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Abstract

We present the results of an extensive computational study of an I/O-optimal cache-oblivious
LCS (longest common subsequence) algorithm developed by Chowdhury and Ramachandran. Three
variants of the algorithm were implemented (CO denoting the fastest variant) along with the widely
used linear-space LCS algorithm by Dan Hirschberg (denoted Hi). Both algorithms were tested on
both random and real-world (CFTR DNA) sequences consisting upto 2 million symbols each, and
timing and caching data were obtained on three state-of-the-art architectures (Intel Xeon, AMD
Opteron and SUN UltraSparc-III+). In our experiments:

• CO ran a factor of 2 to 6 times faster than Hi.

• Hi incurred upto 4,000 times more L1 cache misses and upto 30,000 times more L2 cache misses
than CO when run on pairs of sequences consisting of 1 million symbols each.

• CO executed 40%-50% fewer machines instructions than Hi.

• Unlike Hi, CO was able to conceal the effects of caches on its running time; its actual running
time could be predicted quite accurately from its theoretical time complexity.

• CO was less sensitive to alphabet size than Hi.

These results suggest that CO and the algorithmic technique employed by CO can be of practical
use in many fields including sequence alignment in computational biology.

1 Introduction

Memory in modern computers is typically organized in a hierarchy with registers in the lowest level
followed by L1 cache, L2 cache, L3 cache, main memory, and disk, with the access time of each memory
level increasing with its level. The two-level I/O model [1] is a simple abstraction of this hierarchy
that consists of an internal memory of size M , and an arbitrarily large external memory partitioned
into blocks of size B. The I/O complexity of an algorithm is the number of blocks transferred between
these two levels. The I/O model successfully captures the situation where I/O operations between two
levels of the memory hierarchy dominate the running time of the algorithm. The cache-oblivious model
[8] is an extension of this model with the additional requirement that algorithms must not use the
knowledge of M and B. A cache-oblivious algorithm is flexible and portable, and simultaneously adapts
to all levels of a multi-level memory hierarchy. A well-designed cache-oblivious algorithm typically has
the feature that whenever a block is brought into internal memory it contains as much useful data as
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possible (‘spatial locality’), and also the feature that as much useful work as possible is performed on
this data before it is written back to external memory (‘temporal locality’).

The problem of finding the longest common subsequence (LCS) of two given sequences has a classic
Dynamic Programming (DP) solution [6] that runs in Θ(mn) time, uses Θ(mn) space and performs
Θ

(

mn
B

)

block transfers when working on two sequences of lengths m and n. The LCS problem arises in
a wide range of applications in many apparently unrelated fields including computer science, molecular
biology, mathematics, speech recognition, gas chromatography, bird song analysis, etc [24, 22]. Perhaps
the widely used Unix file comparison program diff [14] is the most familiar application in computer
science that uses an LCS algorithm. The LCS problem is especially prominent in molecular biology
in sequence alignment. One of the central problems in genome analysis is to find a maximum-length
subsequence of two genomes either under the standard LCS metric or under a refined metric that
assigns costs to mismatches, or allows insertions and deletions. Many of these variants can be solved
by a dynamic programming algorithm with the same structure as the one for LCS, but with somewhat
different computation associated with the steps [6, 16, 26, 24, 22].

It has been shown in [2, 12, 17] that the LCS problem cannot be solved in o (mn) time if the
elementary comparison operation is of type ‘equal/unequal’ and the alphabet size is unrestricted.

However, if the alphabet size is fixed the theoretically fastest known algorithm runs in O
(

mn
log min (m,n)

)

time [19] which is unfortunately not suitable for practical implementations. Faster algorithms exist for
different special cases of the problem [4].

In most applications, however, the quadratic space required by an LCS algorithm is a more
contraining factor than its quadratic running time [10]. For example, one can wait for a week or even
a month for finding an LCS of two sequences of length 1 million each, but one can hardly afford the
several terabytes of RAM required by the algorithm. Fortunately, there are linear space implementations
[11, 15, 3] of the LCS algorithm, but the I/O complexity remains Ω

(

mn
B

)

and the running time
roughly doubles. Hirschberg’s space-reduction technique [11] for the DP-based LCS algorithm has
become the most widely used trick for reducing the space complexity of similar DP-based algorithms in
computational biology [18, 20, 26, 16].

In [7] we present a cache-oblivious implementation of the basic dynamic programming LCS
algorithm. Our algorithm continues to run in O(mn) time and uses O(m + n) space, but it performs
only O

(

mn
BM

)

block transfers. We show that our algorithm is I/O-optimal in that it performs the
minimum number of block transfers (to within a constant factor) of any implementation of the dynamic
programming algorithm for LCS. This algorithm can be adapted to solve the edit distance problem
[13, 6] within the same bounds; this latter problem asks for the minimum cost of an edit sequence that
transforms a given sequence into another one with the allowable edit operations being insertion, deletion
and substitution of symbols each having a cost based on the symbol(s) on which it is to be applied.

Our Results. We present the results of an extensive empirical study of the cache-oblivious LCS
algorithm given in [7]. We implemented three variants of the algorithm (denoting the fastest variant by
CO) along with the widely used linear-space LCS algorithm by Hirschberg (denoted Hi) [11]. We ran
both algorithms on both random and real-world sequences consisting upto 2 million symbols each, and
obtained timing and caching data on three state-of-the-art architectures: Intel Xeon, AMD Opteron
and SUN UltraSparc-III+.

On random sequences CO ran a factor of 2 to 6 times faster than Hi and consistently executed
40%-50% fewer machines instructions. As expected, CO exhibited a far better cache performance than
Hi: when run on sequences of length 1 million or more CO incurred only a small fraction of cache misses
( 1
4000 for L1 cache and 1

30,000 for L2 cache) compared to Hi. Unlike Hi, CO was able to conceal the
effects of caches on its running time; its actual running time could be predicted quite accurately from



its theoretical time complexity. Moreover, CO appeared to be less sensitive to alphabet size than Hi.
On real-world DNA sequences (CFTR gene sequences [25]), too, CO ran about 2 times faster than Hi.

Our experimental results suggest that CO and the algorithmic technique employed by CO can be
of practical value in many application areas including sequence alignment in computational biology.

Related Work. In [4], Bergroth et al. conducted an empirical study of the running times of different
LCS algorithms. However, they excluded linear-space algorithms from their study, and considered
sequences of length at most 4000. If only the length of the LCS is needed, and not an actual subsequence,
the technique for cache-oblivious stencil computation presented in [9] can achieve the same time, space
and I/O bounds as our algorithm. Experimental results show that the algorithm runs upto 7 times
faster than the standard algorithm [9].

In [5] an empirical study of a DP-based cache-oblivious optimal matrix chain multiplication
algorithm was conducted. A cache-oblivious algorithm for Floyd-Warshall’s APSP algorithm is given
in [21] and experimental results show that the algorithm runs upto 10 times faster than the standard
Floyd-Warshall algorithm.

2 Experimental Setup

2.1 Test Data Sets. In our experiments we used two kinds of sequences:

• Random Sequences. We used random sequences of lengths ranging from 210 (≈ one thousand)
to 221 (≈ 2 million) drawn from alphabets of sizes 26 (i.e., the English alphabet) and 4 (i.e., the
set {A,C,G, T} of DNA bases).

• Real-world Sequences. We used sequences from 11 species (baboon, cat, chicken, chimpanzee,
cow, dog, fugu, human, mouse, rat and zebrafish) generated for the genomic segment harboring
the cystic fibrosis transmembrane conductance regulator (CFTR) gene [25]. The lenghts of the
sequences ranged from 0.42 million to 1.80 million.

2.2 Computing Environment. We ran our experiments on the following three architectures:

• Intel Xeon. A four processor 3.06 GHz Intel Xeon shared memory machine with 4 GB of RAM
and running Linux 2.4.29. Each processor had an 8 KB L1 data cache (4-way set associative) and
an on-chip 512 KB unified L2 cache (8-way). The block size was 64 bytes for both caches.

• AMD Opteron. A dual processor 2.4 GHz AMD Opteron shared memory machine with 4 GB
of RAM and running Linux 2.4.29. Each processor had a 64 KB L1 data cache (2-way) and an
on-chip 1 MB unified L2 cache (8-way). The block size was 64 bytes for both caches.

• SUN Blade. A 1 GHz Sun Blade 2000/1000 (UltraSPARC-III+) with 1 GB of RAM and running
SunOS 5.9. The processor had an on-chip 64 KB L1 data cache (4-way) and an off-chip 8 MB L2
cache (2-way). The block sizes were 32 bytes for the L1 cache and 512 bytes for the L2 cache.

We used the Cachegrind profiler [23] for simulating cache effects on Intel Xeon. The caching data on the
Sun Blade was obtained using the cputrack utility that keeps track of hardware counters. All algorithms
were implemented in C using a uniform programming style and compiled using gcc with optimization
parameter -O3. Each machine was exclusively used for experiments (i.e., no other programs were running
on them), and on multi-processor machines only a single processor was used.

2.3 Overview of Algorithms Implemented. A sequence Z = 〈z1, z2, . . . zk〉 is called a subsequence
of another sequence X = 〈x1, x2, . . . xm〉 if there exists a strictly increasing function f : [1, 2, . . . , k] →
[1, 2, . . . ,m] such that for all i ∈ [1, k], zi = xf(i). A sequence Z is a common subsequence of sequences
X and Y if Z is a subsequence of both X and Y . Given two sequences X and Y , the Longest Common
Subsequence (LCS) problem asks for a maximum-length common subsequence of X and Y .



2.3.1 Classic Dynamic Programming Algorithm. Given two sequences X = 〈x1, x2, . . . xm〉 and
Y = 〈y1, y2, . . . yn〉, we define c[i, j] (0 ≤ i ≤ m, 0 ≤ j ≤ n) to be the length of an LCS of 〈x1, x2, . . . xi〉
and 〈y1, y2, . . . yj〉, which can be computed using the following recurrence relation (see, e.g., [6]):

c[i, j] =







0 if i = 0 or j = 0,
c[i − 1, j − 1] + 1 if i, j > 0 and xi = yj,
max(c[i, j − 1], c[i − 1, j]) if i, j > 0 and xi 6= yj.

(2.1)

The classic dynamic programming solution to the LCS problem which we will refer to as Classic-

LCS, is based on this recurrence relation, and computes the entries of c[0 . . . m, 0 . . . n] in row-major
order in Θ(mn) time and incurs O

(

mn
B

)

cache misses. Further, after all entries of c[0 . . . m, 0 . . . n] are
computed, we can trace back the sequence of decisions that led to the value computed for c[m,n], and
thus recover an LCS of X and Y in O(m + n) additional time, while incurring Θ(m + n) I/Os. Observe
that since the entries of any row of c depends only on the entries in the previous row, c[m, 0 . . . n] can
be computed using only O(n) extra space, and thus the length of an LCS can be computed in linear
space. However, the algorithm needs Θ(mn) space to compute an actual LCS sequence.

2.3.2 Hirschberg’s Linear Space Algorithm. Hirschberg [11] gives an O(m+n) space algorithm,
which finds an LCS in O(mn) time and O

(

mn
B

)

I/Os. We briefly describe the algorithm below.
If n = 1, the LCS can be determined in a single scan of X. Otherwise, let k =

⌊

n
2

⌋

,
Yf = 〈y1, y2, . . . yk〉 and Yb = 〈yn, yn−1, . . . yk+1〉. Hirschberg computes two arrays Lf [1 . . . m] and
Lb[1 . . . m], where for 1 ≤ i ≤ m, Lf [i] is the length of an LCS between 〈x1, x2, . . . xi〉 and Yf , and
Lb[i] is the length of an LCS between 〈x1, x2, . . . xi〉 and Yb. Observe that both Lf and Lb can be
computed in O (mn) time using only O (m) extra space (see section 2.3.1). Let j (1 ≤ j ≤ m) be
the smallest index such that Lf [j] + Lb[j] = max1≤i≤m (Lf [i] + Lb[i]). Then Hirschberg recursively
computes an LCS Z1 between 〈x1, x2, . . . xj〉 and 〈y1, y2, . . . yk〉, and Z2 between 〈xj+1, xj+2, . . . xm〉
and 〈yk+1, yk+2, . . . yn〉, and returns Z = Z1||Z2 as an LCS of X and Y .

Our Implementation. Our implementation of Hirschberg’s algorithm differs from the original
algorithm in how the base case is handled. Once both m and n drop below some preset threshold
value (base) we solve the problem using Classic-LCS. Provided base = O

(√
m + n

)

, the space usage
remains linear, but the algorithm runs faster.

2.3.3 Cache-Efficient LCS Algorithm. In [7] we present an I/O-optimal cache-oblivious imple-
mentation of the dynamic programming algorithm defined by recurrence 2.1. The algorithm runs in
O (mn) time, uses O (m + n) space and incurs O

(

mn
BM

)

I/Os. We describe the algorithm below, where
we assume for convenience that n = m = 2p where p is a nonnegative integer.

For any submatrix c[i1 . . . i2, j1 . . . j2] of c where i2 ≥ i1 > 0 and j2 ≥ j1 > 0, we refer to
c[i1 − 1, j1 . . . j2] and c[i1 . . . i2, j1 − 1] as the input boundary of the submatrix, and c[i2, j1 . . . j2] and
c[i1 . . . i2, j2] as the output boundary. The function LCS-Output-Boundary (given in [7]) when called
with parameters i, j, r, and a one dimensional array D containing the input boundary of the submatrix
c[i . . . i + r − 1, j . . . j + r − 1] returns the output boundary of that submatrix in D. For simplicity of
exposition, we assume that D can have negative indices, and entry c[i′, j′] of c is stored in D[i′ − j′].
The function works by recursively subdividing the input matrix into quadrants, and for an input matrix

of dimension n × n runs in time O
(

n2
)

, uses O (n) space and incurs O
(

n2

BM

)

cache misses.

Recall that if all entries of c[1 . . . n, 1 . . . n] are available, one can trace back the sequence of decisions
that led to the value computed for c[n, n], and thus retrieve the elements on an LCS of X and Y . We
can view this sequence of decisions as a path through c that starts at c[n, n] and ends at the input
boundary of c[1 . . . n, 1 . . . n]. We call this path an LCS Path.



Recursive-LCS(X, Y, i, j, is, js, D)

Input. The input boundary of c[i . . . i + r− 1, j . . . j + r− 1], where r = max(is − i +1, js− j + 1), is stored in D, with boundary
entry c[i′, j′] in D[i′ − j′]. The entry c(is, js) lies on the output boundary of c[i . . . i + r − 1, j . . . j + r − 1].

Output. Let i′ and j′ be the values supplied in is and js in the input. Returns an LCS Z of X[i . . . i′] and Y [j . . . j′], updates
is and js to return the point at which the LCS Path starting at c[i′, j′] intersects the input boundary of c[i . . . i′, j . . . j′].

1. b← i− j, ri ← is − i + 1, rj ← js − j + 1, r ← max(ri, rj), Z ← ∅

2. if r ≤ base then compute in Z the LCS of the subproblem and return the appropriate values for is and js else

3. r′ ← r
2

4. top-left[1 . . . r + 1]← D[b− r′ . . . b + r′] {save input boundary of top-left quadrant}

LCS-Output-Boundary(X, Y, i, j, r′, D) {generate output boundary of top-left quadrant}

5. if is ≥ i + r′ and js ≥ j + r′ then {if the LCS intersects the bottom-right quadrant}

6. bottom-left[1 . . . r + 1]← D[b− r . . . b] {save input boundary of bottom-left quadrant}

LCS-Output-Boundary(X, Y, i, j + r′, r′, D) {generate output boundary of bottom-left quadrant}

7. top-right[1 . . . r + 1]← D[b . . . b + r] {save input boundary of top-right quadrant}

LCS-Output-Boundary(X, Y, i + r′, j, r′, D) {generate output boundary of top-right quadrant}

8. Z ← Recursive-LCS(i + r′, j + r′, is, js, D) # Z {find LCS fragment in bottom-right quadrant}

9. if is ≥ i + r′ then D[b . . . b + r]← top-right[1 . . . r + 1] {restore input boundary of top-right quadrant}

10. elif js ≥ j + r′ then D[b− r . . . b]← bottom-left[1 . . . r + 1] {restore input boundary of bottom-left quadrant}

11. if is ≥ i + r′ then Z ← Recursive-LCS(X, Y, i + r′, j, is, js, D) # Z {find LCS fragment in top-right quadrant}

12. elif js ≥ j + r′ then Z ← Recursive-LCS(X, Y, i, j + r′, is, js, D) # Z {LCS fragment in bottom-left quadrant}

13. if is ≥ i and js ≥ j then {if the LCS intersects the top-left quadrant}

14. D[b− r′ . . . b + r′]← top-left[1 . . . r + 1] {restore input boundary of top-left quadrant}

15. Z ← Recursive-LCS(X, Y, i, j, is, js, D) # Z {find LCS fragment in top-left quadrant}

16. return Z

Our algorithm traces an LCS path without storing all entries of c; instead it only stores the
boundaries of certain subproblems. It uses a recursive function Recursive-LCS (given below and in
[7]) to construct the LCS. When called with parameters i, j, is, js and D, Recursive-LCS assumes
that the input boundary of the submatrix c[i . . . i + r − 1, j . . . j + r − 1] is stored in the one
dimensional array D of length 2r + 1, i.e., entry c[i′, j′] on the boundary is stored in D[i′ − j′], where
r = max(is − i + 1, js − j + 1) = 2p for some non-negative integer p. It also assumes that an LCS path
intersects the output boundary of c[i . . . i + r − 1, j . . . j + r − 1] at c[is, js]. This function traces the
fragment of that path through this submatrix, and returns the LCS of X and Y along this subpath.
It also finds the entry c[i′, j′] at which this path intersects the input boundary of the given submatrix,
and updates is and js to i′ and j′, respectively. If r is sufficiently small it solves the problem iteratively
using Classic-LCS, otherwise it solves the problem recursively by dividing the input submatrix into
four quadrants. It first calls LCS-Output-Boundary at most three times (at most once for each
quadrant except the bottom-right one) in order to generate the input boundaries of the top-right and
the bottom-left quadrants, and if required (if is ≥ i + r

2 and js ≥ j + r
2), for the bottom-right quadrant.

Observe that the LCS path can pass through at most three quadrants of the current submatrix. This
function locates those quadrants one after another based on the current values of is and js (i.e., based
on which quadrant c[is, js] belongs to), and calls itself recursively in order to trace the fragment of the
LCS path that passes through that quadrant. (note that the recursive calls modify is and js). The
output of Recursive-LCS is the concatenation of these LCS fragments in the correct order.

The initial call is to Recursive-LCS(X,Y, 1, 1, n, n,D), with D[−n . . . n] initialized to all zeros.

Complexities. It has been shown in [7] that the algorithm incurs O
(

1 + n
B + n2

BM

)

cache misses while
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Figure 1: The triangulation method: (a) the order in which triangles

are processed after the initial LCS matrix is triangulated, (b) the order

in which sub-triangles are processed in each triangle.

Architecture
Intel Xeon

AMD Opteron
SUN Blade

Base Case Size
256 × 256
512 × 512

1024 × 1024

Figure 2: Size of the base case used

for CO and Hi on each architecture.

the running time and space complexity remain O(n2) and O(n), respectively.
It is straightforward to extend this algorithm to handle input strings of unequal lengths m and n, and

of lengths that are not powers of 2 with O
(

mn
BM

)

I/Os while running in O(mn) time using O(m+n) space.

Implementations. We implemented the following three variants of our algorithm based on how the
LCS matrix is recursively partitioned:

• The Quartering Method. This is the 4-way partitioning algorithm as described above.

• The Triangulation Method. In this method we recursively partition the LCS matrix into
triangles and process them in the order as shown in Figure 1.

• The Bisection Method. We always partition the matrix into halves along the longer dimension.

All three methods have the same asymptotic bounds.

3 Experimental Results

We discuss our experimental results below. In this and subsequent sections we refer to the
implementation of the new cache-oblivious algorithm as CO and that of Hirschberg’s algorithm as
Hi. In our experiments we have not included Classic-LCS as a stand-alone algorithm since it was
unable to handle input strings longer than 27,000 (assuming m = n) on any machine.

3.1 Random Sequences. Unless mentioned otherwise all sequences in this section are understood
to be drawn from an alphabet of size 26 (the English alphabet), and each numerical figure (i.e., running
time, cache misses) is the average of 5 independent runs.

3.1.1 Base Case Size. If the value of base is too small in LCS-Output-Boundary and
Recursive-LCS, the overhead of recursion dominates the running times of those routines, and if
it is too big the I/O overhead dominates. We empirically determined the best value of base on each
of the three architecures (see Figure 2) and used them for all our experiments. However, Hirschberg’s
algorithm did not seem to be sensitive to the size of the base case unless it is too small since the I/O
overhead of Hi dominates the cost of recursion most of the time. We used the same base case size for
both CO and Hi in all of our studies.

3.1.2 Comparing the Three Implementations. We executed all three variants of CO on all three
architectures. The triangulation method ran the fastest on Intel Xeon (see Fig. 3(a)) and AMD Opteron



(a) (b) (c)
Figure 3: Comparison of running times of the three implementations (triangulation, quartering and bisection) of

the cache-oblivious algorithm: (a) on Intel Xeon, (b) on AMD Opteron, and (c) on SUN Blade. Each running

time is normalized with respect to the corresponding running time of the triangulation method.

(see Fig. 3(b)), and the quartering method was the fastest on SUN Blade (see Fig. 3(c)). On Intel
Xeon the quartering method ran around 10% slower compared to the triangulation method, and the
bisection method ran around 20% slower. On AMD Opteron those two figures were around 20% and
55%, respectively. It turns out that though all three methods perform almost the same number of
memory operations (i.e., operations involving a memory location), both the quartering method and the
bisection method perform around 46% more index variable operations (i.e., operations that manipulate
index variables) compared to the triangulation method when run on the same pair of sequences. The
overhead of manipulating the index variables contribute to the slowdown of the quartering and the
bisection methods. The bisection method, however, makes about 50% more recursive function calls
compared to the quartering method which explains why the former is slower than the later method.
However, on SUN Blade the running times of the three methods were within 2% of one another. This
happens because memory operations are slower on SUN Blade (since it has a slower off-board L2 cache)
and so the cost of index variable operations and the recursive function calls no longer dominate.

For the remaining experiments in this technical report we used the variant of CO based on
triangulation method.

(a) (b) (c)
Figure 4: Comparison of cache performance on Intel Xeon with an L1 cache of size 8 KB (64 B blocks) and an

L2 cache of size 512 KB (64 B blocks): (a) ratio of L1 references made by Hi to that made by CO, (b) ratio of

L1 misses which is also the ratio of L2 references, and (c) ratio of L2 misses.

3.1.3 Cache Performance. We compared CO and Hi in terms of the number of L1 and L2 cache
references and misses on Intel Xeon and SUN Blade:

• Intel Xeon. The data on the Intel Xeon processor was obtained using the Cachegrind profiler
[23]. The profiler slows down the running program considerably, and so we have not obtained data



(a) (b) (c)
Figure 5: Comparison of cache performance on SUN Blade with an L1 cache of size 64 KB (32 B blocks) and an

L2 cache of size 8 MB (512 B blocks): (a) ratio of cache references (L1 and L2 separately) made by Hi to that

made by CO, (b) ratio of L1 misses, and (c) ratio of L2 misses.

for sequences longer than 524,288 (219).

Our experimental results show that Hi consistently makes 97% more L1 cache references compared
to CO (see Fig. 4(a)), but the ratio of the number of cache misses incurred by Hi to that incurred
by CO increases as the sizes of the sequences increase (see Fig. 4(b)). For n = 8, 192 = 213, Hi
incurs 163 times more cache misses than does CO while for n = 524, 288 = 219, this ratio reaches
932. We expect that this ratio will ultimately stabilize at γM for large enough sequences, where γ

is a machine dependent constant.

The number L2 cache references is the same as the number of L1 cache misses on Intel Xeon (see
Fig. 4(b)). However, it appears that the number of L2 cache misses incurred by either algorithm is
insignificant upto n = 32, 768 = 215 since upto that point the input is small enough to fit entirely
into the L2 cache which has a size of 512 KB. Starting from n = 65, 536 = 216, the ratio of of L2
cache misses incurred by Hi to that incurred by CO increases with the increase of the sequence
length, reaching 28, 487 for n = 524, 288 = 219 (see Fig. 4(c)).

• SUN Blade. The caching data on the SUN Blade was obtained using the cputrack utility that
keeps track of hardware counters.

From our experimental results it appears that Hi consistently makes about 160% more L1 cache
references compared to that made by CO (see Fig. 5(a)), and similar to what happened on Intel
Xeon the ratio of L1 cache misses incurred by Hi to that incurred by CO increases as the sizes
of the input increase. This ratio starts at 2 for n = 8, 192 = 213 and reaches 3,839 as n reaces
1, 048, 576 = 220 (see Fig. 5(b)).

Unlike Intel Xeon, however, SUN Blade has a write-through L1 cache, and so the number of L2
cache references is not the same as the number of L1 misses. In fact, Hi consistently makes 110%
more L2 references compared to CO (see Fig. 5(a)). The L2 cache on SUN Blade is large enough
(8 MB) to hold inputs upto size n = 131, 072 = 217, and so the number of L2 cache misses becomes
significant after that point. Starting from n = 262, 144 = 218 the ratio of L2 misses incurred by Hi
to that incurred by CO increases with the increase of n, and rapidly reaches 2, 330 as n increases
to 1, 048, 576 = 220 (see Fig. 5(c)).

3.1.4 Running Time. Across all machines, our cache-oblivious algorithm consistently ran faster
than Hirchberg’s algorithm on randomly generated equal-length sequence-pairs, with the ratio of running
times increasing gradually as the sizes of the sequences increase (see Fig. 6). For example, for sequence
pairs of length 1 million (n = 220) our algorithm ran twice as fast as Hirschberg’s algorithm on the Intel
Xeon and the AMD Opteron, and 5 times faster on the SUN Blade.



Figure 6: Ratio of running time (separately on Intel

Xeon, AMD Opteron and SUN Blade) of Hi to that

of CO on equal-length sequences.

Figure 7: Ratio of instructions executed (separately

on Intel Xeon and SUN Blade) for Hi to that executed

for CO.

On SUN Blade Hirschberg’s algorithm dramatically slowed down compared to the cache-oblivious
algorithm as soon as n reached 220. We believe this happened because at that point the input became
too large to completely fit in the L2 cache and Hi started to incur significantly more L2 misses than CO
did (see Fig. 5(c)). The RAM in the SUN Blade is slower than that in either of the two more recent
machines (Intel Xeon and AMD Opteron), and that causes programs to slow down considerably if the
RAM is not used I/O-efficiently.

The graph for Intel Xeon in Fig. 6 shows a sudden spike at n = 16, 384 = 214. We think this
happened because data in Hirschberg’s algorithm did not align suitably with the L2 cache.

Since disks have very large access latencies, we expect that CO will run far faster than Hi if the
sequences are too large to fit in the RAM.

3.1.5 Instruction Count. Hirschberg’s algorithm executed a larger number of machine instructions
than the cache-oblivious algorithm; for input sizes from 213 to 219 the ratio stayed consistently around
1.73 on Intel Xeon, and on Sun Blade it stayed around 1.92 (see Fig. 7). We also counted the number
of C operations performed by both algorithms and found that Hi consistently performed 33% more
memory operations and 50% more index variable operations compared to CO.

(a) (b) (c)

Figure 8: Leading constant of time complexity (i.e., value of runtime in ns

n2 ): (a) on Intel Xeon, (b) on AMD

Opteron, and (c) on SUN Blade.

3.1.6 Predicting Running Times from Theoretical Time Complexities. In Fig. 8 we plot
the value of

(

runtime in ns
n2

)

for both CO and Hi on all three architectures. For CO this value is almost
constant on both Intel Xeon and AMD Opteron, and its running time (in ns) on these two machines
can be approximated by 10n2 for two random sequences of length n each. Thus on these machines CO



can effectively conceal the effect of different caches on its running time. However, on SUN Blade its
running time (in ns) can be approximated by 20n2 for n ≤ 213 and by 30n2 for n > 213, i.e, CO cannot
completely conceal the effect of L2 cache on this machine. We believe this happens because the SUN
Blade has a slower (off-chip) L2 cache compared to that on the Intel Xeon or the AMD Opteron.

Across all machines Hi has a larger value of
(

runtime in ns
n2

)

than CO, and this ratio is not constant
for all values of n. On Intel Xeon the ratio remains around 11 until n = 215 (i.e., until L2 cache misses
start to occur, ignoring the spike at n = 214), and then it gradually increases, stabilizing at around 18
after n = 218. On AMD Opteron the ratio lies around 14 until n = 216 (L2 cache misses start to occur
after that point), and then it slowly increases to 22 at n = 220. On SUN Blade the ratio remains at
around 37 upto n = 213 (after that L1 cache misses start to occur), lies around 60 between n = 214 and
n = 219 (L2 cache misses occur after n = 219), and exceeds 140 after that.

(a) (b)

Figure 9: Leading constant of I/O complexity (i.e., value of cache misses

n2/MB ) of CO on Intel Xeon: (a) for L1 cache

(M = 8 KB, B = 64 B, 4-way), and (b) for L2 cache (M = 512 KB, B = 64 B, 8-way).

(a) (b)

Figure 10: Leading constant of I/O complexity (i.e., value of cache misses

n2/MB ) of CO on SUN Blade: (a) for L1 cache

(M = 64 KB, B = 32 B, 4-way, write-through), and (b) for L2 cache (M = 8 MB, B = 512 B, 2-way).

3.1.7 Empirical and Theoretical I/O Complexities. In Figure 9 we plot the value of
(

cache misses
n2/MB

)

for both caches (L1 and L2) when CO is run on the Intel Xeon. We plot the same

for the SUN Blade in Figure 10. The theoretical I/O complexity of the algorithm has been derived
for a fully associative cache that employs an optimal offline cache-replacement policy. The caches on
the Intel Xeon and the SUN Blade are, however, only 2 to 8-way set-associative, and they do not use
optimal cache-replacement strategies. Moreover, the L1 cache on the SUN Blade is write-through. For
these reasons the plotted values are quite large (ideally we would expect a value of 1) though in all cases
they are decreasing with the increase of n.



(a) (b)
Figure 11: Effect on the running time of CO and Hi when the alphabet size is changed from 26 to 4: (a) on

Intel Xeon, and (b) on AMD Opteron.

Sequence pairs
with lengths

(106)

cat/dog (1.16/1.05)
rat/mouse (1.50/1.49)

baboon/chimp (1.51/1.32)
human/zebrafish (1.80/0.16)

human/fugu (1.80/0.27)

Running time
CO Hi ratio
(t1) (t2) ( t2

t1
)

5h 51m 8h 39m 1.48
8h 0m 15h 54m 1.99
7h 22m 14h 46m 2.00
1h 8m 1h 45m 1.56
1h 54m 3h 8m 1.65

Sequence pairs
with lengths

(106)

human/chicken (1.80/0.42)
human/chimp (1.80/1.32)

human/cow (1.80/1.46)
human/rat (1.80/1.50)

human/baboon (1.80/1.51)

Running time
CO Hi ratio
(t1) (t2) ( t2

t1
)

2h 47m 4h 59m 1.79
7h 37m 17h 34m 2.31
9h 27m 18h 55m 2.00
9h 40m 20h 33m 2.13
8h 52m 19h 18m 2.18

Table 1: The figures give the time for a single run on pairs of CFTR DNA sequences on AMD Opteron.

3.1.8 Effect of Alphabet Size on Running Times. If the size of the alphabet decreases running
times of both algorithms increase. However, change of alphabet size has a much smaller impact on the
running time of CO than on Hi (see Fig. 11). This happens because Hirschberg’s algorithm has a code
segment (reversing the LCS’s obtained for base cases) that directly depends on the length of the LCS,
and with the decrease of alphabet size the length of the LCS increases for any given input size.

3.2 Real-world Sequences. In Table 1 we tabulate running times on the AMD Opteron for pairs
of sequences from the CFTR DNA sequences [25], where again, our algorithm performs approximately
twice as fast as Hirschberg’s algorithm.
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