cache than GEP, and as the input
size grows they utilize the cache even better. On SUN Blade, for n = 213, GEP incurs about 139
times more L2 misses than I-GEP , and about 103 and 98 times more than 4n2-space and n2 + n-
space implementations of C-GEP, respectively. On Intel Xeon, GEP incurs about 53 times more L2
misses compared to I-GEP, and about 43 times more than any variant of C-GEP. As expected, both
versions of C-GEP incur more L2 misses compared to I-GEP, since they use more space. However,
on both machines, the (n2+n)-space variant of C-GEP incurred slightly more cache misses than the
4n2-space variant. We think this happens because blocks from a smaller memory segment collide
more frequently in the set associative cache compared to blocks from a larger segment.

• Running Times. We tabulate the running times of all implementations on SUN Blade and Intel
Xeon in Tables 2 and 4, respectively. On SUN Blade, I-GEP and both variants of C-GEP always
run faster than GEP; the larger the input the faster they become compared to GEP. For large
inputs all these three implementations run almost at the same speed, and for n = 213, all of them
run at least 1.70 times faster than GEP. For n = 213, however, the 4n2-space variant of C-GEP
overflows the internal memory, and the OS starts using the swap space (1 GB) on disk, which
explains why this variant does not speed-up as expected for moving from n = 212 to n = 213.

On Intel Xeon, I-GEP always runs faster than GEP, while both variants of C-GEP catch-up with
GEP once n reaches 211. After that point on, the larger the input becomes the faster they become
compared to GEP. However, I-GEP runs the fastest on Xeon, followed by the 4n2-space C-GEP,
which is, in turn, slightly faster than the (n2 + n)-space C-GEP. For n = 213, I-GEP runs 1.20
times faster than GEP, while 4n2-space and (n2 + n)-space C-GEP run 1.14 and 1.12 times faster
than GEP, respectively.

20

I/O Wait Time in Seconds
(Computation Time in Seconds)

(as a function of internal memory size M when M ≤ input size 8n2)

M = input size = 8n2 bytes M = 1

2
× input size = 4n2 bytes M = 1

4
× input size = 2n2 bytes

n 1,024 2,048 4,096 1,024 2,048 4,096 1,024 2,048 4,096

GEP
0

(180)

0
(1,475)

0
(12,140)

945
(193)

7,527
(1,605)

60,305
(12,781)

931
(193)

7,500
(1,563)

60,359
(12,310)

I-GEP
5

(254)

20
(1,991)

77
(16,866)

8
(259)

30
(2,090)

121
(17,228)

14
(258)

45
(2,211)

176
(17,398)

C-GEP
(4n2)

17
(282)

67
(2,216)

278
(18,640)

21
(285)

79
(2,230)

321
(18,136)

29
(283)

98
(2,253)

398
(17,952)

C-GEP
(n2 + n)

14
(308)

50
(2,312)

195
(18,690)

21
(300)

80
(2,426)

319
(18,568)

30
(290)

110
(2,493)

439
(18,695)

Table 5: I/O wait time (in seconds) on Intel Xeon equipped with a 73.5 GB Fujitsu MAP3735NC hard
disk when internal memory (M) available to the algorithm is varied using STXXL. The corresponding
computation times (also in seconds) are given within parentheses. The total running time is the sum
of computation time and I/O wait time. Figures are averages of three independent runs on matrices
initialized with random double-precision floats.

The speed-ups obtained from using I-GEP and C-GEP on Intel Xeon are not as dramatic as those
obtained on SUN Blade possibly because the Xeon machine has faster caches and RAM than the
SUN machine, and also more effective prefetchers.

6.2 Out-of-Core Computation. We ran all implementations on n × n matrices initialized with
random double precision floating point values (8 bytes each), for n = 2t, t ∈ [10, 12]. We varied the
amount of internal memory available to each algorithm and measured the I/O wait time (i.e., time spent
waiting for an I/O operation to complete) in each case.

6.2.1 Computing Environment. We ran our experiments on dual processor (we used only 1
processor) 3.06 GHz Intel Xeon shared memory machines with 4 GB of RAM, and running Ubuntu
Linux 5.10 “Breezy Badger”. Each machine is connected to a 73.5 GB 10K RPM Fujitsu MAP3735NC
hard disk. Each hard disk has an 8 MB data buffer. The average seek time for reads and writes are 4.5
and 5.0 ms, respectively. The maximum data transfer rate (to/from media) is 106.9 MB/s.

We implemented all algorithms in C++, and compiled using the g++ 3.3.4 compiler with
optimization level -O3 and STXXL library version 0.9. The STXXL library [7, 8] is an implementation
of the C++ standard template library STL for external memory computations, and is used mainly for
experimentation with huge data sets. The STXXL library maintains its own fully associative cache in
RAM with pages from the disk. We compiled STXXL with DIRECT-I/O turned on, which ensures that
the OS does not cache the data read from or written to the hard disk.

21

6.2.2 Implementation Details. We applied all optimizations to our out-of-core implementations as
we did for the in-core versions.

For each implementation we allocated a single vector of size N , where N is the total space used
by the implementation, and allocated all matrices from that vector. This was done in order to restrict
the amount of internal memory used by the implementation by configuring the STXXL parameters of
the vector. The STXXL vectors are organized as a collection of blocks of size BlkSize which reside in
external memory. Accesses to these blocks are organized through a fully associative cache that consists
of Pages pages containing PgSz blocks each. The internal memory consumption of a vector is thus
Pages × PgSz × BlkSize . In our implementations, we set BlkSize to 64 KB (a practical disk block
size), and PgSz to 1 (since we are accessing a single disk). We accept Pages as a parameter which can
be used to vary the internal memory available to the single large vector we allocated in the program, and
thus also fix the amount of RAM available to the program itself. We have also configured the STXXL
vector to use LRU as the paging strategy.

6.2.3 Results. We tabulate our results in Table 5. We ran GEP, I-GEP and both variants of C-GEP
for n = 2t, t ∈ [10, 12]. We performed three sets of experiments. In the first set we set Pages so
that the internal memory available to the program is exactly the same as the size of the input, that is,
n2 × sizeof(double) = 8n2 bytes. For the second set of experiments M was set to 1

2 × input size = 4n2

bytes, and for the third set to 1
4 × input size = 2n2 bytes. For each set we tabulate the amount of

time spent by each implementation waiting for the I/O operations to complete, i.e., without doing any
actual computation. For each case, we also list (within parentheses) the amount of time spent by the
implementation performing actual computation. The total running time of the implementation is the
sum of these two.

We make the following observations from Table 5.

• When M = input size, GEP performs the entire computation in-core, and thus there is no I/O
wait time. However, both I-GEP and C-GEP use extra space for handling the base case, and
C-GEP uses extra space for saving intermediate values. Therefore, they cannot perform the entire
computation in-core, which explains their non-zero I/O wait times.

• As M is reduced to input size
2 , I/O wait time of GEP increases dramatically. For n = 210, GEP

spends about 118 times more time than I-GEP waiting for I/Os, and about 43 times more than
either variant of C-GEP. As n increases these ratios also increase, reaching 500 and 188, respectively,
for n = 212.

• As M is reduced from input size
2 to input size

4 , the I/O wait times of GEP do not change much, which

is expected since the I/O-complexity of GEP
(

O
(

n3

B

))

is independent of M . However, I/O wait

times of both I-GEP and C-GEP increase roughly by a factor of
√

2 ≈ 1.4, which is also expected

since the I/O complexities
(

O
(

n3

B
√

M

))

of both of these implementations have a
√

M factor in the

denominator.

• The computation time of each implementation (GEP, I-GEP or C-GEP) is much larger than the
running time of the corresponding in-core C implementation discussed in Section 6.1. This is due
to the overhead inherent in the STXXL implementation, which inflates the time needed for each
access to the STXXL vector. However, STXXL does not inflate the I/O wait times since these are
the times when the program is sitting idle (i.e., not doing any computation) for an I/O operation
to complete. We also observe that unlike the in-core computations in Section 6.1, the computation
times of I-GEP and C-GEP are larger than that of GEP. We think this happens because the
overhead in STXXL implementation makes the time required for computing the kernel (i.e., line 3

22

of I-GEP in Figure 2, and lines 3–8 of C-GEP in Figure 6) larger than the L2 cache latency, and
thus the running time is dominated by the cost of computing the kernel, rather than the cost of
accessing the caches. However, in spite of this inflation in computation time, we note that the I/O
wait time dominates the total running time of GEP.

7 Additional Applications of Cache-Oblivious I-GEP

In Section 4 we considered generalizations of three major applications of I-GEP from [6]. In this section
we consider in more detail the remaining two applications of I-GEP briefly mentioned in [6]:

• In Section 7.1 we consider a class of dynamic programs called ‘simple DP’ [4] that includes
important problems such as RNA secondary structure prediction, matrix chain multiplication
and construction of optimal binary search trees. In [6] we briefly outlined how simple DP can
be decomposed into a sequence of I-GEP instances using a decomposition technique from [12].
In Section 7.1 we provide a detailed description of this decomposition, its correctness and I/O
bounds.

• In [6] we studied the gap problem (i.e., sequence alignment with gaps), and presented the I-GEP
implementation of a GEP-like code derived from the classical gap dynamic program. However,
that result is not quite correct. In Section 7.2 we study the relationship of the classical gap
dynamic program to another GEP-like form and its associated I-GEP; we show that this GEP-like
form and its I-GEP correctly solve two special cases of the gap problem, and a small variant of
this I-GEP solves gap in its full generality.

7.1 Simple Dynamic Programs
In [4], the term simple dynamic program was used to denote a class of dynamic programming problems
over a nonassociative semi-ring (S, min, +, ∞)1 which can be solved in O

(

n3
)

time using the
dynamic program shown in Figure 11. Its applications include RNA secondary structure prediction,
optimal matrix chain multiplication, construction of optimal binary search trees, and optimal polygon

triangulation. An O
(

n3

B
√

M

)

I/O cache-oblivious algorithm based on Valiant’s context-free language

recognition algorithm [21] was given in [4] for this class of problems.
In this section, we consider a more general version of simple DP, which is called the parenthesis

problem in [12], and is described as follows (the generalization comes from the additional term w(i, k, j)):

c[i, j] =

{

xj if 0 ≤ i = j − 1 < n,
mini<k<j {c[i, k] + c[k, j] + w(i, k, j)} if 0 ≤ i < j − 1 < n;

(equation 7.4)

where xj’s are assumed to be given for j ∈ [1, n]. We also assume that w(·, ·, ·) is a function that can
be computed in-core without incurring any cache misses.

We describe below a method that transforms the dynamic program given in equation 7.4 to a
sequence of dynamic programs in GEP. In this method the upper triangular matrix c is decomposed
into (forward) diagonal strips of horizontal width n

1
4 , and the entries in c are computed one strip at a

time starting from the largest (leftmost) strip. The computation for each strip involves min-plus matrix
multiplication and dynamic programs that can be solved with cache-oblivious I-GEP. The resulting

algorithm runs in O
(

n3
)

time and O
(

n3

B
√

M

)

I/Os. Unlike I-GEP, however, this algorithm uses a

modest amount
(

O
(

n1.75
)

= o
(

n2
))

of extra space. This method is based on a parallel algorithm for the
parenthesis problem given in [12]. There are, however, two major differences between the transformation
described here and the algorithm in [12].

1In a nonassociative semi-ring min is an associative, commutative and idempotent binary operator; + is a nonassociative and
noncommutative binary operator; ∞ is the identity for min and annihilator for +; and the operators distribute over each other.

23

1. for i← 0 to n− 1 do c[i, i + 1]← xi+1

2. for d← 2 to n do

3. for i← 0 to n− d do

4. j ← i + d, c[i, j]←∞
5. for k ← i + 1 to j − 1 do

6. c[i, j]← min{c[i, j], c[i, k] + c[k, j]}

Figure 11: The O
(

n3
)

time simple DP algorithm.

(i) We reorder the execution of some of the steps in the algorithm (without affecting its correctness)
for better space utilization.

(ii) We reduce computations involving 4-dimensional arrays to computations on 2-dimensional arrays
(see step 2.1) so that GEP can be applied (since GEP works on a 2-dimensional input matrix).

We now describe the transformation. The recurrence relation in equation 7.4 can be viewed as
computing a binary tree of minimum weight [22] in which

(a) each vertex is given a unique label (i, j), 0 ≤ i < j ≤ n,

(b) leaves are labeled (i, i + 1), i ∈ [0, n − 1] in order from left to right with xi+1 being the weight of
leaf (i, i + 1), and

(c) each internal node (i, j) has weight w(i, k, j), left child (i, k) and right child (k, j) for some
k ∈ [i + 1, j − 1], and its descendant leaves are labeled (i′, i′ + 1) for i ≤ i′ < j.

For each (i, j) with 0 ≤ i < j ≤ n, the dynamic program given by equation 7.4 computes in c[i, j]
the cost g(i, j) of the optimal (i.e., minimum-weight) binary tree rooted at (i, j). A partial tree T is
defined to be a tree rooted at some vertex (i, j) with the subtree rooted at one of its non-leaf nodes
(r, s) deleted. Then (r, s) is said to be the gap of T (not related to the Gap problem in Section 7.2).
Let L(r, j, i, j), r > i, be the cost of the partial tree rooted at (i, j) with gap (r, j) such that (r, j) is the
right child of (i, j). Let L(i, s, i, j), s < j, be defined similarly. Then L(r, j, i, j) = g(i, r)+w(i, r, j), and
L(i, s, i, j) = g(s, j)+ w(i, s, j). For all other cases L(r, s, i, j) is assumed to be +∞. Let L∗(r, s, i, j) be
the cost of the optimal partial tree rooted at (i, j) with gap (r, s).

Initially, g(i, i + 1) is given for all i ∈ [0, n − 1], and g(i, j) = +∞ for all others, and L∗(r, s, i, j) is
initialized to +∞ for all r, s, i, j.

Given two n × n× n× n 4-dimensional ‘matrices’ L1 and L2, the product L3 = L1L2 is defined as
in [12]:

L3(r, s, i, j) = min
i≤k1≤r,s≤k2≤j

{L1(r, s, k1, k2) + L2(k1, k2, i, j)} for all 0 ≤ i ≤ r < s ≤ j ≤ n.

The upper triangular matrix c is decomposed into forward diagonal strips of horizontal width n
1
4

each, and the entries in c are computed using the following steps:

Step 1. The g values in the first (leftmost) strip of width n
1
4 is computed using Rytter’s algorithm

[18]. This takes O
(

n2.25 log n
)

time and O
(

n2.25 log n
B

)

I/Os since a straight-forward implementation of

Rytter’s algorithm involves only linear scans (i.e., no random accesses).
Now starting from the second strip the following two steps are executed for each strip until the

last one. This is unlike [12], where the first step (Step 2.1) is executed for all strips, followed by
the execution of the second step (Step 2.2) for all strips, thus optimizing parallel computation time.

24

Interleaving these two steps as we do below allows space reuse in sequential computations, and thus
reduces space requirement.

Step 2.1. We compute L∗ of the strip (i.e., all entries L∗(r, s, i, j), where both (i, j) and (r, s) belong to

the strip, and i ≤ r < s ≤ j) recursively as follows. Let S be a strip of width ν (initially ν = n
1
4), and

let S1 and S2 be strips of width ν
2 each such that they compose S, and the diagonals of S1 are larger

than those of S2. We recursively compute L∗ of S1 followed by the recursive computation of L∗ of S2,
and then we combine these results to compute L∗ of S.

We set L(r, j, i, j) = g(i, r) + w(i, r, j) and L(i, s, i, j) = g(s, j) + w(i, s, j) initially. For these

initializations g(i, r) and g(s, j) are retrieved from the first strip since r − i ≤ n
1
4 and j − s ≤ n

1
4 .

Let GS , G1 and G2 be L∗ of S, S1 and S2, respectively, and let LS be L in strip S. Then as shown
in [12], GS = G2LSG1. These multiplications involve computations using four dimensional arrays. We
reduce these multiplications to computations using two dimensional arrays as follows.

There are at most nν entries in a strip S of width ν. We assign an index to each entry. The first
entry in the first row gets index 1, and then we assign indices using consecutive integers such that
entries in higher-numbered rows get higher indices, and within the same row entries in higher-numbered
columns get higher indices. Thus there are at most nν indices. Now let X be an nν × nν matrix.
We copy each entry from LS corresponding to the strip S to X. Suppose (i, j), (r, s) ∈ S. Then if
r − i ≤ ν and j − s ≤ ν, we copy LS(r, s, i, j) to X[id(i, j), id(r, s)], where id(i, j) and id(r, s) are the
indices assigned to (i, j) and (r, s), respectively. Thus the entries from LS corresponding to the strip S
of horizontal width ν form a forward diagonal strip of horizontal width ν2 in X. However, instead of
allocating space for the entire nν×nν matrix X, we store this horizontal strip in an nν×ν2 rectangular
matrix. We apply similar transformations to strips S1 and S2, too. We can then easily multiply those
larger strips in two dimensions.

There are several useful properties of the matrix multiplications performed in this step using the
larger strips. First, the multiplication is min-plus, i.e., performing the same update on the same location
several times do not affect the final result. Second, updates applicable on the same location can be
applied in any order. Third, the updates are somewhat local, i.e., an entry in the output matrix depends
only on entries that are horizontally or vertically at most at a distance ν2 from the corresponding entry
in the input matrix. Therefore, we divide the strip of width ν2 in X into O

(

n
ν

)

squares of size 2ν2×2ν2

each such that the last ν2 rows of each square overlaps with the first ν2 rows of the square below it.
Therefore, GS = G2LSG1 can be computed using O

(

n
ν

)

multiplications involving 2ν2×2ν2 matrices,

each of which can be implemented cache-obliviously using I-GEP to incur only O
(

ν6

B
√

M

)

I/Os. For

the entire strip the number of cache misses is thus O
(

n
ν
× ν6

B
√

M

)

= O
(

nν5

B
√

M

)

. For ν = n
1
4 , the

I/O complexity is O
(

n2.25

B
√

M

)

. Since the number of cache misses decreases by a constant factor as

width decreases, the total number of cache misses is O
(

n2.25

B
√

M

)

. The amount of extra space used is

O
(

nν × ν2
)

= O
(

n1.75
)

, which is reused by this step for processing every strip of c.

Step 2.2. Let S be a strip of width ν for which we want to compute g, and let S′ be the strip of width
lν for which g has already been computed (i.e., all previous strips). Then g values for strip S can be
computed by the following steps. For (i, j) ∈ S,

g′(i, j) = min
j−lν≤k≤i+lν

{g(i, k) + g(k, j) + w(i, k, j)} .

And for (i, j), (r, s) ∈ S,

g(i, j) = min
i≤r,s≤j

{

g′(r, s) + L∗(r, s, i, j)
}

(equation 7.5)

25

In the step for computing g′(i, j) we only need to consider those (i, r) and (s, j) such that
(i, r), (s, j) ∈ S′. The computation is again min-plus, and the output is updated using entries directly
from the input which is unchanged. Therefore, we can implement this step cache-obliviously using I-
GEP as in Section 4.2, and update only the entries in S. We observe that S can be completely covered
by O

(

n
ν

)

non-overlapping squares of size ν × ν each. From Theorem 2.3 we know that I-GEP incurs

O
(

ν2n

B
√

M

)

cache misses for updating only the entries of any particular ν×ν square. Hence, total number

of cache misses incurred for computing g′ for S is O
(

n
ν
× ν2n

B
√

M

)

= O
(

n2ν

B
√

M

)

. For ν = n
1
4 , the I/O

complexity is thus O
(

n2.25

B
√

M

)

.

Now consider the step that computes g from g′. Before executing this step we copy the entries of
g′ corresponding to strip S to a linear array g′′ such that for any (r1, s1), (r2, s2) ∈ S, g′(r1, s1) appears
before g′(r2, s2) in g′′ provided r1 < r2, or r1 = r2 and s1 < s2. Recall from Step 2.1 that for each
(i, j) ∈ S, all L∗(r, s, i, j) values with i ≤ r, s ≤ j occupy a single row of width ν2 in an nν × nν array
X, and the ordering of the L∗(r, s, i, j) values in that row is exactly similar to the ordering of the g′(r, s)
values in g′′. Hence for every (i, j) ∈ S, we can compute g(i, j) just by scanning the corresponding row in
X and the relevant portion of length O

(

ν2
)

from the linear array g′′ and pairing up appropriate entries
from these two sources according to equation 7.5. Since there are O (nν) pairs of (i, j)’s in S, computing

all g values for S will incur O
(

nν
(

1 + ν2

B

))

= O
(

nν + nν3

B

)

cache misses, which is O
(

n1.25 + n1.75

B

)

for ν = n
1
4 .

Since there are O
(

n0.75
)

strips of width n
1
4 , step 2 will be executed O

(

n0.75
)

times, and the total

number of cache misses incurred by this step will be thus O
(

n0.75 ×
(

n2.25

B
√

M
+ n1.25 + n1.75

B

))

=

O
(

n3

B
√

M
+ n2 + n2.5

B

)

. The I/O complexity of the entire algorithm is, therefore,

O
(

n2.25 log n
B

+ n3

B
√

M
+ n2 + n2.5

B

)

= O
(

n3

B
√

M

)

, provided n = Ω(M) and M = Ω
(

B2
)

.

The correctness of the transformation described above follows from the correctness of the parallel
algorithm for the parenthesis problem given in [12], and from the observation that interleaved execution
of steps 2.1 and 2.2 for different strips as above (from the largest to the smallest strip) does not affect
the correctness of the algorithm. We observe that step 2.1 correctly computes L∗ values for every strip
since it uses only the g values for the first strip which are computed in step 1 and thus always available.
Step 2.2 correctly computes g values for the current strip since it uses only g values of larger strips and
L∗ values of the current strip, and the order in which we execute steps 2.1 and 2.2 ensures that these
values are already computed.

7.2 The Gap Problem
The gap problem [11, 12, 24] is a generalization of the edit distance problem that arises in molecular

biology, geology, and speech recognition. When transforming a string X = x1x2 . . . xm−1 into another
string Y = y1y2 . . . yn−1 over a finite alphabet Σ, a sequence of consecutive deletes from X corresponds
to a gap in X, and a sequence of consecutive inserts into X corresponds to a gap in Y [11]. In many
applications the cost of such a gap is not necessarily equal to the sum of the costs of each individual
deletion (or insertion) in that gap. In order to handle this general case two cost functions w and w′

are defined, where w(p, q) (1 ≤ p < q ≤ m) is the cost of deleting xp . . . xq−1 from X, and w′(p, q)
(1 ≤ p < q ≤ n) is the cost of inserting yp . . . yq−1 into X. Function s(i, j) (1 ≤ i ≤ m, 1 ≤ j ≤ n) gives
the cost of replacing xi−1 with yj−1 in X.

Let c[i, j] denote the minimum cost of transforming Xi−1 = x1x2 . . . xi−1 into Yj−1 = y1y2 . . . yj−1

(where 1 ≤ i ≤ m and 1 ≤ j ≤ n) under this general setting. Then

26

1. ∀i,j∈[1,n]c[i, j]← +∞, c[1, 1]← 0

2. for i← 1 to n do

3. for j ← 1 to n do

4. if i > 1 ∧ j > 1 then c[i, j]← min(c[i, j], c[i− 1, j − 1] + s(i, j))

5. for k ← 1 to j − 1 do c[i, j]← min(c[i, j], c[i, k] + w(k, j))

6. for k ← 1 to i− 1 do c[i, j]← min(c[i, j], c[k, j] + w′(k, i))

Figure 12: DP for the gap problem derived from equation 7.6 (assuming
m = n).

1. ∀i,j∈[1,n]c[i, j]← +∞, c[1, 1]← 0

2. for k ← 1 to n do

3. for i← 1 to n do

4. for j ← 1 to n do

5. if i > 1 ∧ j > 1 then c[i, j]← min(c[i, j], c[i− 1, j − 1] + s(i, j))

6. if k < j then c[i, j]← min(c[i, j], c[i, k] + w(k, j))

7. if k < i then c[i, j]← min(c[i, j], c[k, j] + w′(k, i))

Figure 13: Code fragment obtained by moving the innermost for loops
(involving k) in Figure 12 to the outermost position. It turns out that this
GEP-like code and its I-GEP implementation solve several special cases of the
gap problem.

F(X, k1, k2)

(X is a square submatrix of c such that X[1, 1] = c[i1, j1] and X[2q , 2q] = c[i2, j2], where i2− i1 = j2− j1 = k2−k1 =
2q − 1 for some integer q ≥ 0. The initial call is F(c, 1, n). We assume that all c[i, j] are initialized to +∞, except
c[1, 1] which is initialized to 0.)

1. if k1 ≥ max(i2, j2) then return
�
return if TX,[k1,k2] ∩ ΣG = ∅

	
2. if k1 = k2 then

3. if i1 > 1 ∧ j1 > 1 then c[i1, j1]← min(c[i1, j1], c[i1 − 1, j1 − 1] + s(i1, j1))

4. if k1 < j1 then c[i1, j1]← min(c[i1, j1], c[i1, k1] + w(k1, j1))

5. if k1 < i1 then c[i1, j1]← min(c[i1, j1], c[k1, j1] + w′(k1, i1))

6. else

7. km ←
j

k1+k2

2

k
8. F(X11, k1, km), F(X12, k1, km), F(X21, k1, km), F(X22, k1, km) {forward pass}
9. F(X22, km + 1, k2), F(X21, km + 1, k2), F(X12, km + 1, k2), F(X11, km + 1, k2) {backward pass}

Figure 14: I-GEP implementation of the GEP-like code in Figure 13. This implementation
(see Figure 2) does not use static pruning as in Appendix B. The update set is ΣG =
{〈i, j, k〉|i, j, k ∈ [1, n] ∧ k < max(i, j)}, and the update function is in lines 3–5. It turns out
that this I-GEP code solves several special cases of the gap problem.

27

c[i, j] =

0 if i = j = 1,
g(i, j) if i = 1 ∧ j > 1,
h(i, j) if j = 1 ∧ i > 1,
min

{

c[i− 1, j − 1] + s(i, j), g[i, j], h[i, j]
}

otherwise;

(equation 7.6)

where g(i, j) = min1≤k<j {c[i, k] + w(k, j)} and h(i, j) = min1≤k<i {c[k, j] + w′(k, i)}.
In Figure 12 we give the dynamic program derived from equation 7.6 assuming m = n. This dynamic

program runs in O(n3) time using O(n2) space and incurs O
(

n3
)

I/Os; an O
(

n3

B

)

I/O implementation

can be obtained by storing c in two different matrices simultaneously: one in row-major order and the
other in column-major order.

In [6] we derived a GEP-like code from equation 7.6 for the gap problem, and presented its I-GEP
implementation. That result is not quite correct. We do not know if there is a GEP formulation that
solves the gap problem in its full generality. However, in this section we present some results relating
the gap dynamic program to I-GEP. Briefly our results are as follows.

• We present a GEP-like computation in Figure 13 which is obtained by moving the innermost loop
in Figure 12 to the outermost position. This computation and its I-GEP implementation given in
Figure 14 solve the following two special cases of equation 7.6 (we omit the proofs).

(i) ∀i,j{s(i, j) ≥ w′(i− 1, i) + w(j − 1, j)}, i.e., cost of replacing xi−1 with yj−1 is not cheaper
than the combined cost of deleting xi−1 from X and inserting yj−1 into X.

(ii) ∀i<j{w(i, j) = f(j − i), w′(i, j) = f ′(j − i)} and ∀i≤i′,j≤j′{s(i, j) ≤ s(i′, j′)}, i.e., the cost of
a gap is a function of its length, and the cost of replacement is nondecreasing with increasing
indices of the symbols involved.

• Though the GEP-like code in Figure 13 and its I-GEP implementation in Figure 14 do not solve
the gap problem in its full generality, we show in Section 7.2.1 that with a small modification the
statically pruned version of the I-GEP in Figure 14 solves the gap problem in its general form (see
Appendix B for a description of static pruning).

7.2.1 Relating the Gap Dynamic Program to I-GEP

In this section we consider the I-GEP implementation of the GEP-like code in Figure 13, and study
its relation to the code for the general gap problem in Figure 12. Though the GEP-like code in Figure 13
does not exactly match the GEP pattern given in Figure 1, we can still obtain an I-GEP implementation
after some minor modifications to the framework (for example, changing f to accept some additional
inputs such as i, j, k, s(i, j), w′(k, i), w(k, j) and c[i − 1, j − 1]). These modifications do not change
the time or I/O bound of the resulting I-GEP implementation. The I-GEP implementation is given
in Figure 14 which uses the update set ΣG = {〈i, j, k〉|i, j, k ∈ [1, n] ∧ k < max(i, j)} and the update
function in lines 3–5.

Let us first examine why Figure 14 fails to solve the general version of the gap problem. Observe
that when the I-GEP function F updates X22 using the entries of X12 and X21 in the backward pass,
the entries in those two quadrants do not necessarily contain correct values. For example, the entries
in X12 are possibly incorrect since updates involving the intra-quadrant horizontal edges of X12 (i.e.,
updates involving edges (k, j) with weight w(k, j) where both c[i, k] and c[i, j] belong to X12, that is
updates in which line 4 of Figure 14 applies) have not yet been applied on X12. Function F eventually
applies those updates on X12 in the backward pass after completing the computation of X22, which is

28

Initial Values:

∀1≤i,j≤nc[i, j] =

�
0 if i = j = 1,
+∞ otherwise.

Initial Function Call: R(c)

R(X)

(X is a square submatrix of c such
that X[1, 1] = c[i1, j1] and X[2q , 2q] =
c[i2, j2], where q (≥ 0) is an integer.)

1. if X 6= a 1× 1 matrix then

2. k1 ← 1, k2 ← 2q−1

3. ts ← (i1 − 1, j1 − 1)

4. R(X11),

B1(X12, k1, k2, ts), R(X12),

C1(X21, k1, k2, ts), R(X21),

D1(X22, k1, k2, ts), R(X22)

B1(X, k1, k2, ts ≡ (is, js))

(X is a square submatrix of D such that X[1, 1] = c[i1, j1] and
X[2q , 2q] = c[i2, j2], where i2 − i1 = j2 − j1 = k2 − k1 = 2q − 1

for some integer q ≥ 0.)

1. if k1 6= k2 then

2. km ←
j

k1+k2

2

k
3. B1(X11, k1, km, ts), B1(X12, k1, km, ts),

D1(X21, k1, km, ts), D1(X22, k1, km, ts)

4. B1(X22, km + 1, k2, ts), B1(X21, km + 1, k2, ts),

D3(X12, km + 1, k2, ts), D3(X11, km + 1, k2, ts)

C1(X, k1, k2, ts ≡ (is, js))

(X is a square submatrix of c such that X[1, 1] = c[i1, j1] and
X[2q, 2q] = c[i2, j2], where i2 − i1 = j2 − j1 = k2 − k1 = 2q − 1

for some integer q ≥ 0.)

1. if k1 6= k2 then

2. km ←
j

k1+k2

2

k
3. C1(X11, k1, km, ts), D1(X12, k1, km, ts),

C1(X21, k1, km, ts), D1(X22, k1, km, ts)

4. C1(X22, km + 1, k2, ts), D2(X21, km + 1, k2, ts),

C1(X12, km + 1, k2, ts), D2(X11, km + 1, k2, ts),

Di(X, k1, k2, ts ≡ (is, js)) {i ∈ [1, 3]}
(X is a square submatrix of c such that X[1, 1] = c[i1, j1] and X[2q, 2q] = c[i2, j2], where i2 − i1 = j2 − j1 =
k2 − k1 = 2q − 1 for some integer q ≥ 0.)

1. if k1 = k2 then

2. if i1 > 1 ∧ j1 > 1 then c[i1, j1]← min(c[i1, j1], c[i1 − 1, j1 − 1] + s(i1, j1))

3. if j1 > js + k1 then c[i1, j1]← min(c[i1, j1], c[i1, js + k1] + w(js + k1, j1))

4. if i1 > is + k1 then c[i1, j1]← min(c[i1, j1], c[is + k1, j1] + w′(is + k1, i1))

5. else

6. km ←
j

k1+k2

2

k
7. Di(X11, k1, km, ts), Di(X12, k1, km, ts), Di(X21, k1, km, ts), Di(X22, k1, km, ts)

8. Di(X22, km + 1, k2, ts), Di(X21, km + 1, k2, ts), Di(X12, km + 1, k2, ts), Di(X11, km + 1, k2, ts)

Figure 15: Cache-oblivious implementation of the general gap problem (equation 7.6) obtained by
modifying the I-GEP implementation of the GEP-like code in Figure 13. The I-GEP has been
implemented with static pruning (Appendix B). Function A in this I-GEP (first row in Figure 18)
is modified to obtain function R as given above, while all other functions basically remain unchanged.

29

Gijk(c, 1, n)

(The input c[1 . . . n, 1 . . . n] is an n × n matrix. Func-
tion f(·, ·, ·, ·) is a problem-specific function, and ΣGijk

is a
problem-specific set of updates to be applied on c.)

1. for i← 1 to n do

2. for j ← 1 to n do

3. for k ← 1 to n do

4. if 〈i, j, k〉 ∈ ΣGijk
then

c[i, j]← f(c[i, j], c[i, k], c[k, j], c[k, k])

Gikj(c, 1, n)

(The input c[1 . . . n, 1 . . . n] is an n × n matrix. Func-
tion f(·, ·, ·, ·) is a problem-specific function, and ΣGikj

is a
problem-specific set of updates to be applied on c.)

1. for i← 1 to n do

2. for k ← 1 to n do

3. for j ← 1 to n do

4. if 〈i, j, k〉 ∈ ΣGikj
then

c[i, j]← f(c[i, j], c[i, k], c[k, j], c[k, k])

Figure 16: Two simple variants of GEP (Figure 1) obtained by rearranging the for loops.

too late, and similarly with X21. However, as explained below, the modifications necessary to make this
algorithm work for the gap problem is simple.

For convenience of exposition we will describe the necessary modifications on the stati-
cally pruned version of Figure 14 obtained using Appendix B. Static pruning with ΣG =
{〈i, j, k〉|i, j, k ∈ [1, n] ∧ k < max(i, j)} will eliminate all recursive calls to B2, C2 and D4 from the
I-GEP implementation (see Figures 17-20). We will modify function A in the resulting I-GEP so that
after applying the updates involving the inter-quadrant horizontal edges on X12 (i.e., updates involving
edges (k, j) with weight w(k, j) where c[i, k] ∈ X11 and c[i, j] ∈ X12), it recursively calls itself on X12

in order to apply the updates involving the intra-quadrant edges of X12. It does the same with X21.
Hence, when inter-quadrant edges are used to update X22, those updates use correct values. Finally,
the entries of X22 are computed correctly by considering the intra-quadrant edges of X22. The modified
algorithm is given in Figure 15, where we denote the modified function A by R. Observe that all other
functions (B1, C1, D1, D2 and D3) basically remain unchanged. The initial function call is R(c). Before
making the initial call, we set all entries of c to +∞, except c[1, 1] which is set to 0.

The correctness of R(X) can be proved easily by induction on q (where 2q × 2q is the size of X),
assuming that X[1, 1] has already been computed correctly.

The number of cache-misses incurred by R when called on an n× n input matrix can be described
using the same recurrence relation that has been used to compute the I/O complexity of I-GEP (I(n)

in Section 2). Therefore, the I/O complexity of R is O
(

n3

B
√

M

)

.

8 Conclusions

We have presented a cache-oblivious framework for problems that can be solved using a construct similar
to the computation in Gaussian elimination without pivoting (i.e., using a GE-type construct). We have
proved that this framework can be used to obtain efficient in-place cache-oblivious algorithms for several
important classes of practical problems. We have also shown that if we are allowed to use only n2 + n
extra space, where n2 is the size of the input matrix, we can obtain an efficient cache-oblivious algorithm
for any problem that can be solved using a GE-type construct. In addition to the practical problems
solvable using this framework, it also has the potential of being used by optimizing compilers for loop
transformation [16].

However, many important open questions still exist. For example:

1. Can we extend cache-oblivious I-GEP to solve function G in Figure 1 in its full generality without
using any extra space, or at least using o

(

n2
)

space?

2. Can we obtain general cache-oblivious frameworks for other variants of G (for example, for those
shown in Figure 16)?

3. Are there simpler transformations of ‘simple DP’ (or the parenthesis problem) and the gap problem
to GEP?

30

Acknowledgement. We would like to thank Matteo Frigo for his comments. We also thank David
Roche for his help in setting up STXXL.

References

[1] A. Aggarwal and J.S. Vitter. The input/output complexity of sorting and related problems. Communications
of the ACM, 31:1116–1127, 1988.

[2] A.V. Aho, J.E. Hopcroft, and J.D Ullman. The Design and Analysis of Computer Algorithms. Addison-
Wesley, pp. 195–206, 1974.
The Princeton University Press, Princeton, New Jersey, 1957.

[3] R.D. Blumofe, M. Frigo, C.F. Joerg, C.E. Leiserson, and K.H. Randall. An analysis of DAG-consistent
distributed shared-memory algorithms. In Proc. of the 8th Annual ACM Symposium on Parallel Algorithms
and Architectures, pp. 297–308, 1996.

[4] C. Cherng and R.E. Ladner. Cache efficient simple dynamic programming. In Proc. of the International
Conf. on the Analysis of Algorithms, pp. 49–58, 2005.

[5] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms. MIT Press, 2nd ed., 2001.
[6] R.A. Chowdhury and V. Ramachandran. Cache-Oblivious Dynamic Programming. In Proc. of the 17th

ACM-SIAM Symposium on Discrete Algorithms, pp. 591–600, 2006.
[7] R. Dementiev. STXXL homepage, documentation and tutorial. http://stxxl.sourceforge.net/.
[8] R. Dementiev, L. Kettner, and P. Sanders. STXXL: Standard template library for XXL data sets. In Proc.

of the 13th Annual European Symposium on Algorithms, LNCS 3669, pp. 640–651, Springer, 2005.
[9] R.W. Floyd. Algorithm 97 (SHORTEST PATH). Communications of the ACM, 5(6):345, 1962.

[10] M. Frigo, C.E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious algorithms. In Proc. of the
40th Annual Symposium on Foundations of Computer Science, pp. 285–297, 1999.

[11] Z. Galil, and R. Giancarlo. Speeding up dynamic programming with applications to molecular biology.
Theoretical Computer Science, 64:107–118, 1989.

[12] Z. Galil, and K. Park. Parallel algorithms for dynamic programming recurrences with more than O(1)
dependency. Journal of Parallel and Distributed Computing, vol. 21, pp. 213–222, 1994.

[13] K.E. Iverson. A Programming Language. Wiley, 1962.
[14] D.E. Knuth. Two notes on notation. American Mathematical Monthly, vol. 99, pp. 403–422, 1992.
[15] J. Kleinberg and E. Tardos. Algorithm Design. Addison-Wesely Publishing Co., Reading, MA, 2005.
[16] S.S. Muchnick. Advanced Compiler Design & Implementation. Morgan Kaufmann Publishers, Inc., 1997.
[17] J.-S. Park, M. Penner and V.K. Prasanna. Optimizing graph algorithms for improved cache performance.

IEEE Transactions on Parallel and Distributed Systems, vol. 15(9), pp. 769–782, 2004.
[18] W. Rytter. On efficient parallel computations for some dynamic programming problems. Theoretical

Computer Science, vol. 59, pp. 297–307, 1988.
[19] J. Seward and N. Nethercote. Valgrind (debugging and profiling tool for x86-Linux programs).

http://valgrind.kde.org/index.html
[20] S. Toledo. Locality of reference in LU decomposition with partial pivoting. SIAM Journal on Matrix

Analysis and Applications, vol. 18(4), pp. 1065–1081, 1997.
[21] L.G. Valiant. General context-free recognition in less than cubic time. Journal of Compute and System

Sciences, vol. 10, pp. 308–315, 1975.
[22] V. Viswanathan, S. Huang and H. Liu. Parallel dynamic programming. In Proc. of IEEE Conference on

Parallel Processing, pp. 497–500, 1990.
[23] S. Warshall. A theorem on boolean matrices. Journal of the ACM, 9(1):11–12, 1962.
[24] M.S. Waterman. Introduction to Computational Biology. Chapman & Hall, London, UK, 1995.
[25] D. Womble, D. Greenberg, S. Wheat, and R. Riesen. Beyond core: making parallel computer I/O practical.

In Proc. of the DAGS/PC Symposium, pp. 56–63, 1993.
[26] M.E. Wolf and M.S. Lam. A data locality optimizing algorithm. In Proceedings of the ACM SIGPLAN 1991

Conference on Programming Language Design and Implementation, pp. 30–44, 1991.

31

APPENDIX

A Formal Definitions of δ and π

In Section 2 we defined functions π and δ (see Definition 2.2) based on the notions of aligned subintervals
and aligned subsquares. In this section we define these two functions more formally in closed form.

Recall from Definition 2.2(a) that for x, y, z ∈ [1, n], δ(x, y, z) is defined as follows.

• If x = y = z, then δ(x, y, z) = z − 1.

• If x 6= z or y 6= z, then δ(x, y, z) = b for the largest aligned subsquare [a, b], [a, b] of c[1 . . . n, 1 . . . n]
that contains (z, z), but not (x, y), and this subsquare is denoted by S(x, y, z). Now consider the
initial function call F(X, k1, k2) on c with X ≡ c, k1 = 1 and k2 = n, where n = 2q for some
integer q ≥ 0. We know from Lemma 2.1(a) that if S(x, y, z) is one of the quadrants of X then
it must be either X11 or X22, otherwise S(x, y, z) must be entirely contained in one of those two
quadrants. Hence, in order to locate S(x, y, z) in X and thus to calculate the value of δ(x, y, z)
we need to consider the following four cases:

(i) (z, z) ∈ X11 and (x, y) /∈ X11: X11 ≡ S(x, y, z) and δ(x, y, z) = 2q−1 by definition.

(ii) (z, z) ∈ X22 and (x, y) /∈ X22: X22 ≡ S(x, y, z) and δ(x, y, z) = 2q by definition.

(iii) (z, z) ∈ X11 and (x, y) ∈ X11: S(x, y, z) ∈ X11, and compute δ(x, y, z) recursively from X11.

(iv) (z, z) ∈ X22 and (x, y) ∈ X22: S(x, y, z) ∈ X22, and compute δ(x, y, z) recursively from X22.

Now for each integer u ∈ [1, 2q], define u′ = u− 1 which is a q-bit binary number u′qu
′
q−1 . . . u′2u

′
1.

Then it is easy to verify that the following recursive function ρ(x, y, z, q) captures the recursive
method of computing δ(x, y, z) described above, i.e., δ(x, y, z) = ρ(x, y, z, q) if x 6= z or y 6= z.

ρ (x, y, z, q) =

2q−1 if
(

x′q = 1 ∨ y′q = 1
)

∧ z′q = 0

2q if
(

x′q = 0 ∨ y′q = 0
)

∧ z′q = 1

ρ (x, y, z, q − 1) if x′q = y′q = z′q = 0,

2q−1 + ρ
(

x− 2q−1, y − 2q−1, z − 2q−1, q − 1
)

if x′q = y′q = z′q = 1.

We can derive a closed form for ρ (x, y, z, q) from its recursive definition given above. Let �, �,
and � denote the bitwise AND, OR and XOR operators, respectively, and define

(a) α(x, y, z) = 2⌊log2 {((x−1) � (z−1)) � ((y−1) � (z−1))}⌋,

(b) u = 2r − 1− u (bitwise NOT), and

(c) β(x, y, z) =
(

x− 1 � y − 1
) � (z − 1).

Then

ρ (x, y, z, q) =

⌊

z − 1

2α(x, y, z)

⌋

· 2α(x, y, z) + α(x, y, z) + α(x, y, z) � β(x, y, z) (equation A.7)

32

Now we can formally define function δ : [1, 2q]× [1, 2q]× [1, 2q]→ [0, 2q] as follows.

δ(x, y, z) =

{

z − 1 if x = y = z,
ρ(x, y, z, q) otherwise (i.e., x 6= z ∨ y 6= z).

The explicit (nonrecursive) definition of δ is the following, based on equation A.7.

δ(x, y, z) =

{

z − 1 if x = y = z,
⌊

z−1
2α(x,y,z)

⌋

· 2α(x, y, z) + α(x, y, z) + α(x, y, z) � β(x, y, z) otherwise.

From Definition 2.2(b), we have that function π : [1, 2q] × [1, 2q] → [0, 2q] is the specialization of δ
to one dimension, hence we obtain:

π(x, z) = δ(x, x, z) =

{

z − 1 if x = z,
ρ(x, x, z, q) otherwise (i.e., x 6= z).

Using the closed form for ρ, we can write π in a closed form as follows:

π(x, z) =

{

z − 1 if x = z,
⌊

z−1
2α′(x,z)

⌋

· 2α′(x, z) + α′(x, z) + x− 1 � (z − 1) � α′(x, z) otherwise;

where α′(x, z) = α(x, x, z) = 2⌊log2 {((x−1) � (z−1)⌋.

B Static Pruning of I-GEP

In Section 2, the test in line 1 of Figure 2 enables function F to decide during runtime whether the
current recursive call is necessary or not, and thus avoid taking unnecessary branches in its recursion
tree. However, if the update set ΣG is available offline (which is usually the case), we can eliminate
some of these unnecessary branchings from the code during the transformation of G to F, and thus save
on some overhead. As described in our earlier paper [6], we can perform this type of static pruning of
F as follows.

Recall that X ≡ c[i1 . . . i2, j1 . . . j2] is the input submatrix, and [k1, k2] is the range of k-values
supplied to F, and they satisfy the input conditions 2.1. Let Y ≡ c[i1 . . . i2, k1 . . . k2] and Z ≡
c[k1 . . . k2, j1 . . . j2]. Then for every entry c[i, j] ∈ X, c[i, k] can be found in Y and c[k, j] can be
found in Z. From input condition 2.1(a) we know that X, Y and Z must all be square matrices of the
same dimensions. Input condition 2.1(b) requires that each of Y and Z either overlaps X completely,
or does not intersect X at all. These conditions on the inputs to F implies nine possible arrangements
(i.e., relative positions) of X, Y and Z. For different arrangements of these matrices we give a different
name to F. Figure 20 identifies each of the nine names (A, B1, B2, C1, C2, D1, D2, D3 and D4) with the
corresponding arrangement of the matrices. Each of these nine functions will be called an instantiation
of F. Given an instantiation F′ of F, Figure 19 expresses the corresponding arrangement of X, Y and
Z as a relationship P (F ′) among the indices i1, i2, j1, j2, k1 and k2. Function A assumes that both
Y and Z overlap X, i.e., all required c[i, k] and c[k, j] values can be found in X. Functions B1 and
B2 both assume that Z and X overlap, but B1 assumes that Y lies to the left of X, and B2 assumes
that Y lies to the right of X. Functions C1 and C2 are called when Y and X overlap, but Z and X do
not. Function C1 is called when Z lies above X, C2 is called otherwise. Functions D1, D2, D3, and D4

assume that neither Y nor Z overlap X, and each of them assumes different relative positions of Y and
Z with respect to X.

33

F(X, k1, k2) {F can be any of the nine functions (A, B1, B2, C1, C2, D1, D2, D3, D4) in column 1 of Figure 18.}
(X is a 2q × 2q square submatrix of c such that X[1, 1] = c[i1, j1] and X[2q , 2q] = c[i2, j2] for some integer q ≥ 0.
Function F assumes the following: (a) i2 − i1 = j2 − j1 = k2 − k1 = 2q − 1

(b) [i1, i2] 6= [k1, k2] ⇒ [i1, i2]∩ [k1, k2] = ∅ and [j1, j2] 6= [k1, k2] ⇒ [j1, j2]∩ [k1, k2] = ∅
(c) P (F) (see Figure 19)

The initial call to F is A(c, 1, n) for an n× n input matrix c, where n is assumed to be a power of 2.)

1. if TX,[k1,k2] ∩ ΣG = ∅ then return
�
TX,[k1,k2] = {〈i, j, k〉|i ∈ [i1, i2] ∧ j ∈ [j1, j2] ∧ k ∈ [k1, k2]},
and ΣG is the set of updates performed by G in Figure 1}

2. if k1 = k2 then

3. c[i1, j1]← f(c[i1, j1], c[i1, k1], c[k1, j1], c[k1, k1])

4. else {The following function calls are determined from the table in Figure 18. The top-left, top-right,

bottom-left and bottom-right quadrants of X are denoted by X11, X12, X21 and X22, respectively.}

5. km ←
j

k1+k2

2

k
6. F11(X11, k1, km), F12(X12, k1, km), F21(X21, k1, km), F22(X22, k1, km) {forward pass}
7. F ′

22(X22, km + 1, k2), F ′
21(X21, km + 1, k2), F ′

12(X12, km + 1, k2), F ′
11(X11, km + 1, k2) {backward pass}

Figure 17: Cache-oblivious I-GEP reproduced from Figure 2, but here F is assumed to be a
template function that can be instantiated to any of the 9 functions given in Figure 19. The
recursive calls in lines 6 and 7 are replaced with appropriate instantiations of F which can
be determined from Figure 18.

F F11 F12 F21 F22 F ′

22 F ′

21 F ′

12 F ′

11

A A B1 C1 D1 A B2 C2 D4

Bi (i = 1, 2) Bi Bi Di Di Bi Bi Di+2 Di+2

Ci (i = 1, 2) Ci D2i−1 Ci D2i−1 Ci D2i Ci D2i

Di (i ∈ [1, 4]) Di Di Di Di Di Di Di Di

Figure 18: Functions recursively called by F in Figure 17.

F P (F)

A i1 = k1 ∧ j1 = k1

B1 i1 = k1 ∧ j1 > k2

B2 i1 = k1 ∧ j2 < k1

C1 i1 > k2 ∧ j1 = k1

C2 i2 < k1 ∧ j1 = k1

D1 i1 > k2 ∧ j1 > k2

D2 i1 > k2 ∧ j2 < k1

D3 i2 < k1 ∧ j1 > k2

D4 i2 < k1 ∧ j2 < k1

Figure 19: Function specific
pre-condition P (F) for F in
Figure 2.

YXXY

Z

Z

YY

A

1 2 3 4

2121

Z

YX

Z
X

X
Y Z

YX

Z
X

YX

ZZ

XYZ

DDDD

CCBB

Figure 20: Relative positions of Y ≡ c[i1 . . . i2, k1 . . . k2]
and Z ≡ c[k1 . . . k2, j1 . . . j2] w.r.t. X ≡ c[i1 . . . i2, j1 . . . j2]
assumed by different instantiations of F.

34

In Figure 17 we reproduce F from Figure 2, but replace the recursive calls in lines 6 and 7 with
instantiations of F. By Fpq (p, q ∈ [1, 2]), we denote the instantiation of F that processes quadrant
Xpq in the forward pass (line 6), and by F′pq (p, q ∈ [1, 2]) we denote the same in the backward pass
(line 7). For each of the nine instantiations of the calling function F, Figure 18 associates Fpq and F′pq

(p, q ∈ [1, 2]) with appropriate instantiations.
A given computation need not necessarily make all recursive calls in lines 6 and 7. Whether a

specific recursive call to a function F′ (say) will be made or not depends on P (F ′) (see Figure 19) and
the GEP instance at hand. For example, if i ≥ k holds for every update 〈i, j, k〉 ∈ ΣG, then we do not
make any recursive call to function C2 since the indices in the updates can never satisfy P (C2). As has
already been pointed out in [6], the I-GEP implementation of the code for Gaussian elimination without
pivoting can employ static pruning very effectively, in which case, we can eliminate all recursive calls
except for those to A, B1, C1 and D1.

The initial function call is A(c, 1, n) (F instantiated to A).

35

