
External-Memory Exact and Approximate All-Pairs Shortest-Paths in

Undirected Graphs ∗

Rezaul Alam Chowdhury Vijaya Ramachandran

UTCS Technical Report TR-04-38

August 31, 2004

Abstract

We present several new external-memory algorithms for finding all-pairs shortest paths in a V -
node, E-edge undirected graph. Our results include the following, where B is the block-size and M
is the size of internal memory. We present cache-oblivious algorithms with O(V · E

B
logM

B

E

B
) I/Os

for all-pairs shortest paths and diameter in unweighted undirected graphs. For weighted undirected

graphs we present a cache-aware APSP algorithm that performs O(V · (
√

V E

B
+ E

B
log V

B
)) I/Os.

We also present efficient cache-aware algorithms that find paths between all pairs of vertices in an
unweighted graph whose lengths are within a small additive constant of the shortest path length.

All of our results improve earlier results known for these problems. For approximate APSP we
provide the first nontrivial results. Our diameter result uses O(V + E) extra space, and all of our
other algorithms use O(V 2) space. In our work on external-memory algorithm for APSP in weighted
undirected graphs we develop the notion of a slim data structure that might have other applications
in external-memory computations.

1 Introduction

1.1 The APSP Problem

The all-pairs shortest paths (APSP) problem is one of the most fundamental and important combinato-
rial optimization problems from both a theoretical and a practical point of view. Given a (directed or
undirected) graph G with vertex set V [G], edge set E[G], and a non-negative real-valued weight function
w over E[G], the APSP problem seeks to find a path of minimum total edge-weight between every pair
of vertices in V [G]. For any pair of vertices u, v ∈ V , the path from u to v having the minimum total
edge-weight is called the shortest path from u to v, and the sum of all edge-weights along that path is
the shortest distance from u to v. The diameter of G is the longest shortest distance between any pair of
vertices in G. For unweighted graphs the APSP problem is also called the all-pairs breadth-first-search
(AP-BFS) problem. By V and E we denote the size of V [G] and E[G], respectively.

Considerable research has been devoted to developing efficient internal-memory approximate and
exact APSP algorithms [18]. All of these algorithms, however, perform poorly on large data sets when
data needs to be swapped between the faster internal memory and the slower external memory. Since
most real world applications work with huge data sets, the large number of I/O operations performed by
these algorithms becomes a bottleneck which necessitates the design of I/O-efficient APSP algorithms.

∗Dept of Comp Sci, UT-Austin, Austin, TX 78712. Email: {shaikat,vlr}@cs.utexas.edu. This work was supported in part by
NSF CCR-9988160.

1.2 Cache-Aware Algorithms

To capture the influence of the memory access pattern of an algorithm on its running time Aggarwal
and Vitter [1] introduced the two-level I/O model (or external memory model). This model consists
of a memory hierarchy with an internal memory of size M , and an arbitrarily large external memory
partitioned into blocks of size B. The I/O complexity of an algorithm in this model is measured in terms
of the number of blocks transferred between these two levels. Two basic I/O bounds are known for this
model: the number of I/Os needed to read N contiguous data items from the disk is scan(N) = Θ(N

B)
and the number of I/Os required to sort N data items is sort(N) = Θ(N

B log M
B

N
B) [1].

A straight-forward method of computing AP-BFS (or APSP) is to simply run a BFS (or single source
shortest path (SSSP) algorithm, respectively) from each of the V vertices of the graph. External BFS on

an unweighted undirected graph can be solved using either (V +sort(E)) I/Os [15] or O(
√

V E
B +sort(E))

I/Os [13]. External SSSP on an undirected graph with general non-negative edge-weights can be
computed in O(V + E

B log V
M) I/Os using the cache-aware Buffer Heap [8]. There are also some results

known for external SSSP on undirected graphs with restricted edge-weights [14]. The I/O complexity
for external AP-BFS (or APSP) is obtained by multiplying the I/O complexity of external BFS (or
SSSP) by V .

Very recently Arge et al. [6] proposed an O(V · sort(E)) I/O cache-aware algorithm for AP-BFS
on undirected graphs. Their algorithm works by clustering nearby vertices in the graph, and running
concurrent BFS from all vertices of the same cluster. This same algorithm can be used to compute
unweighted diameter of the graph in the same I/O bound and O(

√
V EB) additional space. They also

present another algorithm for computing the unweighted diameter of sparse graphs (E = O(V)) in

O(sort(kV 2B
1
k)) I/Os and O(kV) space for any integer k, 3 ≤ k ≤ log B.

For undirected graphs with general non-negative edge-weights Arge et al. [6] proposed an APSP

algorithm requiring O(V · (
√

V E
B log V +sort(E))) I/Os, whenever E ≤ V B

log V . They use a priority queue

structure called the Multi-Tournament-Tree which is created by bundling together a number of I/O-
efficient Tournament Trees [12]. The use of this structure reduces unstructured accesses to adjacency
lists at the expense of increasing the cost of each priority queue operation.

1.3 The Cache-Oblivious Model

The main disadvantage of the two-level I/O model is that algorithms often crucially depend on the
knowledge of the parameters of two particular levels of the memory hierarchy and thus do not adapt
well when the parameters change. In order to remove this inflexibility Frigo et al. introduced the cache-
oblivious model [11]. As before, this model consists of a two-level memory hierarchy, but algorithms are
designed and analyzed without using the parameters M and B in the algorithm description, and it is
assumed that an optimal cache-replacement strategy is used.

No non-trivial algorithm is known for the AP-BFS and the APSP problems in the cache-oblivious
model except for the method of running single BFS and SSSP, respectively, from each of the V vertices.

In this model, BFS on an undirected graph can be performed using O(
√

V E
B + E

B log V + MST (E))

I/Os [7], and SSSP on an undirected graph with non-negative real-valued edge-weights can be solved in
O(V + E

B log V
M) I/Os using the cache-oblivious Buffer Heap [8] or Bucket Heap [7]. (The result is stated

as O(V + E
B log V

B) I/Os in both [8] and [7], but it was observed by the current authors and the second
author in [7] that the amortized I/O cost is actually O(V + E

B log V
M) [17, 10].) The I/O complexity of

the corresponding all-pairs version of the problem is obtained by multiplying the I/O complexity of the
single-source version by V .

2

1.4 Our Results

In section 2 we present a simple cache-oblivious algorithm for computing AP-BFS on unweighted
undirected graphs in O(V · sort(E)) I/Os, matching the I/O complexity of its cache-aware counterpart
[6]. We use this algorithm to compute the diameter of an unweighted undirected graph in the same I/O
bound and O(V + E) space. Our cache-oblivious algorithm is arguably simpler than the cache-aware
algorithm in [6] and it has a better space bound for computing the diameter.

In section 3 we present the first nontrivial external-memory algorithm to compute approximate
APSP on unweighted undirected graphs with small additive error. The algorithm is cache-aware, it uses

O(1

B
2
3

V 2− 2
3k E

2
3k log

2
3
(1− 1

k
) V + k

BV 2− 1
k E

1
k log1− 1

k V) I/Os, and it produces estimated distances with an

additive error of at most 2(k − 1), where 2 ≤ k ≤ log V is an integer, and E > V log V . The number
of I/Os performed by our algorithm is close to being a factor of B smaller than the running time
of the best internal-memory algorithm known for this problem [9]. For the special case k = 2, we
present an alternate algorithm that performs better for large values of B; this algorithm builds on the
internal-memory algorithm in [2].

In section 4 we introduce the notion of a Slim Data Structure for external-memory computation.
This notion captures the scenario where only a limited portion of the internal memory is available to
store data from the data structure; it is assumed, however, that while executing an individual operation
of the data structure, the entire internal memory of size M is available for the computation. We
describe and analyze the Slim Buffer Heap which is a slim data structure based on the Buffer Heap [8].
We use Slim Buffer Heaps in a Multi-Buffer Heap to solve the cache-aware exact APSP problem for

undirected graphs with general non-negative edge-weights in O(V · (
√

V E
B + sort(E))) I/Os and O(V 2)

space, whenever E ≤ V B
log2 V

. This improves on the result in [6] for weighted undirected APSP. We also

believe that the notion of a Slim Data Structure is of independent interest and is likely to have other
applications in external-memory computation.

2 Cache-Oblivious APSP and Diameter for Unweighted Undirected Graphs

In this section we present a cache-oblivious algorithm for computing all-pairs shortest paths and diameter
in an unweighted undirected graph.

2.1 The Cache-Oblivious BFS Algorithm of Munagala and Ranade

Given a source node s, the algorithm of Munagala & Ranade [15] computes the BFS level of each node
with respect to s. Let L(i) denote the set of nodes in BFS level i. For i < 0, L(i) is defined to be empty.
Let N(v) denote the set of vertices adjacent to vertex v, and for a set of vertices S, let N(S) denote the
multiset formed by concatenating N(v) for all v ∈ S.

Algorithm MR-BFS(G)

The algorithm starts by setting L(0) = {s}. Then starting from i = 1, for each i < V , the algorithm computes L(i) assuming
that L(i− 1) and L(i− 2) have already been computed. Each L(i) is computed in the following three steps:

Step 1: Construct N(L(i − 1)) by |L(i − 1)| accesses to the adjacency lists, once for each v ∈ L(i − 1). This step requires
O(|L(i− 1)|+ 1

B
|N(L(i − 1))|) I/Os.

Step 2: Remove duplicates from N(L(i − 1)) by sorting the nodes in N(L(i − 1)) by node indices, followed by a scan and a
compaction phase. Let us denote the resulting set by L′(i). This step requires O(sort(|N(L(i − 1))|)) I/Os.

Step 3: Remove from L′(i) the nodes occurring in L(i− 1)∪L(i− 2) by parallel scanning of L′(i), L(i− 1) and L(i− 2). Since
all these three sets are sorted by node indices the I/O complexity of this step is O(1

B
(|N(L(i − 1))| + |L(i− 1)|+ |L(i− 2)|)).

The resulting set is the required set L(i).

3

Since
∑

i |L(i)| = O(V) and
∑

i |N(L(i))| = O(E), total I/O complexity of this algorithm is
O(

∑
i(|L(i)| + sort(|N(L(i))|) + 1

B (|N(L(i))| + L(i)))) = O(V + sort(E)).

2.2 Cache-Oblivious APSP for Unweighted Undirected Graphs

In this section we describe a cache-oblivious APSP algorithm for unweighted undirected graphs using
O(V · sort(E)) I/Os. Let G = (V [G], E[G]) be an unweighted undirected graph. By d(u, v) we denote
the shortest distance between two vertices u and v in G.

Our algorithm is based on the following observation which follows from triangle inequality and the
fact that d(u, v) = d(v, u) in an undirected graph:

Observation 1. For any three vertices u, v and w in G, d(u,w)−d(u, v) ≤ d(v, w) ≤ d(u,w)+d(u, v).

Suppose for some u ∈ V [G] we have already computed d(u,w) for all w ∈ V [G]. We sort the adjacency
lists in non-decreasing order by d(u, ·), and by A(j) we denote the portion of this sorted list containing
adjacency lists of vertices w with d(u,w) = j. Now if v is another vertex in V [G] then observation
1 implies that the adjacency list of any vertex w with d(v, w) = i, must reside in some A(j) where
i − d(u, v) ≤ j ≤ i + d(u, v). Therefore, we can use observation 1 to compute d(v, w) for all w ∈ V [G]
as follows:

Algorithm Incremental-BFS(G, u, v, d(u, ·))

Function: Given an unweighted undirected graph G, two vertices u, v ∈ V [G], and d(u, w) for all w ∈ V [G], this algorithm
computes d(v, w) for all w ∈ V [G]. It is assumed that E[G] is given as a set of adjacency lists.

Steps:

Step 1: Sort the adjacency lists of G so that adjacency list of a vertex x is placed before that of another vertex y provided
d(u, x) < d(u, y) or d(u, x) = d(u, y) ∧ x < y. Let A(i), 0 ≤ i < |V |, denote the portion of this sorted list that contains

adjacency lists of vertices lying exactly at distance i from u.

Step 2: To compute d(v, w) for all w ∈ V [G], run Munagala and Ranade’s BFS algorithm with source vertex v. But step (1)
of that algorithm is modified so that instead of finding the adjacency lists of the vertices in L(i−1) by |L(i−1)| independent
accesses, they are found by scanning L(i−1) and A(j) in parallel for max{0, i−1−d(u, v)} ≤ j ≤ min{|V |−1, i−1+d(u, v)}.

Step 1 of Incremental-BFS requires O(sort(E)) I/Os. In step 2 each A(j) is scanned O(d(u, v)) times.
Since

∑
j |A(j)| = O(E), this step requires O(E

B d(u, v) + sort(E)) I/Os. Thus the I/O complexity of

Incremental-BFS is O(E
Bd(u, v) + sort(E)).

Since Incremental-BFS is actually an implementation of Munagala and Ranade’s algorithm, its
correctness follows from the correctness of that algorithm, and from observation 1 which guarantees that
the set of A(j)’s scanned to find the adjacency lists of the vertices in L(i−1) in step 2 of Incremental-
BFS contains all adjacency lists sought.

We can use Incremental-BFS to perform BFS I/O-efficiently from all vertices of G. The following
observation each part of which follows in a straight-forward manner from the properties of spanning
trees, Euler Tours and shortest paths, is central to this extension:

Observation 2. If ET is an Euler Tour of a spanning tree of an unweighted undirected graph G, then
(a) the number of edges between any two vertices x and y on ET is an upper bound on d(x, y) in G,
(b) ET has O(V) edges, and
(c) each vertex of V [G] appears at least once in ET .

4

The extended algorithm (AP-BFS) is as follows:

Algorithm AP-BFS(G)

Steps:

Step 1:
(a) Find a spanning tree T of G.
(b) Construct an Euler Tour ET for T .
(c) Mark the first occurrence of each vertex on ET , and let v1, v2, . . . , v|V | be the marked vertices in the order they

appear on ET .

Step 2: Run Munagala and Ranade’s original BFS algorithm with v1 as the source vertex, and compute d(v1 , w) for all
w ∈ V [G].

Step 3: For i← 2 to |V | do:

Call Incremental-BFS (G, vi−1, vi, d(vi−1 , ·)) to compute d(vi, w) for all w ∈ V [G].

Correctness. Correctness of AP-BFS follows from the correctness of Munagala and Ranade’s
BFS algorithm and that of Incremental-BFS. Moreover, observation 2(c) ensures that BFS will be
performed for each v ∈ V [G].

I/O Complexity. Step 1(a) can be performed cache-obliviously in O(min{V + sort(E), sort(E) ·
log2 log2 V }) I/Os [4]. In step 1(b) ET can also be constructed cache-obliviously using O(sort(V))
I/Os [4]. Step 1(c) requires O(sort(E)) I/Os. Step 2 requires O(V + sort(E)) I/Os. Iteration i of
step 3 requires O(E

B d(vi−1, vi) + sort(E)) I/Os. Total number of I/O operations required by the entire

algorithm is thus O(E
B

∑|V |
i=2 d(vi−1, vi) + V · sort(E)). Since by observation 2(a) and 2(b) we have

∑|V |
i=2 d(vi−1, vi) = O(V), the I/O complexity of AP-BFS reduces to O(V · sort(E)).

Space Complexity. Since the algorithm requires to output all Θ(V 2) pairwise distances its space
requirement is Θ(V 2).

2.3 Cache-Oblivious Unweighted Diameter for Undirected Graphs

The AP-BFS algorithm can be used to find the unweighted diameter of an undirected graph cache-
obliviously in O(V · sort(E)) I/Os. We no longer need to output all Θ(V 2) pairwise distances, and each
iteration of step 3 of AP-BFS only requires the Θ(V) distances computed in the previous iteration or
in step 2. Thus the space requirement is only Θ(V) in addition to the O(E) space required to handle
the adjacency lists.

3 Cache-Aware Approximate APSP for Unweighted Undirected Graphs

In this section we present a family of cache-aware external-memory algorithms Approx-AP-BFSk

for approximating all distances in an unweighted undirected graph with an additive error of at most
2(k − 1), where 2 ≤ k ≤ log V is an integer. The error is one sided. If δ(u, v) denotes the
shortest distance between any two vertices u and v in the graph, and δ̂(u, v) denotes the estimated
distance between u and v produced by the algorithm, then δ(u, v) ≤ δ̂(u, v) ≤ δ(u, v) + 2(k − 1).

Provided E > V log V , Approx-AP-BFSk runs in O(kV 2− 1
k E

1
k log1−1/k V) time, and triggers

O(1

B
2
3

V 2− 2
3k E

2
3k log

2
3
(1− 1

k
) V + k

B V 2− 1
k E

1
k log1− 1

k V) I/Os. This family of algorithms is the external-

memory version of the family of O(kV 2− 1
k E

1
k log1−1/k V) time internal-memory approximate shortest

paths algorithms (apaspk) introduced by Dor et al. [9] which is the most efficient algorithm available
for solving the problem in internal memory.

5

The second term in the I/O complexity of Approx-AP-BFSk is exactly (1/B) times the running
time of the Dor et al. algorithm [9]. Though the first term in the I/O complexity of Approx-AP-BFSk

has a smaller denominator (B
2
3), its numerator is smaller than the numerator of the second term when

E > V log V , thus reducing the impact of the first term in the overall I/O complexity.

3.1 The Internal-Memory Approximate AP-BFS Algorithm by Dor et al.

The internal-memory approximate APSP algorithm (apaspk) in [9] receives an unweighted undirected
graph G = (V [G], E[G]) as input, and outputs an approximate distance δ̂(u, v) between every pair of
vertices u, v ∈ V [G] with a positive additive error of at most 2(k − 1). Recall that a set of vertices D is
said to dominate a set U if every vertex in U has a neighbor in D.

A high level overview of the algorithm is given below:

Algorithm DHZ-Approx-AP-BFSk(G)

Step 1: For i← 1 to k − 1 do:

(a) Set si ← E
V

(V log V

E
)

i

k

Step 2: Decompose G to produce the following sets:

(a) A sequence of vertex sets D1,D2, . . . ,Dk of increasing sizes with Dk = V [G]. For 1 ≤ i ≤ k − 1, Di dominates all vertices
of degree at least si in G.

(b) A decreasing sequence of edge sets E1 ⊇ E2 ⊇ . . . ⊇ Ek, where E1 = E[G] and for 1 < i ≤ k the set Ei contains edges that
touch vertices of degree at most si−1.

(c) A set E∗ ⊆ E[G] which bears witness that each Di dominates the vertices of degree at least si in G.

Step 3: For i← 1 to k do:

(a) For each u ∈ Di do:

(a1) Run SSSP from u on Gi(u) = (V [G],Ei ∪ E∗ ∪ ({u} × V [G]))

In each Gi(u) the edges Ei ∪E∗ are unweighted edges of the input graph, but the edges {u} × V [G] are weighted, and to each
such edge (u, v) an weight is attached which is equal to the current known best upper bound on the shortest distance from u
to v.

Step 4: Return the smallest distance computed between every pair of vertices in step 2.

The algorithm maintains the invariant that after the ith iteration in step 2, the approximate distance
computed by the algorithm from each u ∈ Di to each v ∈ V [G] has an additive error of at most 2(i−1).
Thus after the kth iteration a surplus 2(k−1) distance is computed between every pair of vertices in G.

3.2 Our Algorithm

Our algorithm adapts the Dor et al. algorithm (DHZ-Approx-AP-BFSk) to obtain a cache-efficient
implementation. In our adaptation we do not modify step 1 of DHZ-Approx-AP-BFSk, and use
the same sequence of values for 〈s1, s2, . . . , sk−1〉. In section 3.3 we describe an external-memory
implementation of step 2 of DHZ-Approx-AP-BFSk.

It turns out that the I/O-complexity of DHZ-Approx-AP-BFSk depends on the I/O-efficiency
of the SSSP algorithm used in step 3(a1). Therefore, we replace each SSSP algorithm with a more
I/O-efficient BFS algorithm by transforming each Gi(u) to an unweighted graph G′i(u) of comparable
size. But in order to preserve the shortest distances from u to other vertices in Gi(u), the weighted

6

edges of Gi(u) need to be replaced with a set of directed unweighted edges. This makes the graph G ′i(u)
partially directed, and we need to modify existing external undirected BFS algorithms to handle the
partial directedness in G′i(u) efficiently. This is described in section 3.4.

There are two ways to apply the BFS: either we can run an independent BFS from each u ∈ Di as
in step 3 of DHZ-Approx-AP-BFSk, or we can run BFS incrementally from the vertices of Di as in
section 2.2. It turns out that running independent BFS is more I/O-efficient when |Di| is smaller (i.e.,
value of i is smaller), and incremental BFS is more I/O-efficient when G′i(u) is sparser (i.e., value of i is
larger). Therefore, we choose a value of i at which switching from independent BFS to incremental BFS
minimizes the I/O-complexity of the entire algorithm. The overall algorithm is described in section 3.5.

3.3 External-Memory Implementation of Step 2

A set of vertices D is said to dominate a set U if every vertex in U has a neighbor in D. It has been
shown by Aingworth et al. [2] that there is always a set of size O(V log V

s) that dominates all the vertices
of degree at least s in an undirected graph, and in [9] it has been shown that this set can be found
deterministically in O(V + E) time. In this section we present an external-memory implementation of
the internal-memory greedy algorithm described in [9] for computing this set. The external-memory

version, which we call Dominate, requires O(V + V 2

B + sort(E)) I/Os and O(V 2 + E log V) time,
which is sufficient for our purposes. The internal-memory algorithm uses a priority queue that supports
Delete-Max and Decrease-Key (for implementing steps 2(a) and 2(e) in Dominate). But due to the
lack of any such I/O-efficient priority queue we use linear scans to simulate those two operations leading

to the V 2

B term, and thus the I/O-complexity of Dominate is worse than what one would typically
expect from an external-memory implementation of an O(V + E) time internal-memory algorithm.

The Dominate function receives an undirected graph G = (V [G], E[G]) and a degree threshold s as
inputs, and outputs a pair (D,E∗), where D is a set of size O(V log V

s) dominating the set of vertices of
degree at least s in G, and E∗ ⊆ E[G] is a set of size O(V) such that for every u ∈ V [G] with degree at
least s, there is an edge (u, v) ∈ E∗ with v ∈ D.

Algorithm Dominate(G, s)
Function: Given an undirected graph G = (V [G], E[G]) and a degree threshold s, this algorithm outputs a pair (D,E∗), where

D is a set of size O(V log V

s
) that dominates the vertices of degree at least s in G, and E∗ ⊆ E[G] is a set of size O(V) such

that for every u ∈ V [G] with degree at least s, there is an edge (u, v) ∈ E∗ with v ∈ D.

Steps:

Step 1: Perform the following initializations:

(a) Sort the adjacency lists of G by their corresponding vertex indices, and the vertices in each adjacency list by their
own indices.

(b) Scan the sorted adjacency lists to compute the degree of each vertex, and collect the vertices of degree at least s
in sorted order (according to vertex indices) into an initially empty list L1. Each vertex in L1 will be accompanied
by its degree.

(c) Set D ← ∅, E∗ ← ∅, and L2 ← ∅. The list L2 will be used to collect the dominated vertices in sorted order (by
vertex indices).

Step 2: While L1 6= ∅ do:

(a) Scan L1 to find and remove a vertex with the largest degree. Let this vertex be u and Au be its adjacency list.
(b) Add u to D and L2 maintaining the sorted order of L2.
(c) Scan Au and L2 in parallel and remove from Au any vertex appearing in L2.
(d) Add the vertices in Au to L2 by scanning both lists in parallel.
(e) Scan L1 and Au in parallel and decrease the degree of each vertex in L1 that appears in Au. Remove the vertices
with degree zero from L1.

(f) For each v ∈ Au do:

• Add (v, u) to E∗.
• Scan L1 and v’s adjacency list Av in parallel, and decrease the degree of each vertex in L1 that appears in Av .
Remove the vertices with degree zero from L1.

7

Correctness of Dominate. Since Dominate is a straight-forward external-memory implementation
of the internal-memory greedy algorithm for finding dominating sets described in [9], its correctness
directly follows from the correctness of that algorithm.

I/O Complexity of Dominate. Step 1(a) requires O(sort(E)) I/Os and 2(a) requires O(E
B) I/Os.

Thus step 1 requires at most O(sort(E)) I/Os. In step 2, the adjacency list of each vertex in G is
loaded at most twice, and scanned O(1) times. In each iteration of step 2, L1 and L2 are also scanned

only a constant number of times. Thus step 2 requires O(V + V 2

B) I/Os. Therefore, I/O complexity of

Dominate(G, s) is O(V + V 2

B + sort(E)).

We describe another function, called Decompose, which is an external-memory version of an internal-
memory function with the same name described in [9], and uses the Dominate function as a
subroutine. The function receives an undirected graph G = (V [G], E[G]), and a decreasing sequence
s1 > s2 > . . . > sk−1 of degree thresholds as inputs. It produces a decreasing sequence of edge sets
E1 ⊇ E2 ⊇ . . . ⊇ Ek, where E1 = E[G] and for 1 < i ≤ k the set Ei contains edges that touch vertices
of degree at most si−1. Clearly, |Ei| ≤ V si−1 for 1 < i ≤ k. This function also produces a sequence of
dominating sets D1, D2, . . . , Dk, and an edge set E∗. For 1 ≤ i < k the set Di dominates all vertices of
degree greater than si, while Dk is simply V [G]. The set E∗ ⊆ E is a set of edges such that if the degree
of a vertex u is greater than si then there exists an edge (u, v) ∈ E∗ with v ∈ Di. Clearly |E∗| ≤ kV .

Algorithm Decompose(G, 〈s1, s2, . . . , sk−1〉)
Function: Given an undirected graph G = (V [G], E[G]) and a decreasing sequence s1, s2, . . . , sk−1 of degree thresholds, this
algorithm outputs a sequence of edge sets E1 ⊇ E2 ⊇ . . . ⊇ Ek, where E1 = E[G] and for 1 < i ≤ k the set Ei contains edges
that touch vertices of degree at most si−1. It also outputs dominating sets D1, D2, . . . ,Dk, and an edge set E∗. For 1 ≤ i < k
the set Di dominates all vertices of degree greater than si, while Dk is simply V [G]. The set E∗ ⊆ E is such that if deg(u) > si

then there exists an edge (u, v) ∈ E∗ with v ∈ Di, where deg(u) denotes the degree of vertex u.

Steps:

Step 1: Perform the following initializations:

(a) Sort the adjacency lists of G by their corresponding vertex indices, and the vertices in each adjacency list by their
own indices.

(b) Scan the sorted adjacency lists to compute the degree of each vertex.

Step 2:
(a) For i← 2 to k do:

Scan the adjacency lists to produce the set
Ei ← {(u, v) ∈ E[G] | deg(u) ≤ si−1 ∨ deg(v) ≤ si−1}.

(b) For i← 1 to k − 1 do:

(Di, E∗
i)← Dominate(G, si)

(c) Set E1 ← E, Dk ← V , and E∗ ← � k−1
i=1

E∗
i

I/O Correctness of Decompose. The correctness of this function directly follows from the
internal-memory Decompose function in [9].

I/O Complexity of Decompose. The I/O cost of step 1 is O(sort(E)). Step 2(a) requires O(k E
B)

I/Os. Step 2(b) requires O(k(V + V 2

B)) I/Os in total since step 1(a) of Dominate can now be eliminated.

Step 2(c) can be implemented in O(kV
B + E

B) I/Os. Thus the I/O complexity of Decompose is

O(k(V + V 2

B) + sort(E)).

8

�
�
�

�
�
�

�
�
�

�
���
�

�

�

�

δδδδ �������	��

δδδδ �������	��

�
��
��
�

Figure 1: The directed unweighted edges that replace the undirected weighted edges of Gi(u).

3.4 Replacing SSSP by BFS in Step 3(a1)

For i = 1, 2, . . . , k, in step 3(a1) DHZ-Approx-AP-BFSk runs an SSSP algorithm from each u ∈ Di

on a graph Gi(u) = (V,Ei(u)), where Ei(u) = Ei ∪ E∗ ∪ ({u} × V). The edges Ei ∪ E∗ are the original
edges of the graph. But the edges {u}×V are not necessarily the edges of the input graph, and to such
an edge (u, v) an weight of δ̂(u, v) is attached, where δ̂(u, v) is the current best known upper bound on
the shortest distance from u to v in G. Initially, δ̂(u, v) = 1 if (u, v) ∈ E[G] and δ̂(u, v) = ∞ otherwise.

Since external-memory BFS is more I/O-efficient than external-memory SSSP, we replace the SSSP
in step 3(a1) with a BFS algorithm. But this requires us to transform the weighted graph Gi(u) into
an unweighted graph of comparable size.

Transforming Gi(u) into an Unweighted Graph. Since the distances we compute are non-negative
integers smaller than |V |, we can, in fact, transform Gi(u) into an unweighted graph G′i(u) by
introducing |V | − 2 new vertices along with at most 2|V | − 3 new unweighted directed edges instead of
the weighted undirected edges of {u} × V while preserving the shortest distances from u to all other
vertices in V . We introduce |V | − 2 new vertices v ′2, v

′
3, . . . , v

′
|V |−1, and introduce the directed edges

(u, v′2), (v
′
2, v
′
3), (v

′
3, v
′
4), . . . , (v

′
|V |−2, v

′
|V |−1). For each v ∈ V [G] with δ̂(u, v) = 1, we add a directed edge

(u, v), and for each v ∈ V [G] with 2 ≤ δ̂(u, v) = t ≤ |V | − 1, we add a directed edge (v ′t, v) (see Figure
1). The resulting graph G′i(u) is partially directed.

We have the following lemma:

Lemma 3.1. The unweighted partially directed graph G′i(u) obtained from the weighted undirected graph
Gi(u) = (V,Ei(u)) preserves the shortest distances from u to all other vertices in V .

9

Proof. We observe that for every v ∈ V to which a finite upper bound on the shortest distance from u
is known, we introduce exactly one u to v path containing only directed edges. Let us call a path that
contains no directed edges Old Path, and a path that contains at least one directed edge New Path. Now
suppose G′i(u) contains a shortest path from u to some vertex v ∈ V that is shorter than the shortest
u to v path in Gi(u). This path must be of the form P1 · P2, where P1 is a subpath (new or old) from
u to some vertex w ∈ V (w 6= u, v) , and P2 is a subpath (new) from w to v. But since u is the only
entry point to the new directed edges introduced in G′i(u), P2 must contain a path from u to v. Thus
the path P1 · P2 is not simple, and so cannot be a shortest path. ut

Handling the Partial Directedness in G′i(u). We can modify the MR-BFS algorithm in section
2.1 to correctly handle the partial directedness in G′i(u) with only O(scan(E)+ sort(V)) I/O overhead,
and thus without changing its I/O complexity. The algorithm will receive G ′i(u) as an undirected graph,
and will implicitly handle the edges that are intended to be directed. It must ensure the following

(a) L(i) must not contain any other v ′j ’s except v′i+1, and

(b) if the BFS level of a vertex v is less than i, then any edge (v ′i+1, v) must not force v to be
included in L(i).

Ensuring (a) is straight-forward, but in order to ensure (b) we use an optimal external-memory priority
queue supporting Insert and Delete-Min [3] that keeps track of the visited vertices connected to the v ′j’s.
The modifications are detailed in Modified-MR-BFS. It performs at most one Insert and one Delete-
Min for each edge of the form (v′j , v), and thus causing O(sort(V)) extra I/Os [3]. An additional
O(scan(E)) I/O overhead results from scanning the adjacency lists.

Algorithm Modified-MR-BFS(G′i(u), u)

Function: The input graph G′
i(u) is given as an undirected graph but with implicit directed edges as discussed in section 3.5.

This algorithm is a version of Munagala & Ranade’s BFS algorithm modified to perform BFS on this implicitly partially directed
graph from the source vertex u.

Steps:

Step 1: Perform the following initializations:

(a) Set L(0)← {u}
(b) Set Q← ∅, where Q is an optimal external-memory priority queue supporting Insert and Delete-Min

Step 2: For i← 1 to V − 1 do:

(a) Scan the adjacency lists of vertices in L(i−1), and for each edge (v, v′
j+1) with j ≥ i, set Q← Q∪{(v, j)} (Insert)

(b) Set P ← {v | (v, i) ∈ Q} (Delete-Min)
(c) Construct N(L(i − 1))
(d) Remove duplicates and all v′

j ’s from N(L(i− 1))
(e) Set L(i)← {N(L(i − 1)) \ {L(i − 1) ∪ L(i − 2) ∪ P}} ∪ {v′

i+1}

Correctness of Modified-MR-BFS. Since the correctness of MR-BFS has already been proved in
section 2.1, in order to prove the correctness of Modified-MR-BFS we only need to show that it
correctly handles the partial directedness implicit in its input graph. In show this we need to prove
that if the BFS level of a vertex v is less than i, then no edge of the form (v ′i+1, v) can force v to be
included in L(i). In iteration i, we insert each vertex v ∈ L(i − 1) into Q with a key j ≥ i provided
the edge (v′j+1, v) exists. Then we extract from Q each vertex v that has an incoming edge from v ′i+1.
These vertices must have BFS level less than i and are excluded from L(i). Vertices can be extracted
from Q using Delete-Min operations because initially (before iteration 1) Q is empty, and iteration i
never inserts into Q any vertex with a key value less than i, and these insertions always precede the
Delete-Min operations in the same iteration.

10

3.5 External-Memory Approximate AP-BFS

As pointed out in section 3.2, there are two ways to apply the BFS in step 3(a1) of DHZ-Approx-AP-
BFSk: either we can run BFS independently from each vertex in Di as in DHZ-Approx-AP-BFSk, or
we can run BFS incrementally from the vertices of Di using the strategy used in AP-BFS (see section
2.2).

We present the algorithm Independent-BFS which when called with Di as a parameter constructs
the partially directed unweighted graph G′i(u) for each u ∈ Di and runs Mehlhorn & Meyer’s sublinear
I/O BFS algorithm [13] on G′i(u) from u. The I/O-complexity of Mehlhorn & Meyer’s algorithm is

O(
√

V E
B + E

B log V) as opposed to the O(V +sort(E)) I/O-complexity of Munagala & Ranade’s algorithm

(MR-BFS in section 2.1), and thus it performs better on sparse graphs. Mehlhorn & Meyer’s algorithm
is based on MR-BFS, and can be modified in exactly the same way to handle the partial directedness

in G′i(u). The I/O-complexity of Independent-BFS is thus O(Di(
√

V Ei

B + Ei

B log V)).

The algorithm Interdependent-BFS when called with parameter Di, constructs G′i(u) for each
u ∈ Di, and then runs Modified-MR-BFS (section 3.4) incrementally on G′i(u) from each u using the
technique used in AP-BFS (section 2.2). The main differences between Interdependent-BFS and
AP-BFS are: Interdependent-BFS uses a different range for locating the adjacency lists, works on a
slightly different graph in each iteration, each graph it works on is partially directed, and runs BFS only
from the vertices in Di. The I/O-complexity of Interdependent-BFS is O(Ei

B (V + iDi)+Disort(Ei)).
We observe that running Independent-BFS in step 3(a) of DHZ-Approx-AP-BFSk is more

I/O-efficient when |Di| is smaller and G′i(u) is denser (i.e., value of i is smaller), and Interdependent-
BFS is more I/O-efficient when |Di| is larger and G′i(u) is sparser (i.e., value of i is larger). If we use

Independent-BFS for all values of i, it will cause a total of O(V 2√
B

+ k
BV 2− 1

k E
1
k log1− 1

k V) I/Os, and

running Interdependent-BFS for all values of i requires a total of O(V E
B + k

BV 2− 1
k E

1
k log1− 1

k V) I/Os.
Therefore, we can do better if we take a hybrid approach: starting from i = 1 we run Independent-
BFS up to some value l of i, and then we switch to Interdependent-BFS. We call this parameter
l a switching parameter, and choose its value in order to minimizes the I/O-complexity of the entire
algorithm. The overall algorithm is given in Approx-AP-BFSk

Algorithm Independent-BFS(V,E,Di, Ei, E
∗, L)

Function: Perform BFS independently from each vertex u ∈ Di on a graph constructed from V, Ei, E
∗ and the information

in the list L of current best upper bounds on all-pairs shortest distances in the original graph (V, E). It updates L with the
computed distances. Invoked by Approx-AP-BFS. See Approx-AP-BFS for the definition of the parameters.

Steps:

Step 1: Set L′ ← ∅
Step 2: Sort the vertices in Di by vertex indices.

Step 3: For each u ∈ Di do:

(a) Set V ′ ← V , and E′ ← Ei ∪ E∗

(b) Retrieve from L the current best upper bound �δ(u, v) on the shortest distances from u to each v ∈ V . Collect only
the finite bounds.

(c) Add |V | − 2 new vertices v′
2, v′3, . . . , v′

|V |−1
to V ′.

(d) Add the following undirected edges to E′:

• (u, v′2)

• (u, v) for each v ∈ V with �δ(u, v) = 1
• (v′t, v

′
t+1) for 2 ≤ t < |V | − 1

• (v′t, v) for each v ∈ V with �δ(u, v) = t

(e) Sort the edges in E′ to convert it into adjacency list format.
(f) Run the sublinear I/O BFS algorithm in [13] on the graph (V ′, E′), and append the computed shortest distances
to L′. The algorithm must be modified to handle the implicit partial directedness in (V ′, E′).

Step 4: Update the entries in L by sorting L′ appropriately and scanning the two lists in parallel.

11

Algorithm Interdependent-BFS(V,E,Di, Ei, E
∗, 〈v1, v2, . . . , v|V |〉, L)

Function: Perform BFS from each vertex u ∈ Di on a graph constructed from V,Ei, E∗ and the information in the list L of current
best upper bounds on all-pairs shortest distances in the original graph (V, E). BFS is performed on the vertices of Di in the
order they appear in 〈v1 , v2, . . . , v|V |〉, and distance information obtained from the BFS run immediately preceding the current
run is used to reduce I/O overhead. This algorithm updates L with the computed distances. Invoked by Approx-AP-BFS.
See Approx-AP-BFS for the definition of the parameters.

Steps:

Step 1: Set L′ ← ∅
Step 2: Arrange the vertices in Di in the order they appear in 〈v1, v2, . . . , v|V |〉 Let 〈u1, u2, . . . , ut〉 be the sequence of
vertices in Di after the ordering.

Step 3:
(a)-(e) Same as the steps 3(a) to 3(e) in Independent-BFS, but performed with u1 instead of u. Let (V ′

1 , E′
1) be

the graph constructed.
(f) Run Munagala and Ranade’s BFS algorithm (Modified-MR-BFS) with u1 as the source vertex to compute the
distances d(u1, w) for all w ∈ V . Append the computed distances to L′.

Step 4: For j ← 2 to t do:

(a)-(e) Same as the steps 3(a) to 3(e) in Independent-BFS, but performed with uj instead of u. Let (V ′
j , E′

j) be
the graph constructed.

(f) Sort the adjacency lists of the vertices v′
2, v′3, . . . , v′

|V |−1
so that for 2 ≤ p < |V | − 1, adjacency list of v′

p is placed

ahead of that of v′p+1. Let A′ be this sorted list of adjacency lists.
(g) Sort the remaining adjacency lists so that adjacency list of a vertex x is placed before that of another vertex y
provided d(uj−1 , x) < d(uj−1 , y) or d(uj−1 , x) = d(uj−1 , y)∧x < y. Let A(p), 0 ≤ i < |V |, denote the portion of this
sorted list that contains adjacency lists of vertices lying exactly at distance p from uj−1.

(h) To compute d(uj , w) for all w ∈ V ′, run Munagala and Ranade’s BFS algorithm (Modified-MR-BFS) with
source vertex uj . But step (2) of that algorithm is modified so that instead of finding the adjacency lists of the
vertices in L(q − 1) by |L(q − 1)| independent accesses, they are found by scanning L(q − 1) and A(p) in parallel for
max{0, q − 1 − d(uj−1, uj) − 2(i − 1)} ≤ p ≤ min{|V | − 1, q − 1 + d(uj−1 , uj) + 2(i − 1)}. If v′q ∈ L(q − 1) load its
adjacency list from A′. Append the computed distances to L′.

Step 4: Update the entries in L by sorting L′ appropriately and scanning the two lists in parallel.

Algorithm Approx-AP-BFSk(G, l)

Function: Given an undirected graph G = (V [G],E[G]) and a switching parameter l, this algorithm computes the shortest
distance between every pair of vertices in G with additive error of at most 2(k − 1).

Steps:

Step 1: Perform the following initializations:

(a) For i← 1 to k − 1 do:

Set si ← E
V

(V log V

E
)

i

k

(b) Set (〈E1, E2, . . . , Ek, E∗〉, 〈D1, D2, . . . ,Dk〉)← Decompose(G, 〈s1, s2, . . . , sk−1〉)
(c) Sort the edges in E[G] so that an edge (u1, v1) is placed ahead of another edge (u2, v2) provided (u1 < u2)∨((u1 =

u2)∧(v1 < v2)). Scan E[G] to produce a sorted (in the same order that is used for sorting E[G]) list L of approximate
distances �δ(u, v), where u, v ∈ V [G], and �δ(u, v)← 1 provided (u, v) ∈ E[G], �δ(u, v)←∞ otherwise.

Step 2:
(a) For i← 1 to l do:

Independent-BFS(V, E,Di, Ei, E
∗, L)

(b) Find a spanning tree T of G, and construct an Euler Tour ET of T . Mark the first occurrence of each vertex on
ET , and let let v1, v2, . . . , v|V | be the marked vertices in the order they appear on ET .

(c) For i← l + 1 to k do:

Interdependent-BFS(V, E,Di, Ei, E∗, 〈v1, v2, . . . , v|V |〉, L)

Step 3: Return the output of step 2(c).

12

Correctness of Approx-AP-BFSk. The correctness of Approx-AP-BFSk follows from the
following:

(a) correctness of DHZ-Approx-AP-BFSk,
(b) lemma 3.1,
(c) correctness of Modified-MR-BFS,
(d) correctness of Mehlhorn & Meyer’s BFS algorithm [13] modified to handle the type partial

directedness in the input graph as described in section 3.4, and
(e) the guarantee that in step 4(h) of Interdependent-BFS, all adjacency lists are found within

the range searched.
Proof of (a) can be found in [9]. Proofs of (b) and (c) are given in section 3.4. Proof of (d)

follows from the proof of (c) since Mehlhorn & Meyer’s algorithm builds on Munagala & Ranade’s BFS
algorithm [15] (MR-BFS in section 2.1), and the modifications required are exactly the same..

We only need to prove (e). For 1 ≤ i ≤ k, and u, v ∈ V [G], let δi(u, v) be the value of
δ̂(u, v) after running BFS from all vertices of Di. It has been shown in [9] that if u ∈ Di and
v ∈ V [G], DHZ-Approx-AP-BFSk maintains δ(u, v) ≤ δi(u, v) ≤ δ(u, v) + 2(i − 1). The algo-
rithm Approx-AP-BFSk also clearly maintains this invariant up to level l. The first vertex in
Dl+1 also computes its distances with surplus error of at most 2l. This is the base case. Now
suppose all distances were calculated with surplus error of at most 2(i − 1) up to the (j − 1)-th
vertex uj−1 of some Di, where 1 < j ≤ |Di| and l < i ≤ k. We will now prove that for uj ∈ Di

the adjacency lists will be found within the range in step 4(h) of Interdependent-BFS. Let v
be any vertex in V [G]. We have the following three invariants from DHZ-Approx-AP-BFSk:
δ(uj−1, uj) ≤ δi(uj−1, uj) ≤ δ(uj−1, uj) + 2(i − 1), δ(uj−1, v) ≤ δi(uj−1, v) ≤ δ(uj−1, v) + 2(i − 1),
and δ(uj , v) ≤ δi(uj , v) ≤ δ(uj , v) + 2(i − 1). We also have the following two triangle inequalities:
δ(uj−1, v) ≤ δ(uj−1, uj) + δ(uj , v) and δ(uj , v) ≤ δ(uj , uj−1) + δ(uj−1, v). From the five inequalities
above, we get δi(uj−1, v) − δi(uj−1, uj) − 2(i − 1) ≤ δi(uj , v) ≤ δi(uj−1, v) + δi(uj−1, uj) + 2(i − 1).
Therefore the range used in step 4(h) of Interdependent-BFS is sufficient for finding the correspond-
ing adjacency lists. Note that distances for the first vertex in any Di, l < i ≤ k, are computed correctly
(with surplus error of at most 2(i−1)) assuming that distances for all vertices in all Dj ’s with 1 ≤ j ≤ l
are already computed correctly (with surplus error of at most 2(j − 1)).

I/O Complexity of Approx-AP-BFSk. We note that Di = O(V log V
si

) for 1 ≤ i < k, Dk = V ,

E1 = E, and Ei ≤ V si−1 for 2 ≤ i ≤ k. We also have si = E
V αi for 1 ≤ i < k, where α = (V log V

E)
1
k .

I/O cost of step 1 is dominated by the I/O cost of Decompose, and so this step requires

O(k(V + V 2

B) + sort(E)) I/Os.
For i = 1 to l, iteration i of step 2(a) calls Independent-BFS with Di as a parameter which

in turns runs the O(
√

V Ei

B + Ei

B log V) I/O BSF algorithm by Mehlhorn & Meyer [13] (modified as

outlined in Modified-MR-BFS to handle the partial directedness implicit in the input graph) from

each vertex u ∈ Di on the graph G′i(u). Thus this step requires O(
∑l

i=1 Di(
√

V Ei

B + Ei

B log V)) =

O(V 2
√

V
BEαl+1 log V + l

B V 2− 1
k E

1
k log1− 1

k V) I/Os.

Step 2(b) requires O(sort(E) · log2 log2
V B
E) I/Os [5].

For i = l + 1 to k, iteration i of step 2(c) calls Interdependent-BFS with Di as a pa-
rameter requiring O(Ei

B (V + iDi) + Disort(Ei)) I/Os. Thus the I/O-complexity of step 2(c) is

O(
∑k

i=l+1 {Ei

B (V + iDi) + Di · sort(Ei)}) = O(V Eαl−1

B + k−l
B V 2− 1

k E
1
k log1− 1

k V).

Therefore the total I/O cost of Approx-AP-BFSk is O(V 2
√

V
BEαl+1 log V + V Eαl−1

B +

13

k
BV 2− 1

k E
1
k log1− 1

k V). We determine the value of l by equating the first two terms of this expression.

We get l = log (V 3B log2 V)−log (E3α)
3 log α +1, and the I/O complexity reduces to O(1

B
2
3

V 2− 2
3k E

2
3k log

2
3
(1− 1

k
) V +

k
BV 2− 1

k E
1
k log1− 1

k V).

3.6 An Alternate Algorithm for k = 2

For k = 2, Approx-AP-BFSk causes O(1

B
2
3

V
5
3 E

1
3 log

1
3 V + 2

BV
3
2 E

1
2 log

1
2 V) I/Os and produces

estimated distances with an additive error of at most 2. We can, however, externalize the O(V 2s +
V 3 log V

s)-time internal-memory approximation algorithm (Approx-APSP) by Aingworth et al. [2]
(where s is a degree threshold whose value can be chosen to optimize performance) to compute all
pairwise distances in an unweighted undirected graph with an additive one-sided error of at most 2

incurring O(1

B
3
4

V
7
4 E

1
4 log V + 1

BV
3
2 E

1
2 log

3
2 V + 1

B V
5
2 log V) I/Os. The resulting algorithm (described

below as Alternate-Approx-AP-BFS2) outperforms Approx-AP-BFS2 whenever B > V
5
2 log2 V

E

assuming V ≥ log4 V and E ≤ V 2

log V .
Given a graph G = (V,E) and the value of s, Alternate-Approx-AP-BFS2 computes a small set

D of vertices dominating all vertices of G having degree at least s, and finds the graph GL induced by
the vertices of G having degree less than s. It performs a single AP-BFS on GL, but performs one
BFS on G from each vertex in D. Then it combines the computed distances appropriately to produce
surplus a 2 distance between every pair of vertices in G.

The Alternate-Approx-AP-BFS2 algorithm is a fairly straight-forward external-memory
implementation of Aingworth et al.’s internal-memory algorithm (Approx-APSP) [2]. However,
the main difference between our implementation and Approx-APSP is that we run the AP-BFS
algorithm from section 2 on GL (see steps 1(c) of Alternate-Approx-AP-BFS2 for the definition
of GL) instead of running an independent BFS from each vertex of GL, and also we choose a
value of s different from that chosen by Approx-APSP. We also use a different algorithm for
finding dominating sets; the Dominate function (see section 3.3) we use is based on Dor et al.’s
internal-memory implementation [9] of the greedy algorithm for computing dominating sets, which
is more efficient than the internal-memory implementation of the same algorithm by Aingworth et al. [2].

Algorithm Alternate-Approx-AP-BFS2(G, s)

Function: Given an undirected graph G = (V [G],E[G]), and degree threshold s, this algorithm computes the shortest distance
between every pair of vertices in G with additive error at most 2.

Steps:

Step 1: Perform the following initializations:

(a) Let �d be a two-dimensional array of dimension V × V which is laid out in a row-major order. For 1 ≤ u, v ≤ V ,
�d[u, v] contains the current best known upper bound on the shortest distance from u to v.
For 1 ≤ u, v ≤ V , set �d[u, v]← +∞

(b) Set VL ← {v ∈ V |deg(v) < s}
(c) Set GL ← subgraph of G induced by VL

Step 2: Run Dominate(G, s) to compute a set of vertices D dominating all vertices of G of degree at least s

Step 3:

(a) Set d1 ← ∅ {d1 is a list to store distance values}
(b) For each w ∈ D do:

Run the sublinear I/O BFS algorithm in [13] on G from w, and append the calculated distances to d1.

(c) Sort the distances in d1 so that the distance between vertices u1 and v1 is placed before that of u2 and v2 provided
(u1 < u2) ∨ ((u1 = u2) ∧ (v1 < v2)).

14

(d) Update �d by scanning �d and d1 simultaneously.

Step 4:

(a) Set d2 ← ∅ {d2 is a list to store distance values}
(b) Run the AP-BFS algorithm in section 2 on GL and store the calculated distances in d2.
(c) Sort the distances in d2 so that the distance between vertices u1 and v1 is placed before that of u2 and v2 provided
(u1 < u2) ∨ ((u1 = u2) ∧ (v1 < v2)).

(d) Update �d by scanning �d and d2 simultaneously.

Step 5: For each w ∈ D do:

(a) Set d3 ← ∅ {d3 is a list to store distance values}
(b) Scan �d to generate �d(w,u) + �d(w, v) (= �d(u, w) + �d(w, v) = distance from u to v through w) for all u, v ∈ V , and
append these distance values to d3.

(c) Update �d by scanning �d and d3 simultaneously.

Correctness. Since Alternate-Approx-AP-BFS2 is a straight-forward implementation of Approx-
APSP in [2], its correctness follows from the correctness of Approx-APSP [2], and from the
correctness of Dominate in section 3.3, AP-BFS in section 2.2 and the BFS algorithm in [13].

I/O Complexity. The initializations in step 1 requires only a constant number of scanning and

sorting steps incurring O(V 2

B + sort(E)) I/Os. I/O complexity of step 2 is also O(V 2

B + sort(E)). Since

|D| = O(V log V
s), step 3 requires O(V log V

s (
√

V E
B + E

B log V)) I/Os. Since the number of edges in GL

is O(V s), the I/O complexity of step 4 is O(V 2s
B log V). Step 5 requires O(V log V

s
V 2

B) I/Os. Thus the

total I/O complexity is O(V log V
s (

√
V E
B + E

B log V + V 2

B) + V 2s
B log V). This expression is minimized for

s = (
√

EB
V + E

V log V + V)
1
2 , and the I/O complexity reduces to O(1

B
3
4

V
7
4 E

1
4 log V + 1

B V
3
2 E

1
2 log

3
2 V +

1
BV

5
2 log V).

4 Cache-Aware APSP for Weighted Undirected Graphs

In this section we present a cache-aware algorithm for computing all-pairs shortest paths in a weighted
undirected graph. In [6], Arge et al. introduce the Multi-Tournament-Tree data structure to obtain an

O(V · (
√

V E
B log V + sort(E))) I/O cache-aware algorithm for computing APSP on general weighted

undirected graphs whenever E ≤ V B
log V . In this section we introduce the Multi-Buffer-Heap data

structure, and use it to obtain an O(V · (
√

V E
B + sort(E))) I/O cache-aware algorithm for solving

the same problem assuming E ≤ V B
(log V)2

. This leads to an O(V · (
√

V E
B + E

B log V
B)) I/O algorithm for

any edge density. Our algorithm uses O(V 2) space.

4.1 Slim Data Structures

We introduce here the notion of a slim data structure which is an external-memory data structure in
which a fixed-sized portion is kept in internal memory. The area in the internal memory that holds
that specific portion is called the slim cache. By DS(λ) we denote an external-memory data structure
DS, in which a portion of size λ is kept in the slim cache. We continue to assume the behavior of
the two-level I/O model, namely (a) the size of the internal memory is M and (b) data is transferred
between the two levels of memory in blocks of size B. Thus 1 ≤ λ ≤ M ; and the data structure
operations must assume that the portion of the data structure that is not stored in the slim cache is

15

stored in an external memory divided into blocks of size B, and thus accessing anything outside the slim
cache causes I/Os. While executing a data structural operation the operation can use all free internal
memory for temporary computation, but after the operation completes only the data in the slim cache
is preserved for reuse by the next operation on the data structure.

Some existing external-memory data structures can be viewed trivially as slim data structures. For
example, Arge et al. [6] analyzed each component Tournament Tree of the Multi-Tournament-Tree
as supporting Decrease-Key, Delete and Delete-Min operations in O(1

λ log N) amortized I/Os each for
1 ≤ λ ≤ B

2 ; this can be viewed as a slim data structure for this range of values for λ. The cache-oblivious
and cache-aware Buffer Heaps without the tall cache assumption, described briefly in Chowdhury &
Ramachandran [8], can be analyzed as slim data structures that support the same three operations with
the following bounds: for B ≤ λ ≤ M , the cost of each operation is O(1

B log N
λ) amortized I/Os, and

for 1 ≤ λ ≤ B the cost of each operation is O(1
λ log N

λ) amortized I/Os.
In the next section we present a slim data structure based on the Buffer Heap, which we call a

Slim Buffer Heap, SBH(λ), which supports Decrease-Key, Delete and Delete-Min with the amortized
cost of O(1

λ + 1
B log N

λ) I/Os each. This improves on the results mentioned above for the component
Tournament Trees of the Multi-Tournament-Tree and for the Buffer Heap when B < λ. In section 4.3
we use a collection of Slim Buffer Heaps in a Multi-Buffer-Heap to obtain an improved cache-aware
APSP algorithm for undirected graphs with general non-negative edge-weights.

Although our main motivation behind introducing the notion of slim data structures was to obtain
the result in section 4.3, we believe that the need for slim data structures could arise in other applications.
A typical application would be one in which a number of data structures need to be kept in internal
memory simultaneously, and thus only a limited portion of the internal memory can be dedicated to
each data structure.

4.2 The Slim Buffer Heap

In this section we extend the cache-oblivious priority queue known as the Buffer Heap [8] (developed
recently by the authors) to a slim data structure with an arbitrary parameter λ. We call this data
structure a Slim Buffer Heap (SBH), and for an SBH with parameter λ (1 ≤ λ ≤ M), denoted
by SBH(λ), it is assumed that an initial segment of Θ(λ) elements in the data structure resides in
internal memory and no I/O is required to access the elements in this segment. A Buffer Heap supports
Delete, Delete-Min and Decrease-Key operations in O(1

B log N
B) I/Os each. We show in this section

that an SBH(λ) supports each of these three operations in O(1
λ + 1

B log N
λ) amortized I/Os, where

N is the number of elements. A Delete(x) operation deletes element x from the queue if it exists
and a Delete-Min() operation retrieves and deletes the element with minimum key from the queue. A
Decrease-Key(x, kx) operation inserts the element x with key kx into the queue if x does not already
exist in the queue, otherwise it replaces the key k ′x of x in the queue with kx provided kx < k′x.

4.2.1 Structure

The structure is the same as that of a ‘Buffer Heap without a tall cache’ which was described briefly in
[8]. It consists of r = 1 + dlog2 Ne levels. For 0 ≤ i ≤ r − 1, level i consists of an element buffer Bi and
an update buffer Ui. Each element in Bi is of the form (x, kx), where x is the element id and kx is its key.
Each update in Ui is augmented with a time stamp indicating the time of its insertion into the structure.

At any time, the following invariants are maintained:

Invariant 4.1.

(a) Each Bi contains at most 2i elements.

16

(b) Each Ui contains at most 2i updates.

Invariant 4.2.

(a) For 0 ≤ i < r − 1, key of every element in Bi is no larger than the key of any element in Bi+1.

(b) For 0 ≤ i < r− 1, for each element x in Bi, all updates applicable to x that are not yet applied,
reside in U0, U1, . . . , Ui.

Invariant 4.3.

(a) Elements in each Bi are kept sorted in ascending order by element id.

(b) Updates in each Ui are divided into (a constant number of) segments with updates in each
segment sorted in ascending order by element id and time stamp.

All buffers are initially empty.

4.2.2 Layout

As in [8] we use a stack SB to store the element buffers, and another stack SU to store the update
buffers. An array As of size r to stores information on the buffers. For 0 ≤ i ≤ r − 1, As[i] contains the
number of elements in Bi, and the number of segments in Ui along with the number of updates in each
segment. We assume the existence of a slim cache of size Θ(λ), large enough to store B0, B1, . . . , Bt,
U0, U1, . . . , Ut+1, and the first λ entries of As, where t = log (λ + 1) − 1. The remaining portions of SB,
SU and As are kept in external memory.

4.2.3 Operations

In this section we describe how Delete, Delete-Min and Decrease-Key operations are implemented. A
Delete or Decrease-Key operation inserts itself into U0 (by pushing itself into SU) augmented with the
current time stamp. Further processing is deferred to the next Delete-Min operation except that the Fix-
U function may be called to restore invariant 4.1(b) for the structure. If needed, the Delete/Decrease-Key
operation collects enough elements from higher level element buffers to fill the slim cache.

The Fix-U function uses a function called Apply-Updates. When called with a parameter i,
Apply-Updates applies the updates in Ui on the elements of Bi, and empties Ui by moving the
updates from Ui to Ui+1. It also moves any overflowing elements from Bi to Ui+1 as Sink operations.
A Sink(x, kx) operation is used to move an element (x, kx) from Bi to Bi+1 through Ui+1.

The Delete-Min function works by finding the shallowest element buffer Bi that is left non-empty
after applying the updates in Ui (by calling Apply-Updates(i)). The Fix-U function is then called to
fix overflowing update buffers if any, and to collect enough elements to fill the slim cache. The minimum
element is then extracted from all elements collected so far and the remaining elements are distributed
to the shallowest element buffers.

After each operation the Reconstruct function is called. This function reconstructs the entire data
structure periodically. It remembers the number of elements Ne in the structure immediately after
the last reconstruction, and keeps track of the number of new operations No performed since then.
Initially Ne is set to 0. When No = bNe

2 c + 1, the data structure is rebuilt by calling Apply-Updates
for each level, emptying the update buffers and distributing the remaining elements to the shallowest
possible levels. The objective of the function is to ensure that the number of levels r in the structure is
always within ±1 of log2 N , where N is the current number of elements in the structure. This invariant
is maintained because r can decrease by at most 1 since the last reconstruction (this happens if all
bNe

2 c + 1 operations are Delete or Delete-Min operations), and can increase by at most 1 (if all those

17

operations are Decrease-Keys).

Function Decrease-Key(x, kx)/Delete(x)

Function: Inserts a Decrease-Key/ Delete operation into the structure.

Steps:

Step 1: Insert the operation into U0 augmented with the current time stamp

Step 2:
(a) Set B′ ← ∅, i← 0 {B′ is a temporary list to collect elements returned by Fix-U}
(b) Fix-U(i, B′)

Step 3: Move the contents of B′ to the shallowest possible element buffers maintaining invariants 4.1(a), 4.2(a) and 4.3(a)

Step 4: Reconstruct()

Function Fix-U(i, B ′)

Function: Fixes all overflowing update buffers in levels i and up. An update buffer Ui overflows if |U i| > 2i. For each overflowing
Ui collects the contents of Bi in B′ after applying Ui on Bi.

Steps:

Step 1:
While i < r AND (|Ui| > 2i OR (i = t + 1 AND |B′| = 0) OR (i > t + 1 AND |B′| < λ)) do:

(a) Apply-Updates(i)
(b) Append the elements of Bi to B′

(c) Set i← i + 1

Step 2: If i < r then merge the segments of Ui

Function Apply-Updates(i)

Function: Apply the updates in Ui on the elements in Bi, move remaining updates from Ui to Ui+1 if i < r − 1, and after
applying the updates move overflowing elements from Bi to Ui+1 as Sink operations.

Steps:

Step 1: If |Bi| = 0 and i < r − 1 then:

(a) Merge the segments of Ui

(b) Move the contents of Ui as a new segment of Ui+1

(c) Set Ui ← ∅
Step 2: Else (|Bi| > 0 or i = r − 1) do:

(a) Merge the segments of Ui

(b) If i = r − 1 then set k← +∞ else set k← largest key of elements in Bi

(c) Scan Bi and Ui simultaneously, and for each operation in Ui if the operation is:

Delete(x) then remove any element (x, kx) from Bi if exists
Decrease-Key(x, kx) / Sink(x, kx) then if any element (x, k′

x) exists in Bi replace it with (x, min(kx, k′
x)),

otherwise copy (x, kx) to Bi if kx ≤ k

(d) If i < r − 1 then do the following:

• copy each Decrease-Key(x, kx) / Sink(x, kx) in Ui with kx > k to Ui+1

• for each Delete(x) and Decrease-Key(x, kx) with kx ≤ k in Ui copy a Delete(x) to Ui+1

(e) If |Bi| > 2i+1 then do:

• if i = r − 1 then set r← r + 1
• keep the 2i+1 elements with the smallest 2i+1 keys in Bi and insert each remaining element (x, kx) into Ui+1

as Sink(x, kx)

(f) Set Ui ← ∅

18

Function Delete-Min()

Function: Deletes and returns the element with the smallest key in the structure.

Steps:

Step 1:
Set i← −1
While i < r − 1 do:

(a) Set i← i + 1
(b) Apply-Updates(i)
(c) If Bi is non-empty then exit loop

Step 2:
(a) Set B′ ← Bi, i← i + 1
(b) Fix-U(i, B′)

Step 3:
(a) Extract the element with minimum key from B′ to return
(b) Move remaining elements from B′ to the shallowest possible element buffers maintaining invariants 4.1(a), 4.2(a)

and 4.3(a)

Step 4: Reconstruct()

Function Reconstruct() (Reconstruct the data structure periodically.)

Function: Reconstructs the data structure when No = bNe

2
c+1, where Ne is the number of elements in SBH immediately after

the last reconstruction (Ne = 0 initially), and No is the number of operations since the last reconstruction or the initialization
of SBH.

Steps:

Step 1:
If No = bNe

2
c+ 1 then:

(a) For i← 0 to r − 1 do:

Apply-Updates(i)

(b) Distribute the elements remaining in SBH to the shallowest possible element buffers

Correctness. We need to prove that each of the three operations, namely Decrease-Key, Delete and
Delete-Min, maintains all invariants.

First we observe that Apply-Updates(i) can cause Ui+1 to overflow in step 2(e), and thus violate
invariant 4.1(b). It does not violate any other invariants.

The function Fix-U when called with parameter i fixes 4.1(b) for all overflowing Uj with j ≥ i. It
calls Apply-Updates in each iteration. When Apply-Updates(j) is called for some j ≥ i, it may
violate invariant 4.1(b) for Uj+1. But in that case, Fix-U calls Apply-Updates(j + 1) which leaves
Uj empty, and thus trivially fixes the invariant for Uj. The Fix-U function keeps applying Apply-
Updates as long as there is an overflowing update buffer in the structure. Since Fix-U does not violate
any other invariants, at termination all invariants hold.

The Reconstruct function periodically rebuilds the data structure, and trivially maintains all
invariants.

A Decrease-Key/Delete function may cause U0 to overflow in step 1 which is fixed by Fix-U in
step 2. In step 3, the elements collected by Fix-U are distributed to the shallowest possible element
buffers maintaining all invariants. The Reconstruct function in step 4 does not violate any invariant.
Thus at termination of a Decrease-Key/Delete function all invariants continue to hold.

Since the Delete-Min function calls Apply-Updates in step 1, at the end of that step invariant
4.1(b) may no longer hold for Ui+1. But the call to Fix-U in step 2, restores all invariants. In step 3 the

19

element with minimum key is extracted from the elements collected in steps 1 and 2, and the remaining
elements are distributed to shallowest possible element buffers maintaining all invariants. The call to
the Reconstruct function in step 4 does not violate any invariant. Thus Deelete-Min maintains all
invariants.

4.2.4 I/O Complexity

We begin with a preliminary lemma whose proof of correctness is an extension to that of lemma 2 in
[8], and is included in the Appendix.

Lemma 4.1. For 1 ≤ i ≤ r − 1, every empty Ui receives batches of updates a constant number of times
before Ui is applied on Bi and emptied again.

This lemma has the following implications:
• Each entry of As has constant size and thus sequential access of As will incur O(1

B) amortized
cache-misses per access per entry.

• Merging the segments of Ui (in Apply-Updates) incur only O(1
B) amortized cache-misses per

update in Ui.

The following lemma gives the I/O complexities of the operations supported by a Slim Buffer Heap:

Lemma 4.2. A Slim Buffer Heap supports Delete, Delete-Min and Decrease-Key operations in O(1
λ +

1
B log2

N
λ) amortized I/Os each using O(N) space, where N is the current number of elements in the

structure.

Proof. As in [8], we assume that a Decrease-Key operation is inserted into U0 as an ordered pair
〈Decrease-Key, Dummy〉. After the successful application of that Decrease-Key operation on some B i,
the Decrease-Key operation in the ordered pair moves to Ui+1 as a Delete operation, and the Dummy
operation either turns into an element in Bi, or moves to Ui+1 as a Sink operation. Thus a Decrease-Key
operation will be counted as two operations until it is applied on some element buffer.

For 0 ≤ i ≤ r − 1, let ui be the number of operations in Ui and bi the number in Bi. Let ∆ denote
the number of new Decrease-Key, Delete and Delete-Min operations since the last time any part of the
data structure outside the slim cache was accessed, and let ∆o be the number of operations since the
last construction/reconstruction of the data structure. If H is the current state of SBH(λ), we define
the potential of H as follows:

Φ(H) =
2

B

r−1∑

i=0

{(2r − i) · ui + (i + 1) · bi} +
r

B
· ∆o +

2

λ
· (∆ + ∆o)

As in the analysis of the I/O-complexities of the Buffer Heap operations in [8], the key observation
is that operations always move downward in the U buffer and elements generally move upward in the
B buffer.

First let us consider the amortized cost of the Reconstruct function. At the time of reconstruction
∆0 = bNe

2 c + 1, where Ne is the number of elements in the structure immediately after the last

reconstruction. Thus dNe

2 e − 1 ≤
∑r−1

0 bi ≤ b3Ne

2 c + 1 implying ∆0 = Θ(
∑r−1

0 bi). If during the
reconstruction operation no buffer outside the slim cache is accessed then no I/O occurs. Therefore,
we will only consider the case in which some element buffer above level t is accessed. In that case
∆o = Ω(λ). The actual cost of the reconstruction operation is O(1 + 1

B ∆or). Since all update buffers
are emptied the potential drop is Ω(1 + 1

B∆or). Thus the amortized cost of the Reconstruct function
is (1 + 1

B ∆or) − (1 + 1
B ∆or) = 0.

20

Now let us calculate the amortized cost of a Decrease-Key or Delete operation. The increase in
potential due to the insertion of a Decrease-Key into U0 is 2 · (4

λ + 5
B ·r), and due to insertion of a Delete

is 4
λ + 5

B ·r. If no element buffer of level higher than t is accessed in step 2 of the Decrease-Key/Delete
function then no I/O occurs. So we only need to consider the case when a Bi with i > t is accessed.
We observe that

• Bt+1 can be accessed only due to the overflow of Ut. The overflow of Ut implies that Ω(λ) new
operations have been inserted into the structure since Bt+1 was accessed last time. Thus ∆ = Ω(λ),
and the potential drop caused by these ∆ updates is sufficient to pay for the extra I/O needed to access
Bt+1.

• For i > t + 1, let j be the largest value of i for which Apply-Updates was called in step 1
of Fix-U. If Uj was full before Apply-Updates was called then the drop of potential due to the
movement of these |Uj | ≥ 2j updates to Uj+1 is enough to pay for the actual cost of examining all
elements and updates. This is because during the downward movement of the updates each element
buffer encountered is scanned only a constant number of times causing a total of O(2j

B) I/Os, and the
contents of B ′ in step 3 of the Decrease-Key/Delete function can be redistributed to the shallowest

possible element buffers in O(2j

B) I/Os using a linear I/O selection algorithm [16]. Let k be the largest
integer such that |B ′| ≥ 2k − 1. The first selection step finds 2k − 1 elements with 2k − 1 smallest keys

in O(|B
′|

B) I/Os, and keeps them in B ′ leaving the remaining elements in Bk. The second selection step
finds 2k−1 elements from the 2k − 1 elements in B ′ to leave in Bk−1, the third one finds 2k−2 elements
from the remaining 2k−1 − 1 elements in B ′ to leave in Bk−2, and so on. Thus the total I/O-complexity

of all selection steps starting from the second one is O(|B
′|

B), too. But |B ′| = O(2j). Therefore, the total

I/O-complexity of redistributing the elements in B ′ is O(|B
′|

B) = O(2j

B).
• If Uj was not full before Apply-Updates was called then the cost of examining all updates is

compensated by the drop of potential due to the downward movement of the updates. All but at most
λ elements examined move upwards. The cost of examining each element that move upwards is paid
by the potential drop due to the upward movement of that element. If some elements are left behind in
Bj then Ω(λ) elements must have moved upward by at least 1 level, and the potential drop due to the
upward movement of those elements pays for the cost of examining the elements that are left behind.

Thus the amortized cost of a Decrease-Key/Delete operation is O(1
λ + 1

B log2 N). But since accessing
the first t levels does not cause any external I/O, the amortized cost is O(1

λ + 1
B{log2 N − t}) =

O(1
λ + 1

B log2
N
λ).

A Delete-Min operation increases the potential by 2
λ . In the case of a Delete-Min operation Bt+1 is

accessed for either of the following two reasons:
• Bt underflows, which means Ω(λ) Delete/Delete-Min operations must have occurred since last

time Bt+1 was accessed, and thus ∆ = Ω(λ), and the potential drop caused by these ∆ operations will
pay for the extra I/O operation to access Bt+1.

• Ut overflows, and this case is the same as the one that occurs during a Decrease-Key/Delete
operation.

The analysis of the actual cost of examining elements and updates, and the source of compensating
potential drops is similar to that for a Decrease-Key/Delete operation. Thus the amortized cost of a
Delete-Min operation is O(1

λ + 1
B log2

N
λ). ut

4.3 Multi-Buffer-Heap and External-Memory APSP

In this section we introduce a compound priority queue structure based on Slim Buffer Heap, called
the Multi-Buffer-Heap, and use this structure for efficient computation of external-memory APSP on
an undirected graph with general non-negative edge-weights.

21

A Multi-Buffer-Heap is constructed as follows. Let λ < B and let L = B
λ . We pack the slim caches

of Θ(L) SBH(λ) into a single memory block. We call this block the multi-slim-cache and the resulting
structure a Multi-Buffer-Heap. By the analysis in section 4.2.4 this structure supports Delete, Delete-
Min and Decrease-Key operations on each of its component Slim Buffer Heaps in O(L

B + 1
B log2

NL
B)

amortized I/Os each.
For computing APSP we take the approach described in [6]. It solves APSP by working on all V

underlying SSSP problems simultaneously, and each individual SSSP problem is solved using Kumar
& Schwabe’s algorithm for weighted undirected graphs [12]. For 1 ≤ i ≤ V , this approach requires
a priority queue pair (Qi, Q

′
i), where the ith pair belong to the ith SSSP problem. These V priority

queue pairs are implemented using Θ(V
L) Multi-Buffer-Heaps. The algorithm proceeds in V rounds. In

each round it loads the multi-slim-cache of each MBH, and for each MBH extracts a settled vertex with
minimum distance from each of the Θ(L) priority queue pairs it stores. It sorts the extracted vertices
by vertex indices. It then scans this sorted vertex list and the sorted sequences of adjacency lists in
parallel to retrieve the adjacency lists of the settled vertices of this round. Another sorting phase moves
all adjacency lists to be applied to the same MBH together. Then all necessary Decrease-Key operations
are performed by cycling through the Multi-Buffer-Heaps once again. At the end of the algorithm the
extracted vertices along with their computed distance values are sorted to produce the final distance
matrix.

I/O Complexity. In each round O(V
L) I/Os are required to load the multi-slim-caches of all Multi-

Buffer-Heaps. Accessing all required adjacency lists over O(V) rounds requires O(V · sort(E)) I/Os. A
total of O(V E · (1

λ + 1
B log2

V
λ)) I/Os are required by all O(V E) priority queue operations performed by

this algorithm. Sorting the final distance matrix requires O(V ·sort(V)) I/Os. Thus the I/O complexity

of this algorithm is O(V · (V
L + E

λ + E
B log2

V
λ + sort(E))). Using L =

√
V B
E ≥ 1, we obtain the following:

Theorem 4.1. Using Multi-Buffer-Heaps, APSP on undirected graphs with non-negative real edge

weights can be solved using O(V · (
√

V E
B + sort(E))) I/Os and O(V 2) space whenever E ≤ V B

(log V)2
.

In conjunction with the I/O efficient APSP algorithm for sufficiently dense graphs implied by the
SSSP results in [12, 8] we obtain the following corollary.

Corollary 4.1. APSP on an undirected graph with non-negative real edge weights can be solved using

O(V · (
√

V E
B + E

B log V
B)) I/Os and O(V 2) space. The number of I/Os is reduced to O(V E

B log V
B) when

E ≥ V B

(log V
B

)
2 .

References

[1] A. Aggarwal and J.S. Vitter. The input/output complexity of sorting and related problems. Communications
of the ACM, 31:1116–1127, September 1988.

[2] D. Aingworth, C. Chekuri, P. Indyk, and R. Motwani. Fast estimation of diameter and shortest paths
(without matrix multiplication). SIAM Journal of Computing, 28:1167–1181, 1999.

[3] L. Arge. The buffer tree: A new technique for optimal I/O-algorithms. In Proceedings of the Workshop on
Algorithms and Data Structures, LNCS 955, pages 334–345, 1995.

[4] L. Arge, M. A. Bender, E. D. Demaine, B. Holland-Minkley, and J. I. Munro. Cache-oblivious priority
queue and graph algorithm applications. In Proceedings of ACM Symposium on Theory of Computing,
pages 268–276, Montreal, Quebec, Canada, May 2002.

22

[5] L. Arge, G. S. Brodal, and L. Toma. On external-memory MST, SSSP, and multi-way planar graph
separation. In Proceedings of the Scandinavian Workshop on Algorithms Theory, LNCS 1851, pages 433–447,
2000.

[6] L. Arge, U. Meyer, and L. Toma. External memory algorithms for diameter and all-pairs shortest-paths
on sparse graphs. In Proceedings of the 31st International Colloquium on Automata, Languages and
Programming, pages 146–157, Turku, Finland, July 2004.

[7] G.S. Brodal, R. Fagerberg, U. Meyer, and N. Zeh. Cache-oblivious data structures and algorithms for
undirected breadth-first search and shortest paths. In Proceedings of the 9th Scandinavian Workshop on
Algorithm Theory, pages 480–492, Humlebaek, Denmark, July 2004.

[8] R.A. Chowdhury and V. Ramachandran. Cache-oblivious shortest paths in graphs using buffer heap. In
Proceedings of the 16th ACM Symposium on Parallelism in Algorithms and Architectures, pages 245–254,
Barcelona, Spain, June 2004.

[9] D. Dor, S. Halperin, and U. Zwick. All-pairs almost shortest paths. SIAM Journal of Computing, 29(5):1740–
1759, 2000.

[10] R. Fagerberg. Dagstuhl Wokshop on Cache-Oblivious and Cache-Aware Algorithms. Seminar talk, July 22,
2004.

[11] M. Frigo, C.E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious algorithms. In Proceedings of
the 40th Annual Symposium on Foundations of Computer Science, pages 285–297, 1999.

[12] V. Kumar and E. Schwabe. Improved algorithms and data structures for solving graph problems in external
memory. In Proceedings of the IEEE Symposium on Parallel and Distributed Processing, pages 169–177,
1996.

[13] K. Mehlhorn and U. Meyer. External-memory breadth-first search with sublinear I/O. In Proceedings of
the European Symposium on Algorithms, LNCS 2461, pages 723–735, 2002.

[14] U. Meyer and N. Zeh. I/O-efficient undirected shortest paths. In Proceedings of the European Symposium
on Algorithms, LNCS 2832, pages 434–445, Sep 2003.

[15] K. Munagala and A. Ranade. I/o-complexity of graph algorithms. In Proceedings of the ACM-SIAM
Symposium on Discrete Algorithms, pages 687–694, 1999.

[16] H. Prokop. Cache-oblivious algorithms. Master’s thesis, Department of Electrical Engineering and Computer
Science, MIT, June 1999.

[17] V. Ramachandran. Dagstuhl Wokshop on Cache-Oblivious and Cache-Aware Algorithms. Seminar talk,
July 22, 2004.

[18] U. Zwick. Exact and approximate distances in graphs – a survey. updated version at
http://www.cs.tau.ac.il/˜zwick. In Proceedings of the 9th European Symposium on Algorithms, LNCS 2161,
pages 33–48, 2001.

23

APPENDIX

A Proof of Lemma 4.1

Lemma 4.1. For 1 ≤ i ≤ r − 1, every empty Ui receives batches of updates a constant number of times
before Ui is applied on Bi and emptied again.

Proof. Update buffer Ui receives at most two batches of updates whenever the execution of a Decrease-
Key/Delete/Delete-Min function reaches level i − 1. If the execution continues and reaches level i
then Ui is applied on Bi, and thus emptied. Therefore, we only need to compute the number of times Ui

receives a batch of updates between two successive times the execution of any of these functions reaches
level i. Thus it suffices to consider only executions that terminate at level i− 1. We will also ignore the
case in which the function leaves Bi−1 empty since an empty Bi−1 ensures that the next time a function
reaches level i − 1 it will definitely proceed to level i, and empty Ui.

First let us consider the execution of a Decrease-Key/Delete function that terminates at level
i − 1. We have three cases based on the value of i.

Case 1 (i ≤ t + 1): Update buffer Ui−1 was full before it was applied on Bi−1, and so Ui receives Ω(2i

2)
updates.

Case 2 (t + 2 ≤ i ≤ t + 3): The execution can reach a level i − 1 > t if Ut overflows. Thus Ω(2i

8)
updates reach Ui.

Case 3 (i ≥ t + 4): If Ui−1 was full before it was applied on Bi−1 then Ui receives Ω(2i

2) updates. We
will now consider a maximal sequence of executions each with a non-full Ui−1 before application on
Bi−1. Before the first such execution reaches level i − 1, Bi−1 may contain as many as 2i−1 elements.
But the first execution (and any subsequent execution ending at level i − 1) will leave at most λ − 1
elements in Bi−1, and contribute at most two batches of updates to Ui. We will now calculate the
number of updates pushed into Ui by any subsequent execution ending at level i− 1. An execution can
reach level i − 1 if the total number of elements left in B0, B1, . . . , Bi−2 is less than λ. If the number
of elements in Bi−1 is less than λ before the updates, and greater than 0 after the updates, then the
number of updates reaching Ui is at least 2i−1 − 2λ ≥ 2i−1 − 2 · 2t+1 ≥ 2i−1 − 2 · 2i−3 = 2i

4 .

Next we consider the execution of a Delete-Min function that terminates at level i − 1. Here,
too, we have three cases based on the value of i. In each of these cases we will assume that the first
non-empty element buffer after the updates lies in a level smaller than i − 1, since if Bi−1 is the first
non-empty element buffer it will be immediately emptied by the Delete-Min function ensuring that
the next time any function reaches level i − 1 will proceed to level i and empty Ui.

Case 1 (i ≤ t + 2): Similar to case 1 for Decrease-Key/Delete function.

Case 2 (i = t + 3): If the first non-empty element buffer is in a level smaller than t+1 then Ui receives

Ω(2i

4) updates. If Bt+1 is the first non-empty element buffer and Ut+1 was full before applying it on Bt+1

then, too, Ω(2i

4) updates are pushed into Ui. We will now consider a maximal sequence of executions
each with Bt+1 as the first non-empty element buffer, and a non-full Ut+1 before application on Bt+1.
The first such execution (and any subsequent ones, too) will leave at most λ − 1 elements in Bt+2.
Starting from the second execution we partition the sequence into pairs of successive executions. Since
B0, B1, . . . , Bt are all empty, and λ = 2t+1 − 1, every such pair of executions will push Ω(2i

4) updates
into Ui.

Case 3 (i ≥ t + 4): Similar to case 3 for Decrease-Key/Delete function.

24

Thus between two successive emptyings of Ui, every batch of updates (except at most a constant
number of them) received by Ui fills up a constant fraction of its capacity. If Ui overflows it is immediately
emptied by Fix-U. Therefore, for 1 ≤ i ≤ r − 1, every empty Ui receives batches of updates a constant
number of times before it is emptied again. ut

25

