
Cache-Oblivious Shortest Paths in Graphs
Using Buffer Heap

Rezaul Alam Chowdhury
∗

The University of Texas at Austin
Department of Computer Sciences

Austin, TX 78712

shaikat@cs.utexas.edu

Vijaya Ramachandran
†

The University of Texas at Austin
Department of Computer Sciences

Austin, TX 78712

vlr@cs.utexas.edu

ABSTRACT
We present the Buffer Heap (BH), a cache-oblivious priority
queue that supports Delete-Min, Delete, and Decrease-Key
operations in O(1

B
log2

N
B

) amortized block transfers from
external memory, where B is the (unknown) block-size and
N is the maximum number of elements in the queue. As
is common in cache-oblivious algorithms, we assume a ‘tall
cache’ (i.e., M = Ω(B1+ε), where M is the size of the main
memory). We also assume the Decrease-Key operation only
verifies that the element does not exist in the priority queue
with a smaller key value, hence it also supports the insert op-
eration in the same amortized bound. The amortized time
bound for each operation is O(log N). We also present a
Cache-Oblivious Tournament Tree (COTT), which is sim-
pler than the Buffer Heap, but has weaker bounds.

Using the Buffer Heap we present cache-oblivious algo-
rithms for undirected and directed single-source shortest
path (SSSP) problems for graphs with non-negative edge-
weights. On a graph with V vertices and E edges, our al-
gorithm for the undirected case performs O(V + E

B
log2

V
B

)
block transfers and for the directed case performs O((V +
E
B

) · log2
V
B

) block transfers. The running time of both algo-
rithms is O((V + E) · log V).

For both priority queues with Decrease-Key operation,
and for shortest path problems on general graphs, our results
appear to give the first non-trivial cache-oblivious bounds.

Categories and Subject Descriptors
G.2.2 [Mathematics of Computing]: Discrete Mathe-
matics—Graph Theory ; E.1 [Data Structures]: Lists, stacks,
and queues; B.3.2 [Hardware]: Memory Structures—De-
sign Styles

∗Supported in part by an MCD Graduate Fellowship and
NSF Grant CCR-9988160.
†Supported in part by NSF Grant CCR-9988160.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’04, June 27–30, 2004, Barcelona, Spain.
Copyright 2004 ACM 1-58113-840-7/04/0006 ...$5.00.

General Terms
Algorithms, Theory, Performance

Keywords
Cache-oblivious model, cache-aware model, priority queue,
decrease-key, buffer heap, shortest paths, tournament tree

1. INTRODUCTION

1.1 The SSSP Problem
The single-source shortest path (SSSP) problem is one of

the most fundamental and important combinatorial opti-
mization problems from both a theoretical and a practical
point of view. Given a (directed or undirected) graph G
with vertex set V [G], edge set E[G], a non-negative real-
valued weight function w over E[G], and a distinguished
vertex s ∈ V [G], the SSSP problem seeks to find a path of
minimum total edge-weight from s to every reachable vertex
v ∈ V [G]. By V and E we denote the size of V [G] and E[G],
respectively.

As long as the whole problem fits in internal memory,
the SSSP problem can be solved efficiently by Dijkstra’s
algorithm [7] implemented using a Fibonacci heap [8] in
O(E + V log V) time for directed graphs. For undirected
graphs the problem can also be solved in O(Eα(E, V) +
V min(log V, log log ρ)) time [13], where ρ is the ratio of the
maximum and the minimum edge-weights in G, and α(E, V)
is a certain natural inverse of Ackermann’s function. Faster
algorithms exist for special classes of graphs and graphs with
restricted edge-weights. All of these algorithms, however,
perform poorly on large data sets when data needs to be
swapped between the faster internal memory and the slower
external memory. Since most real world applications work
with huge data sets, the large number of I/O operations
performed by these algorithms becomes a bottleneck which
necessitates the design of I/O efficient SSSP algorithms.

1.2 Cache-Aware Algorithms
Memory in modern computers is typically organized in a

hierarchy with registers in the lowest level followed by level
1 cache, level 2 cache, level 3 cache, main memory, and disk.
Access time of a memory level increases with its level, i.e.,
registers have the smallest access time while disks have the
largest. To capture the influence of the memory access pat-
tern of an algorithm on its running time Aggarwal and Vitter

[1] introduced the two-level I/O model (or external memory
model). This model consists of a memory hierarchy with an
internal memory of size M , and an arbitrarily large external
memory partitioned into blocks of size B. The I/O com-
plexity of an algorithm in this model is measured in terms of
the number of blocks transferred between these two levels.
This is a simple model that successfully models the situa-
tion where I/O operations between two levels of the memory
hierarchy dominate the running time of the algorithm. Two
basic I/O bounds are known for this model: the number of
I/Os needed to read N contiguous data items from the disk
is scan(N) = Θ(N

B
) and the number of I/Os required to

sort N data items is sort(N) = Θ(N
B

log M

B

N
B

) [1]. For most

realistic values of M , B and N , scan(N) < sort(N)� N .
In recent years there has been considerable research on

developing efficient external memory graph algorithms (see
[15, 10] for recent surveys). Several I/O-efficient versions of
internal memory SSSP algorithms have been developed [6,
11, 10, 12]. Virtually all internal memory SSSP algorithms
work by maintaining an upper bound on the shortest dis-
tance (a tentative distance) to every vertex from s and visit-
ing the vertices one by one (or in groups) in non-decreasing
order of tentative distances. The next vertex (or group of
vertices) to be visited is the one with the smallest tentative
distance extracted from the set of unvisited vertices kept in
a priority queue Q. After a vertex (or a group of vertices)
has been extracted from Q each of its unvisited neighbors
is either inserted into Q with a finite tentative distance or
has its tentative distance updated if it already resides in Q.
As pointed out in [10], the key problems in making these
algorithms I/O efficient are:

(a) unstructured indexed accesses to adjacency lists.
(b) remembering visited vertices.
(c) the lack of external memory priority queues support-

ing Decrease-Key operations.
Virtually all external memory SSSP algorithms require

Θ(V + E
B

) I/Os to access the adjacency lists (problem (a)).
Recently, it has been shown in [12] that for undirected graphs

adjacency lists can be retrieved in O(
�

V E
B

log2 ρ+ E
B

) I/Os

by an appropriate clustering of vertices and by loading an
entire cluster in a hot pool at appropriate times. However,
there are some I/O overheads in the preprocessing step that
may dominate depending on the values of the parameters.

Problem (b) has been addressed in [6] by keeping the vis-
ited vertices in a dictionary in internal memory and periodi-
cally (when the internal memory becomes full) scanning the
adjacency lists in external memory to remove the edges lead-
ing to these visited vertices and then emptying the dictio-
nary. If this approach (the phase approach) is used problem
(c) can also be avoided. Problem (b) has also been solved
by using a buffered repository tree [5] in order to store the
visited neighbors of each vertex.

Problem (c) has been addressed in [11] by using the I/O-
efficient tournament tree that supports a sequence of k Delete,
Delete-Min and Decrease-Key operations inO(k

B
log2

V
B

) I/Os.
Major known results for the external memory SSSP prob-

lem are summarized in Table 2 under the column named
“Cache-Aware Results”. Kumar & Schwabe [11] were the
first to develop an I/O-efficient version of Dijkstra’s SSSP al-
gorithm for undirected graphs. They use a tournament tree
as a priority queue and perform some extra book-keeping
using an auxiliary priority queue in order to handle visited

vertices. Their algorithm requires O(V + E
B

log2
V
B

) block
transfers. Using the phase approach [6] undirected SSSP
can be solved in O(V + V E

BM
+ sort(E)) I/Os. Recently,

Meyer & Zeh developed another undirected SSSP algorithm
that works on graphs with positive edge-weights and requires

O(
�

V E
B

log2 ρ+sort(V +E) log2 log2
V B
E

) memory accesses

[12]. For directed graphs the survey paper [15] claims a
bound of O((V + E

B
)·log2

V
B

) I/Os for SSSP. Using the phase

approach directed SSSP can be solved in O(V + V E
BM

log2
V
B

)
memory transfers [6, 10].

1.3 The Cache-Oblivious Model
The main disadvantage of the two-level model is that al-

gorithms often crucially depend on the knowledge of the
parameters of two particular levels of the memory hierarchy
and thus do not adapt well when the parameters change. In
order to remove this inflexibility Frigo et al. introduced the
cache-oblivious model [9]. As before, this model consists of
a two-level memory hierarchy, but algorithms are designed
and analyzed without using the parameters M and B in the
algorithm description. It is assumed that whenever a data
item is requested that is not stored in the internal memory,
the external memory block containing that item is automati-
cally transferred to the internal memory. When the internal
memory is full and a block needs to be fetched from the
external memory, the block in internal memory chosen for
eviction is the one that will be accessed farthest in the fu-
ture, i.e., an optimal offline cache replacement strategy is
assumed. Since the analysis of an algorithm in this model
holds for any memory and block size, it holds for all levels
of a multi-level memory hierarchy [9]. Thus by reasoning
about a simple two-level memory model we can, in fact,
prove results about a multi-level memory model. Another
advantage of this model is that the resulting algorithms are
more flexible and portable. However, often these algorithms
require a tall cache (i.e., M = Ω(B1+ε), for some ε > 0) for
I/O-efficiency.

The cache-oblivious priority queue introduced by Arge
et al. [2] and the Funnel Heap introduced by Brodal &
Fagerberg [3] support Insert-Key and Delete-Min in optimal
O(1

B
log M

B

N
B

) I/Os, where N is the number of elements in

the queue, but they do not support Decrease-Keys. It ap-
pears that prior to our work, no nontrivial cache-oblivious
results were known for priority queue with Decrease-Keys or
for SSSP on graphs.

1.4 Our Results
Our results are tabulated in Tables 1 and 2. Our main

contribution is the cache-oblivious Buffer Heap (BH) in Ta-
ble 1, and its application to the cache-oblivious results for
undirected and directed SSSP listed in Table 2. The BH
supports Delete, Delete-Min and Decrease-Key operations
in O(1

B
log2

N
B

) amortized I/Os each under the tall cache
assumption; without the tall cache assumption the bound
is O(1

B
log2 N) amortized. We assume that each element in

the heap has an associated identifier, and these identifiers
are drawn from a totally ordered set. We use the Buffer
Heap to obtain cache-oblivious SSSP algorithms for undi-
rected and directed graphs requiring O(V + E

B
log2

V
B

) and

O((V + E
B

) · log2
V
B

) I/Os, respectively. We also present a
cache-aware version of the Buffer Heap that supports each
operation in O(1

B
log2

N
M

) amortized I/Os without assum-

I/O Model Priority Queue Decrease-Key Delete Delete-Min

Cache-Aware
Tournament Tree [11] O(1

B
log2

N
B

) O(1
B

log2
N
B

) O(1
B

log2
N
B

)
Buffer Heap (cache-aware version)

(this paper)
O(1

B
log2

N
M

) O(1
B

log2
N
M

) O(1
B

log2
N
M

)

Cache-Oblivious Buffer Heap (M = Ω(B1+ε)) (this paper) O(1
B

log2
N
B

) O(1
B

log2
N
B

) O(1
B

log2
N
B

)

Table 1: Amortized I/O bounds for priority queues with Decrease-Keys. (N = number of elements)

Graph Type Cache-Aware Results Cache-Oblivious Results (M = Ω(B1+ε))

Undirected

O(V + E
B

log2
V
B

) [11]

O(V + V E
BM

+ sort(E)) [6, 10]

O(
�

V E
B

log2 ρ + sort(V + E) log2 log2
V B
E

) [12]

O(V + E
B

log2
V
M

) (this paper)

O(V + E
B

log2
V
B

) (this paper)

Directed
O((V + E

B
) · log2

V
B

) [15]

O(V + V E
BM

log2
V
B

) [6, 10] O((V + E
B

) · log2
V
B

) (this paper)

Table 2: I/O bounds for the SSSP problem on weighted graphs. (V = |V [G]|, E = |E[G]|)

ing a tall cache, and use it to obtain a cache-aware undi-
rected SSSP algorithm requiring O(V + E

B
log2

V
M

) I/Os.
Soon after our conference submission, Brodal et al. [4] pro-
posed another cache-oblivious priority queue (which they
call the Bucket Heap) supporting Decrease-Key operations.
The Bucket Heap differs slightly from our Buffer Heap. It
supports the same operations in similar I/O bounds, but
does not assume a tall cache. The tall cache assumption
can be removed from our Buffer Heap as well by a small
modification using a strategy from [4] (we describe this near
the end of section 2.1.5). The Bucket Heap is used in [4] in
exactly the same way as we do to obtain a cache-oblivious
undirected SSSP algorithm.

We also present a cache-oblivious variant of the tourna-
ment tree [11], which we call COTT. Although our bounds
for COTT are weaker than those for Buffer Heap, COTT is a
simpler data structure, and may be more amenable to prac-
tical implementation. Our directed SSSP algorithm runs
just as efficiently with COTT as with BH.

Our I/O bounds for shortest paths are not very impres-
sive for sparse graphs, but they do provide dramatic im-
provements for moderately dense graphs. For example, for
undirected graphs, if E ≥ V B

log
2

V/B
our algorithm reduces

the number of I/Os by a factor of B
log

2
V/B

over the näıve

method. For directed graphs, we obtain the same improve-
ment if E ≥ V B.

2. CACHE-OBLIVIOUS PRIORITY QUEUES
In this section we describe two cache-oblivious priority

queues: the Buffer Heap (BH) and the Cache-Oblivious Tour-
nament Tree (COTT).

BH builds on the integer priority queue described by Meyer
and Zeh in [12]. It supports Delete, Delete-Min and Decrease-
Key operations in O(1

B
log2

N
B

) amortized memory transfers
each assuming a tall cache, where N is the maximum num-
ber of elements in the queue. A Delete(x) operation deletes
the element x from the queue if it exists and a Delete-Min()
operation retrieves and deletes the element with the mini-
mum key from the queue. A Decrease-Key (x, kx) operation
inserts the element x with key kx into the queue if x does
not already exist in the queue, otherwise it replaces the key
k′

x of x in the queue with kx provided kx < k′

x. Therefore,
a new element x with key kx can be inserted into the queue

by performing a Decrease-Key(x, kx) operation. In section
3, we will use this priority queue to design cache-oblivious
shortest path algorithms for directed and undirected graphs.

COTT is a cache-oblivious version of the cache-aware tour-
nament tree introduced by Kumar and Schwabe in [11]. This
structure can contain only a pre-determined set of elements
which are initially inserted into fixed positions in the struc-
ture with +∞ key value. While the cache-aware tourna-
ment tree of [11] with N elements supports a sequence of
k Delete, Delete-Min and Decrease-Key operations in at
most O(k

B
log2

N
B

) I/Os, our cache-oblivious version sup-

ports Delete and Delete-Min in O(log2
N
B

), and Decrease-

Key operations inO(1
B

log2
N
B

) amortized I/Os, respectively,
under the tall cache assumption. Although COTT is not as
I/O-efficient as BH, it is a simpler structure and gives the
same I/O bound for directed SSSP (section 3.2) as does BH.

2.1 The Buffer Heap
In this section we describe the Buffer Heap (BH). We as-

sume, for convenience, that all keys are distinct (although
BH can be modified to run with the same bounds when keys
are not distinct).

2.1.1 Structure
The Buffer Heap consists of r = 1 + dlog2 Ne levels. For

0 ≤ i ≤ r − 1, level i consists of two buffers: the element
buffer Bi and the update buffer Ui. The buffers are defined
by splitter elements s0, s1, . . . , sr. Each element in an ele-
ment buffer is of the form (x, kx), where x is the element id
and kx is its key. Each update buffer Ui stores updates to
be applied in a batched manner on the elements in element
buffers Bi, Bi+1, . . . , Br−1. When a Delete or Decrease-Key
operation arrives, it is inserted into U0 augmented with the
current time stamp. These operations move lazily level by
level from U0 to Ur−1 and take necessary actions (if any) on
their target elements in the element buffer in each level.

At any time, the following invariants are maintained:

Invariant 1. (a) −∞ = s0 ≤ s1 ≤ . . . ≤ sr = +∞
(b) Each Bi contains only elements with keys in the range
(si, si+1]. (c) Each Ui contains only updates with associated
key value (if any) in the range (si, sr].

Invariant 2. For each element x in any Bi, all updates
applicable to x that are not yet applied, reside in U0, U1, . . . , Ui.

�
�

�
�

�
�

�
�

�
���

�
�

�
�

�
�

�
�

�
���

�
�

�
�

�
�

�
�

�
���

�
�

���	�
�������� ����������������������

Figure 1: The structure of the Buffer Heap: Each
Bi stores elements with key values in (si, si+1], and
each Ui stores updates with key values (if any) in
(si, sr]. We also have |Bi| ≤ 2i for each Bi, but there
is no such restriction on |Ui|.

Invariant 3. Each Bi contains at most 2i elements.

Invariant 4. (a) Elements in each Bi are kept sorted in
ascending order by element id. (b) Updates in each Ui except
U0 are divided into (at most three) segments with updates in
each segment sorted in ascending order by element id and
time stamp.

Initially all buffers are empty and s0 = −∞, s1 = s2 =
. . . = sr = +∞.

2.1.2 Layout
The element buffers are stored in a stack SB with ele-

ments of lower-numbered levels placed above elements of
higher-numbered levels. Elements of the same level occupy
contiguous space in the stack with elements having lower
element ids placed above elements having higher element
ids. Similarly, update buffers are placed in another stack SU

where buffers of lower-numbered levels are placed above the
ones of higher-numbered levels. Updates in a single buffer
occupy a contiguous region in the stack. For 1 ≤ i ≤ r − 1,
the segments of Ui are stored one above another in the stack,
and updates in each segment are stored sorted from top to
bottom first by element id and then by time stamp. How-
ever, updates in U0 are placed as they arrive and hence are in
sorted order descending by time stamp from top to bottom.
We maintain an array As of size 1 + r to maintain informa-
tion on the buffers and splitter elements. For 0 ≤ i ≤ r− 1,
As[i] contains the value of si, the number of elements in Bi,
and the number of segments in Ui along with the number
of updates in each segment; As[r] contains only the value of
sr. We also use a constant number of arrays (B′, B′′, B′′′, U ′

and U ′′) of size O(N) each for temporary usage. These ar-
rays will be accessed or modified sequentially. The Buffer
Heap uses O(N) space.

2.1.3 Operations
A Delete or Decrease-Key operation inserts itself into U0

(by pushing itself into SU) augmented with the current time
stamp. Further processing is deferred to the next Delete-
Min operation. The Delete-Min operation uses the following

four functions: Delete-Min, Apply-Updates, Split and
Redistribute-Elements (descriptions follow).

We also reconstruct the data structure any time the num-
ber of operations in update buffers exceeds the number of
elements in element buffers, using the following Reconstruct
operation.

Function Reconstruct()

Step 1: Sort the elements in SB by element id and level.

Step 2: Sort the operations in SU by element id and
time stamp.

Step 3: Scan SB and SU simultaneously, and apply the
updates in SU on the elements of SB .

Step 4: Reconstruct the data structure by filling its shal-
lowest levels with the elements of SB, and emptying SU .

Function Delete-Min()

Function: Deletes and returns the element X with the
smallest key kX in BH.

Steps:

Step 1: Set B′ to empty and k ← −1.

Step 2: While k < r − 1 and |B′| = 0 do:

Step 2(a): Set k← k + 1.
Step 2(b): Apply-Updates(k, B′)

Step 3: If |B′| = 0 then return “Queue Empty”
otherwise perform the following steps:

Step 3(a): (X, kX)←Redistribute-Elements(k,B′)
Step 3(b): Return (X, kX).

Function Apply-Updates(k, B′)

Function: Returns all elements (if any) in the priority
queue with key value at most sk+1 (more precisely in the
range (sk, sk+1]) sorted in ascending order by element
id. The elements are returned in the array B′.

Pre-Conditions:

(1) 0 ≤ k ≤ r − 1.

(2) Invariants 1, 2, 3 and 4 are satisfied.

(3) For 0 ≤ i < k, all Bi and Ui are empty.

Post-Conditions:

(1) Invariants 1, 2 and 4 are satisfied, but 3 may be
violated for Bk, i.e., Bk may contain more than 2k

elements.

(2) For 0 ≤ i < k, all Bi and for 0 ≤ i ≤ k, all Ui

are empty.

Steps:

Step 1: If k = 0, pop the contents of Uk from
SU and insert them sequentially into the initially
empty array U ′, otherwise use the temporary ar-
rays U ′ and U ′′ to merge the segments of Uk from
SU , and store the merged updates sorted by ele-
ment id and time-stamp in U ′.

Step 2: If k = 0, sort the updates in U ′ cache-
obliviously in ascending order by element id and
time stamp.

Step 3: Scan U ′ and Bk (by popping the elements
of Bk from SB) simultaneously to generate updated
elements into an initially empty array B′. Ele-
ments in B′ are generated in ascending order by
element id. Use the following rules to generate B′:

Rule 3(a): If an element (x, kx) in Bk has no
matching update in U ′ copy (x, kx) to B′.

Rule 3(b): If (x, kx) in Bk has exactly one
matching update in U ′ and that update is:

Delete(x): do not copy (x, kx) to B′.
Decrease-Key(x, k′

x) / Sink(x, k′

x): copy
(x, min(kx, k′

x)) to B′.

Rule 3(c): If (x, kx) in Bk has multiple match-
ing updates in U ′, then decide by time stamp
and rule 3(b), which action is to be taken.

Rule 3(d): If an update in U ′ has no matching
element in Bk, and the update is:

Decrease-Key(x, k′

x) / Sink(x, k′

x): copy
(x, k′

x) to B′ if sk < k′

x ≤ sk+1.

Update As[k] for the new sizes of level k buffers.
Step 4: If k < r−1, sequentially scan U ′ and push
appropriate updates into SU forming a new seg-
ment of Uk+1. We use the following rules to find
the updates to push into SU :

Rule 4(a): Push each Sink(x, kx) and Decrease-
Key(x, kx) in U ′ with kx > sk+1 into SU .

Rule 4(b): For every Delete(x) and Decrease-
Key(x, kx) operation with kx ≤ sk+1 in U ′,
push a Delete(x) operation into SU .

Update As[k + 1] to add information on the new
segment added to Uk+1.

Step 5: Return B′.

Function Split(B′, B′′, B′′′, t)

Function: B′ contains elements of the form (element,
key) sorted by element id, and |B′| ≥ t. This function
squeezes t elements of B′ having the smallest t keys to
the beginning of B′ and copies the remaining elements
to B′′ retaining their order by element id. It also re-
turns the t-th largest key value in B′. Uses B′′′ as a
temporary storage area.

Steps:

Step 1: Empty both B′′ and B′′′.
Step 2: Copy the contents of B′ to B′′′.
Step 3: Find the element with the t-th largest key p
in B′′′ using a cache-oblivious selection algorithm.

Step 4: Scan the contents of B′ and squeeze the
elements with key value at most p to the begin-
ning of B′ and move the remaining elements to B′′

retaining their order in B′.
Step 5: Return p.

Function Redistribute-Elements(k,B′)

Function: Removes and returns the element with the
minimum key value from Bk as (X, kX) and redistributes
the remaining elements of Bk to B0, B2, . . . , Bk−1, and
to Uk+1 if k < r − 1. The elements of Bk are assumed
to be in the array B′.

Pre-Conditions:
(1) 0 ≤ k ≤ r − 1.
(2) Invariants 1, 2 and 4 are satisfied, but 3 may be
violated for Bk.

(3) For 0 ≤ i < k, all Bi and for 0 ≤ i ≤ k, all Ui

are empty.
(4) Bk is non-empty.

Post-Conditions:
(1) Invariants 1, 2, 3 and 4 are satisfied.
(2) The element with the minimum key in the orig-
inal Bk is removed from the priority queue.

(3) Splitters s1, s2, . . . , sk+1 are redefined. If sk+1

had a finite value at the start of the function, then
sk+2, sk+3, . . . , sl are set to the new value of sk+1,
where l > k is the smallest level such that (sl, sl+1]
was non-empty at the start of the function.

(4) For some j ≤ k, each element buffer from B0

to Bj−1 contains some elements, but Bj is empty.
For 0 ≤ i ≤ j−1, each Bi must be full (contains 2i

elements) except possibly Bj−1 which may be non-
full. For j ≤ i ≤ k each Bi is empty and assigned
an empty range (si = si+1).

(5) For 0 ≤ i ≤ k, all Ui are empty.

Steps:

Step 1: If |B′| > 2k then perform the followings:

Step 1(a): Set p← Split(B′, B′′, B′′′, 2k)
Step 1(b): Consider each element of B′′ as a
Sink operation with the current time stamp.
Push them sorted by element id and time-
stamp into SU as a new segment of Uk+1.

Step 1(c): Update As[k + 1] to include infor-
mation on the new segment of Uk+1 and As[k]
to set the number of elements in Bk to 0.

Step 1(d): Set t ← sk+1. Set sk+1 ← p. Up-
date As[k + 1].

Step 1(e): If t 6= +∞ then for all si+1 with
i > k and si+1 = t, set si+1 ← p and update
As[i + 1].

Step 2: Set sk ← sk+1. Update As[k].
Step 3: For i← k − 1 downto 0 do:

Step 3(a): If |B′| ≤ 2i, set si ← si+1, other-
wise perform the following steps:

Step 3(a1): Set p← Split(B′, B′′, B′′′, 2i)
Step 3(a2): Push the contents of B′′ in
appropriate order to SB .

Step 3(a3): If i 6= 0 then set si ← p

Step 3(b): Update As[i] to reflect the number
of elements in Bi (this number is 0 if si = si+1)
and the new value of si.

Step 4: Now B′ contains only one element, and it
is assigned to (X, kX) and returned.

2.1.4 Correctness
A Delete or Decrease-Key operation only inserts itself into

U0 and this insertion does not violate any invariant. Subse-
quent Delete-Min and Reconstruct operations are responsi-
ble for actual application of these Delete/Decrease-Key oper-
ations on BH elements. The correctness of the Reconstruct
operation is straight-forward. Therefore, we only need to
prove the following lemma:

Lemma 1. A Delete-Min operation finds and deletes the
element with the smallest key value from BH, while correctly
applying all relevant Decrease-Key and Delete operations,
and maintaining all invariants.

Proof. Observe that if invariants 1 and 2 hold, the small-
est level k such that Bk is non-empty after applying all up-
dates in U0, U1, . . . , Uk on Bk will certainly contain the ele-
ment with the smallest key in the entire BH. The Delete-
Min function utilizes this idea. However, the way Delete-
Min is implemented (more specifically Apply-Updates) it
needs invariant 4 to hold, too, in order to correctly apply
the updates in a level in a constant number of passes of both
the update and the element buffers. We will prove that all
invariants are always maintained. However, note that in-
variant 3 is needed only for efficiency, not for correctness.

Starting with level k = 0, Delete-Min function finds
the smallest level that has a non-empty element buffer af-
ter the application of updates. It calls Apply-Updates to
apply the updates in Uk (assuming that U0, U1, . . . , Uk−1

are all emptied and collapsed to Uk by previous calls of
Apply-Updates) on Bk. A Delete operation in Uk is ap-
plied by deleting any matching element from Bk, and a
Decrease-Key(x, kx) operation applicable to Bk (i.e., with
sk < kx ≤ sk+1) is applied by inserting (x, kx) into Bk if
x does not already exist in Bk, otherwise updating the key
value of x in Bk if necessary. Apply-Updates empties Uk

after applying the updates on Bk and copying appropriate
updates from Uk to Uk+1 (if k < r − 1). It copies all Delete
operations from Uk to Uk+1 along with every Decrease-Key
operation that is not applicable to Bk. However, for ev-
ery Decrease-Key(x, kx) operation applied on Bk, it copies
a Delete(x) operation to Uk+1 in order to remove from BH
any occurrence of x with a larger key value. During this
process Apply-Updates does not change the splitter ele-
ments. Therefore, clearly it never violates invariants 1, 2
and 4. However, invariant 3 may be violated if Bk contains
more than 2k elements after the updates. But as soon as
|Bk| > 0 is detected after returning from Apply-Updates
for some k the Delete-Min function enters the redistribu-
tion step. It redistributes the elements in Bk to lower-level
element buffers and to Uk+1 (if exists) by calling the func-
tion Redistribute-Elements. Redistribute-Elements
checks whether invariant 3 is violated, and if so, it fixes it
by keeping in Bk only 2k elements having the smallest 2k

keys and moving the rest to Uk+1 as Sink operations with the
current time-stamp. It appropriately lowers the boundaries
of all levels with empty ranges after level k including the
left boundary of the first level with a non-empty range, but
this fixation does not violate any invariant. Starting with
i = k−1 downto i = 0, in iteration i it finds 2i elements in Bi

(all if Bi contains at most 2i elements) having the smallest
2i keys and moves them to Bi−1 (moves out of BH if i = 0),
and leaves the rest to Bi and fixes the level boundaries ap-
propriately (and assigning empty ranges to empty buffers).
At the termination of this loop only the element with the
smallest key in the entire BH is left undistributed which is
returned. This loop does not violate invariants 1, 2 and
4 and terminates with invariant 3 restored. Therefore, all
invariants hold again at termination of Delete-Min().

2.1.5 I/O Complexity
First we prove the following lemma:

Lemma 2. For 1 ≤ k ≤ r − 1, every empty Uk receives
at most 3 batches of updates before Uk is applied on Bk and
emptied again.

Proof. When level k is initialized (only once when BH
was first created) or reinitialized (during a Delete-Min oper-
ation), Uk is set to be empty. Let us consider Uk after such
an initialization/reinitialization. The first time this empty
Uk receives a batch of updates is when Apply-Updates for
level k−1 is called. This call to Apply-Updates may leave
Bk−1 in either of the following two states:

(1) Bk−1 empty: Apply-Updates for level k will be
called immediately which will empty Uk.

(2) Bk−1 non-empty: Redistribute-Elements for level
k − 1 will be called immediately which may push a new
batch of updates (Sink operations) into Uk. It will empty
Bk−1 and also assign an empty range to level k − 1. The
next time Uk will be accessed when Apply-Updates for
level k− 1 is called again. This time Apply-Updates may
push another batch of updates into Uk and will definitely
leave Bk−1 empty (since level k − 1 has an empty range
now). This leaves us in a situation exactly as in case (1).

Therefore, for 1 ≤ k ≤ r − 1, every empty Uk receives at
most 3 batches of updates before Uk is emptied again.
This lemma has the following implications:
• Each entry of As has constant size and thus sequential

access of As will incur O(1
B

) amortized cache-misses per
access per entry.
•Merging the segments of Uk (step 1 of Apply-Updates)

before applying them on Bk will incur only O(1
B

) amortized
cache-misses per update in Uk.

We also have the following three observations:

(1) Whenever a Decrease-Key/Sink operation inserts an
element into an element buffer Bi during Apply-Updates,
it may cause the buffer to overflow, i.e., the buffer may con-
tain more than 2i elements after the updates are applied.
Since Bi contained at most 2i elements before the updates
and each Decrease-Key/Sink operation adds at most one el-
ement to Bi, for each excess element (x, kx) we can find a
distinct Decrease-Key/Sink operation that can be held re-
sponsible for the eviction of (x, kx) from Bi. Each evic-
tion from Bi causes a Sink operation to be inserted into
Ui+1. Suppose a Decrease-Key(x, kx)/Sink(x, kx) operation
in Ui is held responsible for the eviction of (x′, kx′) from Bi

which generates a Sink(x′, kx′) operation in Ui+1. Then that
Decrease-Key(x, kx)/Sink(x, kx) operation in level i can be
thought of as generating the Sink(x′, kx′) operation in level
i + 1. Observe that when the Sink(x′, kx′) is generated its
generator no longer exists in the queue: if it was a Decrease-
Key operation it was converted to a Delete operation, and it
was simply discarded if it was a Sink operation. Thus every
existing Sink operation in the queue can be traced back to a
Decrease-Key operation following a chain of discarded Sinks.
Therefore, we can say that a Decrease-Key is converted to
a (Delete, Sink) pair after it inserts an element into a level
that causes an eviction, and that pair proceeds level by level
with possibly a different Sink operation in each level until
at some level the Sink operation fails to evict an element at
which point the pair turns into a single Delete.

(2) The ith largest element in an array of X elements can
be found cache-obliviously in O(1+ X

B
) I/Os, where 1 ≥ i ≥

|X| [14]. If |X| ≤ B, selection can be performed without

any extra I/Os, provided that the elements already reside
in internal memory. In general, if at least the first Θ(B)
elements of the array are always kept in internal memory,
selection requires O(1 + X

B
) = O(X

B
) I/Os.

(3) For M = Ω(B), a list of X elements can be sorted
cache-obliviously in O(X

B
log2 X) I/Os using a simple I/O-

efficient version of ordinary binary mergesort.

We will now prove the I/O bounds for BH operations.

Lemma 3. A BH containing at most N elements at any
time, supports Delete, Delete-Min and Decrease-Key oper-
ations in O(1

B
log2

N
B

) amortized I/Os each under the tall

cache assumption, and in O(1
B

log2 N) amortized I/Os each
without the tall cache assumption.

Proof. For simplicity, we will assume that a Decrease-
Key operation is inserted into U0 as an ordered pair of op-
erations 〈Decrease-Key, Dummy〉. After the successful ap-
plication of that Decrease-Key operation on some Bi, the
Decrease-Key operation in the ordered pair moves to Ui+1

as a Delete operation, and the Dummy operation either turns
into an element in Bi, or moves to Ui+1 as a Sink operation
(see observation (1) above for the validity of this assertion).
Thus a Decrease-Key operation will be counted as two op-
erations until it is applied on some element buffer.

For 0 ≤ i ≤ r − 1, let ui be the number of operations
in Ui, and bi be the number of elements in Bi. If H is the
current state of BH, we define the potential of H as

Φ(H) = 4ru0 +
r−1�
i=1

(3r − i)ui +
r−1�
i=0

(i + 1)bi

Note that each component of the actual cost that we will
calculate will have a Θ(1

B
) factor associated with it, which

we will drop for simplicity. Therefore, the calculated amor-
tized cost will have to be multiplied by the largest such
dropped constant α = Θ(1

B
) in order to obtain the final

amortized cost.
First let us consider the amortized cost of a Reconstruct

operation. At the start of the operation � r−1
i=0 ui ≥ � r−1

i=0 bi,

and thus the actual cost of performing steps 1 to 4 is r � r−1
i=0 ui.

After this reconstruction process the update buffers are left
empty with each update contributing at most one element to
the element buffers. This results in a drop of potential which
is at least r � r−1

i=0 ui. Therefore, the amortized cost of a Re-

construct operation is at most r � r−1
i=0 ui − r � r−1

i=0 ui = 0.
The amortized cost of a Delete operation is = 1 + 4r =

O(log2 N), and that of a Decrease-Key operation is = 2(1 +
4r) = O(log2 N). We now consider the amortized cost of
a Delete-Min operation. Let us calculate the actual cost of
the operation first:
• The cost of sorting the updates in U0 is at most ru0.
• Let k ≥ 0 be the smallest index such that Bk is non-

empty after applying updates on it. Then the total cost
for examining (read/copy/move/change) the updates is =

� k
i=0 (k − i + 1)ui.
Note that this cost includes the cost of moving the excess

elements (if any) from Bk to Uk+1 as Sink operations since
each of these moves can be assigned to a Decrease-Key/Sink
operation from a lower-level update buffer.
• The cost of examining the elements in B0, B1, . . . , Bk−1

during updates is = � k−1
i=0 bi.

• The cost of examining the elements of Bk during up-
dates is Θ(bk). Let Bk contain b′k(≤ 2k) elements after

applying the updates and removing the excess elements if
necessary. During the removal of excess elements these b′k
elements incur a cost of Θ(b′k). Now consider the process
of redistributing these elements to lower-level buffers. The
cost of applying the first selection step is Θ(b′k). But the
total cost of applying the remaining selection steps is also
at most Θ(b′k) since in this case the number of elements on
which selection is applied is halved in every step. Thus the
total cost incurred is = max(bk, b′k).
• The cost of accessing the As stack is at most r.

Thus, the actual cost c ≤ ru0 + � k
i=0 (k − i + 1)ui +

� k−1
i=0 bi + max(bk, b′k) + r

Let us now calculate the change in potential of H:
• Change in potential due to changes in update buffers is
≤ −4ru0 − � k

i=1(3r− i)ui + (3r− k− 1) � k
i=0 ui, since the

minimum decrease in potential of an element in Ui, i ≤ k
occurs if that element is moved to Uk+1 (rather than being
moved to some Bj or being deleted from BH).
• To calculate the change in potential due to changes in el-

ement buffers first note that before redistribution all buffers
b0, b1, . . . , bk−1 were emptied which caused a potential drop
of � k−1

i=0 bi at that point. During redistribution, however,
the b′k elements in Bk were all moved to lower-level element
buffers. Since before this Delete-Min operation each of these
elements either belonged to Bk or was in one of the update
buffers as an update, the redistribution will cause a poten-
tial drop of at least 1 for each element, and thus a total
potential drop of at least b′k. But if bk > b′k, the potential
drop is at least bk.

Thus, Φ(Hafter) − Φ(Hbefore) ≤ −ru0 − � k
i=0(k − i +

1)ui − � k−1
i=0 bi −max(bk, b′k), hence, amortized cost, �c =

c + (Φ(Hafter) − Φ(Hbefore)) ≤ r = O(log2 N), and the
amortized number of I/O’s per operation is O(1

B
log2 N).

If we assume a tall cache, we have N �M = Ω(B1+ε) for
some ε > 0, implying log2 N = O(log2

N
B

). Therefore, BH
supports Delete, Delete-Min and Decrease-Key operations
in O(1

B
log2

N
B

) amortized I/Os each under the tall cache
assumption.

Some Extensions. In addition to the amortized I/O bounds,
we observe that amortized time cost of each BH operation is
O(log N). The Find-Min operation can be supported in con-
stant time with no I/O, and Increase-Key can be supported
in the same bounds as the other operations.

Removing the Tall Cache Assumption. We can remove the
need for a tall cache in BH while still supporting each op-
eration in O(1

B
log2

N
B

) amortized I/Os by using a strategy
from [4], namely restricting the size of each Ui. We sketch
this modification: We maintain an additional invariant that
the number of updates in Ui (0 ≤ i ≤ r−1) is at most 2i. If
Ui overflows, the following function (Fix-U) is called with
parameter i in order to restore the invariant.

Function Fix-U(i)
Step 1: Pop from SB elements residing above the ele-
ments of Bi, and push them into a global stack S′

B .

Step 2: Apply the updates in Ui on Bi.

Step 3: If i < r− 1, move appropriate updates from Ui

and elements from Bi to Ui+1. Empty Ui.

Step 4: If i < r−1 and |Ui+1| > 2i+1, call Fix-U(i+1).

Step 5: Pop the elements from S′

B that were pushed
into it in step 1, and push them back to SB .

After inserting each Delete or Decrease-Key operation into
U0, if |U0| > 20 = 1, we call Fix-U(0). After performing a
Delete-Min operation, we call Fix-U(k) if |Uk| > 2k, where
k is the smallest index of a non-empty update buffer.

Cache-Aware Model. BH can be modified to support Decrease-
Key, Delete and Delete-Min operations inO(1

B
log2

N
M

) amor-
tized I/Os each in the cache-aware model as follows. For
some q = log2 (βM), where β < 1 is a constant, BH will
now consist of only r − q levels: q, q + 1, . . . , r− 1. The ele-
ment buffer Bq (containing at most 2q = βM elements) will
be kept in internal memory and all new Decrease-Key/Delete
operations will be inserted into Uq . The first q entries of As

will also be kept in internal memory. Each operation will be
charged for O(1

B
) amortized I/Os per level for r−q = log2

N
M

levels, i.e., O(1
B

log2
N
M

) amortized I/Os in total. This ver-
sion of BH does not require a tall cache.

2.2 Cache-Oblivious Tournament Tree
A Cache-Oblivious Tournament Tree (COTT) with N el-

ements is a static binary tree with N leaves numbered 1
through N from left to right. The root of the tree is de-
noted by R, and Tv denotes the subtree rooted at any node
v. Each node v stores an ordered pair (xv, kv), where xv is
an element corresponding to a leaf in Tv and kv is a key of
xv. Each internal node v has an associated stack Sv.

The supported operations are propagated lazily from the
root to appropriate leaves and the following two invariants
are maintained:

Invariant 5. For each internal node v, each entry in Sv

is a Decrease-Key operation to be performed on a leaf of Tv.
Thus the stacks associated with the nodes on the path from
a leaf to the root together contain all Decrease-Keys to be
performed on that leaf.

Invariant 6. The ordered pair (xv, kv) stored in node v
refers to the element xv corresponding to a leaf in Tv, having
the minimum key kv taking into account only the operations
(Delete, Delete-Min and Decrease-Key) seen by v so far.
Thus, at any time, the root of the tree stores the element
with the minimum key value in the whole tree.

Initially, the elements in all leaves are assigned a key value
of +∞. All stacks are empty and the ordered pair in each
internal node refers to the leftmost leaf in the corresponding
subtree. Thus both invariants hold initially.

Decrease-Keys are performed lazily. Whenever a Decrease-
Key operation arrives, it is pushed on to the stack SR of the
root node and the minimum value at the root is updated if
necessary. Thus, invariants 5 and 6 are maintained.

A Delete-Min operation is a special case of the Delete
operation: it reads the ordered pair (xR, kR) from the root of
the tree and performs a Delete(xR) operation. A Delete(x)
operation is performed as follows:

Function Delete(x)

Step 1 (Distribution Step): We follow the path from
the root to the leaf corresponding to x. At each internal
node v with children v1 and v2 on this path we pop all
Decrease-Key operations from Sv and distribute them
to Sv1

and Sv2
, and also update (xv1

, kv1
) and (xv2

, kv2
)

if necessary. However, if a child node is a leaf, we dis-
card any Decrease-Key operation it receives after up-
dating the ordered pair stored in that leaf.

Step 2 (Fixing Step): We set the key value of element
x at the leaf to +∞ and propagate this change along
the leaf to root path from x. At each internal node v
with children v1 and v2 on this path, we set (xv, kv) to
(xv1

, kv1
) if kv1

≤ kv2
, otherwise we set it to (xv2

, kv2
).

Lemma 4. A COTT with N elements supports Delete/Delete-
Min and Decrease-Key operations:

(a) in O(log2 N) and O(1
B

log2 N) amortized I/Os, re-
spectively, in cache-oblivious model without a tall cache.

(b) in O(log2
N
B

) and O(1
B

log2
N
B

) amortized I/Os, re-
spectively, in cache-oblivious model with a tall cache.

(c) in O(log2
NB
M

) and O(1
B

log2
NB
M

) amortized I/Os,
respectively, in cache-aware model.
Proof. (a) During a Delete or Delete-Min operation 2

nodes are accessed at each of the O(log2 N) levels during the
root to leaf path traversal in step 1 and the same holds for
step 2. We charge the O(1) cache-misses for retrieving the
node information and the stacks in each level to the current
Delete/Delete-Min operation. Thus each Delete/Delete-Min
is charged for O(log2 N) external memory accesses in total.
On the other hand, each Decrease-Key operation is pushed
and popped to a stack only once in each level which incurs
O(1

B
) cache-misses per level. Each Decrease-Key operation

also incurs O(1
B

) amortized cache-misses during its insertion
into SR. Thus each Decrease-Key operation is charged for
O(1

B
log2 N) amortized external memory accesses in total.

(b) The claim follows from the observation that since N �
M , the tall cache assumption implies log2 N = O(log2

N
B

).

(c) We modify COTT so that, for some q = log2 β M
B

, where
β < 1 is a constant, nodes in the first q − 1 levels do not
have any stacks, and the topmost block of each of the stacks
in level q are kept in the internal memory.

3. CACHE-OBLIVIOUS SSSP

3.1 Undirected SSSP
The cache-aware undirected SSSP algorithm by Kumar

& Schwabe [11] (see [10] for a description) can be made
cache-oblivious by replacing both the primary and the aux-
iliary cache-aware priority queues used in that algorithm
with buffer heaps. The primary priority queue is used to
perform the standard operations for shortest path compu-
tation. Whenever a vertex with final distance d[u] is set-
tled, for each (u, v) ∈ E[G], we will perform a Decrease-
Key((u, v), d[u] + w(u, v)) operation on the auxiliary buffer
heap to correct for spurious updates, i.e., the auxiliary buffer
heap will treat edges, instead of vertices, as its elements.

The algorithm is given below (correctness proof is in [10]).

Step 1: Perform the following initializations:

(a): Initialize Q and Q′ to be two empty BH. Each
item in Q will be of the form (x, kx) denoting an ele-
ment x with key kx, while each item in Q′ will have
the form ((x, y), kx,y) denoting an element (x, y)
with key kx,y.

(b): For each v ∈ V [G], set d[v]← +∞.
(c): Perform Decrease-Key(Q)(s, 0).

Step 2: While Q is non-empty do:

(a): Set (u, k)← Find-Min(Q)().
Set ((u′, v′), k′)← Find-Min(Q′)().

(b): If k ≤ k′ then:

(b1): Perform Delete(Q)(u). Set d[u]← k.
(b2): For each neighbor v of u do:

Decrease-Key(Q)(v, d[u]+w(u, v)).
Decrease-Key(Q′)((u, v), d[u]+w(u, v)).

Otherwise (if k > k′) do:

(b′1): Perform Delete(Q′)((u
′, v′)).

Perform Delete(Q)(u
′).

I/O Complexity. If we use the cache-oblivious Buffer
Heap, the algorithm requires O(V + E

B
log2

V
B

) I/Os. If we
use the cache-aware BH, we obtain a cache-aware undirected
SSSP algorithm requiring O(V + E

B
log2

V
M

) I/Os.

3.2 Directed SSSP
The SSSP algorithm we will describe in this section is

a cache-oblivious implementation of Dijkstra’s SSSP algo-
rithm [7] with a Buffer Heap (or a COTT) Q. Additionally,
we will use a cache-oblivious Buffered Repository Tree (BRT)
structure D described in [2], in order to prevent a vertex
whose shortest distance from the source vertex s has already
been determined, from being reinserted into Q. The BRT
structure maintains O(E) elements with keys in the range
[1 . . . V] under the operations Insert(v, u) and Extract(u).
The Insert(v, u) operation inserts a new element v with
key u, and the Extract(u) operation reports and deletes
from the structure all elements v with key u. The Insert
and Extract operations are supported in O(1

B
log2 V) and

O(log2 V) amortized I/Os, respectively (or in O(1
B

log2
V
B

)

and O(log2
V
B

) amortized I/Os, respectively, assuming a tall
cache).

The cache-oblivious directed SSSP algorithm consists of
the following steps and for each vertex v ∈ V [G], it stores
the shortest distance from s to v in d[v]:

Step 1: For each vertex v ∈ V [G], find the set Lv =
{u|(u, v) ∈ E[G]} by sorting the edges of G.

Step 2: Perform the following initializations:

(a): Initialize Q to be an empty BH (or a COTT).

(b): Initialize D to be an empty BRT capable of
supporting key values in the range [1 . . . V].

(c): For each v ∈ V [G], set d[v]← +∞.

(d): Perform a Decrease-Key(s, 0) operation on Q.

Step 3: While Q is non-empty do:

(a): Perform a Delete-Min on Q to extract the ver-
tex u with minimum key du. Set d[u]← du.

(b): Let L′ be the set of vertices to which u has an
outgoing edge (obtained from the adjacency list of
u). The list is augmented to contain the weight of
the corresponding edge with each vertex. Sort L′

in ascending order by vertex number.
(c): Perform Extract(u) on D to obtain a set L′′ of
neighbors of u (to which u has an outgoing edge)
whose shortest distance from s has already been
determined. Sort L′′ by vertex number.

(d): Scan L′ and L′′ simultaneously and for each
vertex v in L′ that does not occur in L′′ perform a
Decrease-Key(v, du + w(u, v)) operation on Q.

(e): For each vertex v ∈ Lu (determined in step 1)
perform an Insert(u, v) operation on D.

3.2.1 Correctness
A standard implementation of Dijkstra’s directed SSSP

algorithm is through the use of a priority-queue Q with
Decrease-Key. Priority-queue Q stores all vertices that are
not yet settled (i.e., vertices whose shortest path length from
s has not yet been finalized), and in each iteration of the al-
gorithm, a vertex u is extracted from Q with a Delete-Min
operation. The vertex u is provably settled at this point, and
for each edge (u, v) such that v is not settled, i.e., such that
v is on Q, a suitable Decrease-Key operation is performed
on v in Q.

Our directed SSSP algorithm implements Dijkstra’s algo-
rithm as described above. However, if we had used one of
our two cache-oblivious priority queues with Decrease-Key
in the straightforward manner, we would have needed to
make one external memory I/O for each edge (u, v) to de-
termine whether or not v is settled. This is too expensive.
Instead, we improve the performance using the BRT struc-
ture (the BRT has been used for breadth-first search and
depth-first search in the cache-aware setting in [5] and in
the cache-oblivious setting in [2]).

Informally, the BRT structure is used in our algorithm as
follows. For every unsettled vertex u, the BRT structure
stores an element v with key value u for each settled vertex
v to which u has an outgoing edge. Thus when u itself
settles (i.e., u is deleted from Q), one can identify all settled
neighbors of u by an Extract(u) operation on the BRT.

Since our directed SSSP algorithm is an an implementa-
tion of Dijkstra’s algorithm, in order to prove the correct-
ness it suffices to show that our use of BRT results in the
Decrease-Key operation being performed on exactly the un-
settled vertices in step 3(d).

Lemma 5. The cache-oblivious directed SSSP algorithm
correctly implements Dijkstra’s directed SSSP algorithm.

Proof. As described above, we only need to show that
the Decrease-Key operation is performed on the correct set
of vertices in each iteration of step 3.

At any time, let S denote the set of vertices extracted
from Q so far in step 3(a) of the algorithm. Let P (S1, S2)
denote the set {(v, w)|v ∈ S1 ∧ w ∈ S2 ∧ (w, v) ∈ E[G]}.

We claim that the following invariant holds at the start of
each iteration of the loop in step 3:

Invariant 7. D contains only elements from the set S,
and for each v ∈ S and u ∈ V [G] \ S, such that (u, v) ∈
E[G], there is an item (v, u) in D, where v is an element
and u is its key. Thus, P (S, V [G]) ⊇ D ⊇ P (S, V [G] \ S).

Before the first iteration of the loop in step 3, S = ∅, and
D is initialized to be empty. Thus the invariant holds triv-
ially. We now need to prove that it is maintained correctly.

In step 3(a), vertex u is included in set S. Let S′ denote
the set S before this inclusion. Thus S = S′ ∪ {u}.

Since this invariant holds for S′ up to and including step
3(b), we have,

P (S′, V [G]) ⊇ D ⊇ P (S′, V [G] \ S′)

Step 3(c) deletes the set {(v, u)|v ∈ S′ ∧ (u, v) ∈ E[G]}
from D. Thus after this deletion,

P (S′, V [G]) ⊇ D ⊇ P (S′, V [G] \ S)

Step 3(e) adds the set {(u, w)|w ∈ V [G] ∧ (w, u) ∈ E[G]}
to D. Thus, after this addition,

P (S, V [G]) ⊇ D ⊇ P (S, V [G] \ S)

Thus the invariant holds before every iteration of the loop
in step 3. Hence step 3(c) correctly extracts from D all
settled vertices to which vertex u has an outgoing edge,
and step 3(d) avoids performing Decrease-Key operations
on them.

Therefore the algorithm is a correct implementation of
Dijkstra’s algorithm.

3.2.2 I/O Complexity

Lemma 6. Single source shortest paths in a directed graph
can be computed cache-obliviously in O((V + E

B
) · log2

V
B

)
I/Os using a BH/COTT under the tall cache assumption.

Proof. We will prove the claim for COTT only. The
proof for BH is then straight-forward.

Step 1 requires O(V + E
B

) I/Os to copy the edges from the

adjacency lists, O(E
B

log2
E
B

) I/Os to sort them and O(V +
E
B

) I/Os to create a separate list for each vertex.

Steps 2(a) and 2(b) require O(1 + 1
B

log2
V
B

) and O(V)

I/Os, respectively. Step 2(c) requires O(1 + V
B

) I/Os. We
will include the I/O cost of Decrease-Key(s, 0) in step 2(d)
in the total I/O cost of all Decrease-Keys in the algorithm.

Step 3(a) requires O(log2
V
B

) amortized I/Os to perform
the Delete-Min and O(1) I/O to store/report the short-
est distance/path information for the extracted vertex u.

Step 3(b) requires O(1 + out(u)
B

) I/Os to read the adja-
cency list of u, where out(u) denotes the out-degree of ver-

tex u. Sorting L′ requires O(out(u)
B

log2
out(u)

B
) I/Os. Step

3(c) requires O(log2
V
B

) amortized I/Os to perform the Ex-

tract operation and O(out(u)
B

log2
out(u)

B
) I/Os to do the sort-

ing. Step 3(d) requires O(out(u)
B

) I/Os to read L′ and L′′,

and O(out(u)
B

log2
V
B

) amortized I/Os for the Decrease-Keys.

Step 3(e) requires O(1 + in(u)
B

) I/Os to read the list Lu,
where in(u) is the in-degree of u. The Insert operations

require at total of O(in(u)
B

log2
V
B

) amortized I/Os.
Hence, a single iteration of step 3 on a vertex u requires

O(log2
V
B

+ in(u)+out(u)
B

log2
V
B

) amortized I/Os, which sums

to O((V + E
B

) · log2
V
B

) over all iterations of step 3. The cost
of this step dominates the cost of steps 1 and 2.

4. REFERENCES
[1] A. Aggarwal and J.S. Vitter. The input/output

complexity of sorting and related problems.
Communications of the ACM, 31:1116–1127, 1988.

[2] L. Arge, M. A. Bender, E. D. Demaine,
B. Holland-Minkley, and J. I. Munro. Cache-oblivious
priority queue and graph algorithm applications. In
Proceedings of ACM Symposium on Theory of
Computing, pp. 268–276, May 2002.

[3] G.S. Brodal and R. Fagerberg. Funnel heap – a cache
oblivious priority queue. In Proceedings of the 13th
Annual International Symposium on Algorithms and
Computation, LNCS 2518, pp. 219–228, Nov. 2002.

[4] G.S. Brodal, R. Fagerberg, U. Meyer, and N. Zeh.
Cache-Oblivious Data Structures and Algorithms for
Undirected Breadth-First Search and Shortest Paths.
To appear in Proceedings of the 9th Scandinavian
Workshop on Algorithm Theory, July 2004.

[5] A. L. Buchsbaum, M. Goldwasser,
S. Venkatasubramanian, and J. R. Westbrook. On
external memory graph traversal. In Proceedings of the
ACM-SIAM Symposium on Discrete Algorithms, pp.
859–860, 2000.

[6] Y.-J. Chiang, M. T. Goodrich, E. F. Grove,
R. Tamassia, D. E. Vengroff, and J. S. Vitter.
External-memory graph algorithms. In Proceedings of
the ACM-SIAM Symposium on Discrete Algorithms,
pp. 139–149, 1995.

[7] E.W. Dijkstra. A note on two problems in connexion
with graphs. Numerische Mathematik, 1:269–271,
1959.

[8] M.L. Fredman and R.E. Tarjan. Fibonacci heaps and
their use in improved network optimization
algorithms. Journal of the ACM, 34:596–615, 1987.

[9] M. Frigo, C.E. Leiserson, H. Prokop, and
S. Ramachandran. Cache-oblivious algorithms. In
Proceedings of the 40th Annual Symposium on
Foundations of Computer Science, pp. 285–297, 1999.

[10] I. Katriel and U. Meyer. Elementary graph algorithms
in external memory. In U. Meyer, P. Sanders, and J.F.
Sibeyn, editors, Algorithms for Memory Hierarchies,
LNCS 2625. Springer, 2003.

[11] V. Kumar and E. Schwabe. Improved algorithms and
data structures for solving graph problems in external
memory. In Proceedings of the IEEE Symposium on
Parallel and Distributed Processing, pp. 169–177, 1996.

[12] U. Meyer and N. Zeh. I/O-efficient undirected shortest
paths. In Proceedings of the European Symposium on
Algorithms, LNCS 2832, pp. 434–445, Sep. 2003.

[13] S. Pettie and V. Ramachandran. Computing shortest
paths with comparisons and additions. In Proceedings
of the 13th ACM-SIAM Symposium on Discrete
Algorithms, pp. 713–722, San Francisco, CA, 2002.

[14] H. Prokop. Cache-oblivious algorithms. Master’s
thesis, Department of Electrical Engineering and
Computer Science, MIT, June 1999.

[15] J.S. Vitter. External memory algorithms and data
structures: Dealing with massive data. ACM
Computing Surveys, 33(2):209–271, 2001.

