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ABSTRACT
We present the “Dynamic Packing Grid” (DPG) data struc-
ture along with details of our implementation and perfor-
mance results, for maintaining and manipulating flexible
molecular models and assemblies. DPG can efficiently main-
tain the molecular surface (e.g., van der Waals surface and
the solvent contact surface) under insertion/deletion/ move-
ment (i.e., updates) of atoms or groups of atoms. DPG also
permits the fast estimation of important molecular prop-
erties (e.g., surface area, volume, polarization energy, etc.)
that are needed for computing binding affinities in drug de-
sign or in molecular dynamics calculations. DPG can addi-
tionally be utilized in efficiently maintaining multiple “rigid”
domains of dynamic flexible molecules. In DPG, each up-
date takes only O (log w) time w.h.p. on a RAM with w-bit
words i.e., O (1) time in practice, and hence is extremely
fast. DPG’s queries include the reporting of all atoms within
O (rmax) distance from any given atom center or point in 3-
space in O (log log w) (= O (1)) time w.h.p., where rmax is
the radius of the largest atom in the molecule. It can also
answer whether a given atom is exposed or buried under
the surface within the same time bound, and can return the
entire molecular surface in O (m) worst-case time, where m
is the number of atoms on the surface. The data structure
uses space linear in the number of atoms in the molecule.

Categories and Subject Descriptors
I.3.5 [Computer Graphics]: Computational Geometry and
Object Modeling—boundary representations; curve, surface,
solid, and object representations; geometric algorithms, lan-
guages, and systems; physically based modeling ; F.2.2 [Analysis
of Algorithms and Problem Complexity]: Nonnumeri-
cal Algorithms and Problems—computations on discrete struc-
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tures; geometrical problems and computations; J.6 [Computer-
Aided Engineering]: Computer-aided design (CAD)

General Terms
Algorithms, Design, Performance

Keywords
shape modeling, de novo drug design, computer aided de-
sign, interactive software, protein folding, molecular docking

1. INTRODUCTION
Many human functional processes are mediated through

the interactions amongst proteins, a major molecular con-
stituent of our anatomical makeup. A computational under-
standing of these interactions provides important clues for
developing therapeutic interventions related to diseases such
as cancer and metabolic disorders. Computational meth-
ods such as automated docking through shape and energetic
complementarity scoring, aim to gain insight and predict
such molecular interactions.

The most common model for proteins is a collection of
atoms represented by spherical balls, with radii equal to
their van der Waals radii [35, 16]. The surface of the union of
these spheres is known as the van der Waals surface. Lee and
Richards introduced the concept of accessibility to the sol-
vent [31]. Proteins are not isolated, but commonly present
in solutions, especially water. Also, the van der Waals sur-
face contains too many internal atoms and patches which
are not accessible by the solvent or any other protein that
may bind to it. Hence, Lee and Richards gave a new defi-
nition for the protein surface or protein-solvent interface as
the surface accessible to the watery solvent. They modeled
water molecules as spheres with radius 1.4Å, and considered
the locus of the center of one such ‘probe’, as it rolled along
the protein surface as the Solvent Accessible Surface (SAS).
Richards then gave a more commonly used definition for
molecular surface as a set of contact and reentrant patches
[42]. Though Connolly considered this an alternative defini-
tion of the SAS surface in [13], now it is commonly known
as the Solvent Contact Surface (SCS), or Solvent Excluded
Surface (SES) or simply the molecular surface/interface of
the protein.

Protein interactions or protein-protein docking involves
induced complementary fit between flexible protein inter-
faces and additionally the interface conformational changes
are often critical during the lock and key matching [43].



Figure 1: Rice Dwarf Virus (RDV) contains 3.5 million atoms (left) while Microtubule contains 1.2 million
(right). In this figure, atoms are color-coded using the standard Corey, Pauling, Koltun (CPK) color scheme.

The flexible docking solution space consisting of all relative
positions, orientations and conformations of the proteins,
is searched, and the putative dockings are evaluated us-
ing combinations of interface complementarity scoring, and
atomic pair-wise charged Coulombic interactions [27]. Since
proteins function in their predominantly watery (solvent)
environment, the computation of protein solvation energy
(or known as protein - solvent interaction energy) also plays
an important role in determining inter-molecular binding
affinities “in-vivo” for drug screening, as well as in molecular
dynamics simulations [52], and in the study of hydropho-
bicity and protein folding. When computing the solvation
energy for molecules, it is crucial to correctly model and
sample the protein - solvent interface.

Since Richards introduced the SES definition, a number
of techniques have been devised for static construction of
the molecular surface (e.g., [12, 13, 53, 17, 50, 3, 45, 44, 55,
23, 7, 6]). However, not much work has been done on dy-
namic maintenance of molecular surfaces. In [8] Bajaj et al.
considered limited dynamic maintenance of molecular sur-
faces based on Non Uniform Rational BSplines ( NURBS )
descriptions for the patches. Eyal and Halperin [19, 20] pre-
sented an algorithm based on dynamic graph connectivity
that updates the molecular surface after a conformational
change in O

`
log2 n

´
amortized time per affected (by this

change) atom.
In this paper we present the Dynamic Packing Grid (DPG)

– a space and time efficient data structure that maintains
a collection of balls (atoms) in 3-space allowing a range of
spherical range queries and updates for rapid scoring of flex-
ible protein-protein interactions. The efficiency of the data
structure results from the assumption that the centers of two
different balls in the collection cannot come arbitrarily close
to each other, which is a natural property of molecules. A
consequence of this assumption is that any ball in the collec-
tion can intersect at most a constant number of other balls.
On a RAM with w-bit words, the data structure can re-
port all balls intersecting a given ball or within O (rmax)
distance from a given point in O (log log w) time w.h.p.,
where rmax is the radius of the largest ball in the collec-
tion. It can also answer whether a given ball is exposed
(i.e., lies on the union boundary) or buried within the same
time bound. At any time the entire union boundary can
be extracted from the data structure in O (m) time in the
worst-case, where m is the number of atoms on the bound-
ary. Updates (i.e., insertion/deletion/movement of a ball)

are supported in O (log w) time (w.h.p.). The data struc-
ture uses linear space. A packing grid can maintain both
the van der Waals surface and the solvent contact surface
(SCS) of a molecule within the performance bounds men-
tioned above. Packing grids can be used to maintain the sur-
face of a flexible molecule decomposed into rigid domains so
that applying a bending/shearing/twisting motion between
two domains takes O (1 + m log w) time (w.h.p.), where m is
the number of atoms in the connectors between the two do-
mains. We also describe a Hierarchical Packing Grid (HPG)
data structure that maintains a molecule at multiple resolu-
tions (atomic and coarser) under updates, and can compute
any mixed resolution surface efficiently. Packing grids can
also aid in fast energetics calculation by rapidly locating the
atoms close to each sampled quadrature point on the SCS.

DPG has potential applications in interactive software tools
developed for de novo drug design (e.g., [30, 46, 18, 29]),
protein folding (e.g., [28, 14]) and molecular docking (e.g.,
[33, 2]) that use human intuition and biological knowledge
in order to steer the prediction process. These applica-
tions often need to handle extremely large molecules and
macromolecules (e.g., as shown in Figure 1 Rice Dwarf Virus
with 3.5 million atoms, and Microtubule has 1.2 million),
and need to perform a sequence of dynamic updates on
them in real time. The Molecule Evaluator [30, 18] is a
de novo molecular design software based on adaptive inter-
active evolution. In a series of interactive steps it applies
a set of problem-specific mutation (e.g., add/remove atom,
add/remove group) and recombination operators on a set
of evolving molecules, and keeps track of several chemical
and biological properties of each molecule (e.g., molecular
mass, hydrophobicity, etc.). The ProteinShop software [28,
14] allows the interactive creation of protein structures (e.g.,
through shape manipulation) given an amino acid sequence
and a sequence of predicted secondary structure types for
each amino acid. DockingShop [33] is a successor of Pro-
teinShop, which provides an interactive docking environ-
ment with flexibility of side chains and backbone movement.
Users can adjust the receptor protein structure by rotating
the backbone dihedral angles, changing the dihedral angles
of selected residues, substituting the side chain of selected
residues using a rotamer library, or changing a residue for
another while keeping the backbone fixed. Figure 2 shows an
example where the flexible movement/rearrangement of the
“kl” β-hairpin on the envelope (E) Glycoprotein of dengue
virus opens up a hydrophobic pocket for ligand binding, and
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Figure 2: Figures (a) and (b) show the structure of
a soluble fragment of the envelope (E) Glycoprotein
from DV (dengue virus) type 2. Figure (a) shows
the crystals grown in the presence (pre-fusion) of
the detergent n-octyl-β-D-glucoside (β-OG, colored
in green), and Figure (b) shows the same in its
absence (post-fusion). The key difference between
these two structures is a local rearrangement of the
“kl” β-hairpin (residues 268-280) and the concomi-
tant opening up of a hydrophobic pocket for ligand
binding. In Figure (a) this pocket is occupied by a
molecule of β-OG [36].

the inhibitor n-octyl-β-D-glucoside docks into that pocket.
VRDD [2] supports molecular visualization and interactive
docking in a VR environment, and allows side-chain flexibil-
ity.

The molecular dynamic simulation tool IMD [49] allows
interactive manipulation of bio-molecular systems. It com-
bines interactive molecular visualization (using VMD [26])
with molecular dynamic simulation (using NAMD [38, 41])
in the background that supports manipulation of molecules
by applying force to single atoms. Traditional all-atom molec-
ular dynamics (MD) simulation reveals in detail the protein
folding process, but it is restricted to small time scales on
the order of nanosecond [47] and small length range on the
order of nanometer [32, 34]. To fully investigate the folding
process of a protein into its functional structure, a larger
timescale from micro- to millisecond and larger length scale
of micrometer are needed [4]. Protein coarse grained (CG)
models which represent clusters of atoms with similar phys-
ical properties by CG beads and simplify the interactions
significantly reduce the size of the system and therefore be-
come a promising approach to reproduce large-scale protein
motions.

The DPG data structure also has potential applications in
tracking the dynamic structure of a particle system as parti-
cles move, appear and disappear [5, 22, 25]. Particle systems
are used for modeling a number of physical world scenarios
ranging from cosmological systems and plasma physics to
molecular systems, where particles are defined as smooth
functions with compact support. The applications are wide

and varied and include chemistry, material science, and bio-
engineering. The dynamic re-meshing problem for time de-
pendent particle systems arise in gas hydrodynamics simula-
tions essential in the computational investigation of the for-
mation of large scale structures, such as galaxies and galaxy
clusters, in the universe [25]. For the meshing of particle
systems, it suffices to consider particles as idealized balls, or
radially symmetric domains of support of their kernels.

The rest of the paper is organized as follows. We describe
and analyze the packing grid data structure in Section 2. We
give some preliminaries in Section 2.1, describe the layout of
the data structure in Section 2.2, and describe and analyze
the supported queries and updates in Section 2.3. In Sec-
tion 3 we describe how to use packing grids for maintaining
the surface of a molecule decomposed into rigid domains,
and in Section 4 we describe hierarchical packing grids for
maintaining mixed resolution surfaces. In Section 5 we de-
scribe some applications of packing grids. Our experimental
results are included in Section 6.

2. THE DYNAMIC PACKING GRID DATA
STRUCTURE

We describe the packing grid data structure for maintain-
ing a set M of balls in 3-space efficiently under the following
set of queries and updates. By B = (c, r) we denote a ball
with center c and radius r.

Queries.
1. Intersect( c, r ): Return all balls in M that intersect

the given ball B = (c, r). The given ball may or may
not belong to the set M .

2. Range( p, δ ): Return all balls in M with centers
within distance δ of point p. We assume that δ is at
most a constant multiple of the radius of the largest
ball in M .

3. Exposed( c, r ): Returns true if the ball B = (c, r)
contributes to the outer boundary of the union of the
balls in M . The given ball must belong to M .

4. Surface( ): Returns the outer boundary of the union
of the balls in M . If there are multiple disjoint outer
boundary surfaces defined by M , the routine returns
any one of them.

Updates.
1. Add( c, r ): Add a new ball B = (c, r) to the set M .
2. Remove( c, r ): Remove the ball B = (c, r) from M .
3. Move( c1, c2, r ): Move the ball with center c1 and

radius r to a new center c2.

We assume that at all times during the lifetime of the data
structure the following holds.

Assumption 2.1. If rmax is the radius of the largest ball
in M , and dmin is the minimum Euclidean distance between
the centers of any two balls in M , then rmax = O (dmin).

In general, a ball in a collection of n balls in 3-space can
intersect Θ (n) other balls in the worst case, and it has been
shown in [11] that the boundary defined by the union of these
balls has a worst-case combinatorial complexity of Θ

`
n2

´
.

However, if M is a “union of balls” representation of the
atoms in a molecule, then assumption 2.1 holds naturally
[24, 51], and as proved in [24], in that case, both complexities
improve by a factor of n. The following theorem states the
consequences of the assumption.



Time Complexity

Operations
Assuming

tq = O (log log w),
tu = O (log w)

Assuming
tq = O (log log n),

tu = O
“

log n

log log n

”

Range( p, δ ) | Intersect( c, r ) | Exposed( c, r )
(δ = O (rmax))

O (log log w) (w.h.p.) O (log log n) (w.h.p.)

Surface( ) O (#balls on surface) (worst-case)

Add( c, r ) | Remove( c, r ) | Move( c1, c2, r ) O (log w) (w.h.p.) O
“

log n

log log n

”
(w.h.p.)

Assumptions: (i) RAM with w-bit Words, (ii) Collection of n Balls,
and (iii) rmax = O (minimum distance between two balls)

Table 1: Time complexities of the operations supported by the packing grid data structure.

Theorem 2.1. (Theorem 2.1 in [24], slightly modified)
Let M = {B1, . . . , Bn} be a collection of n balls in 3-space
with radii r1, . . . , rn and centers at c1, . . . , cn. Let rmax =
maxi {ri} and let dmin = mini,j {d(ci, cj)}, where d(ci, cj)
is the Euclidean distance between ci and cj . Also let δM =
{δB1, . . . , δBn} be the collection of spheres such that δBi is
the boundary surface of Bi. If rmax = O (dmin) (i.e., As-
sumption 2.1 holds), then:

(i) Each Bi ∈ M intersects at most 216 · (rmax/dmin)3 =
O (1) other balls in M .

(ii) The maximum combinatorial complexity of the bound-
ary of the union of the balls in M is O

`
(rmax/dmin)3 · n

´

= O (n).

Proof. Similar to the proof of Theorem 2.1 in [24]. �

Therefore, as Theorem 2.1 suggests, for intersection queries
and boundary construction, one should be able to handle M
more efficiently if assumption 2.1 holds. The efficiency of
our data structure, too, partly depends on this assumption.

2.1 Preliminaries
Before we describe our data structure we present several
definitions in order to simplify the exposition.

Definition 2.1 (r-grid and grid-cell). An r-grid is
an axis-parallel infinite grid structure in 3-space consisting
of cells of size r×r×r (r ∈ R) with the root (i.e., the corner
with the smallest x, y, z coordinates) of one of the cells co-
inciding with origin of the (Cartesian) coordinate axes. The
grid cell that has its root at Cartesian coordinates (ar, br, cr)
(where a, b, c ∈ Z) is referred to as the (a, b, c, r)-cell or sim-
ply as the (a, b, c)-cell when r is clear from the context.

Definition 2.2 (grid-line). The (b, c, r)-line (where
b, c ∈ Z) in an r-grid consists of all (x, y, z, r)-cells with y
and z fixed to b and c, respectively. When r is clear from the
context the (b, c, r)-line will simply be called the (b, c)-line.

Observe that each cell on the (b, c, r)-line can be identified
with a unique integer, e.g., the cell at index a ∈ Z on the
given line corresponds to the (a, b, c, r)-cell in the r-grid.

Definition 2.3 (grid-plane). The (c, r)-plane (where
c ∈ Z) in an r-grid consists of all (x, y, z, r)-cells with z fixed
to c. The (c, r)-plane will be referred to as the c-plane when
r is clear from the context.

The (c, r)-plane can be decomposed into an infinite number
of lines each identifiable with a unique integer. For example,
index b ∈ Z uniquely identifies the (b, c, r)-line on the given
plane. Also each grid-plane in the r-grid can be identified
with a unique integer, e.g., the (c, r)-plane is identified by c.

The proof of the following lemma is straight-forward.

Lemma 2.1. Let M = {B1, . . . , Bn} be a collection of n
balls in 3-space with radii r1, . . . , rn and centers at c1, . . . , cn.
Let rmax = maxi {ri} and let dmin = mini,j {d(ci, cj)},
where d(ci, cj) is the Euclidean distance between ci and cj .
Suppose M is stored in the 2rmax-grid G. Then

(i) If rmax = O (dmin) (i.e., Assumption 2.1 holds) then
each grid-cell in G contains the centers of at most 64 ·
(rmax/dmin)3 = O (1) balls in M .

(ii) Each ball in M intersects at most 8 grid-cells in G.

(iii) For a given ball B ∈ M with center in grid-cell C, the
center of each ball intersecting B lies either in C or in
one of the 26 grid-cells adjacent to C.

(iv) The number of non-empty (i.e., containing the center
of at least one ball in M) grid-cells in G is at most
n, and the same bound holds for grid-lines and grid-
planes.

At the heart of our data structure is a fully dynamic one
dimensional integer range reporting data structure for word
RAM described in [37]. The data structure in [37] main-
tains a set S of integers under updates (i.e., insertions and
deletions), and answers queries of the form: report any or
all points in S in a given interval. The following theorem
summarizes the performance bounds of the data structure
which are of interest to us.

Theorem 2.2. (proved in [37]) On a RAM with w-bit
words the fully dynamic one dimensional integer range re-
porting problem can be solved in linear space, and with high
probability bounds of O (tu) and O (tq + k) on update time
and query time, respectively, where k is the number of items
reported, and

(i) tu = O (log w) and tq = O (log log w) using the data
structure in [37]; and

(ii) tu = O (log n/log log n) and tq = O (log log n) using
the data structure in [37] for small w and a fusion tree
[21] for large w.



The data structure can be augmented to store satellite in-
formation of size O (1) with each integer without degrading
its asymptotic performance bounds. Therefore, it supports
the following three functions:

1. Insert( i, s ): Insert an integer i with satellite infor-
mation s.

2. Delete( i ): Delete integer i from the data structure.

3. Query( l, h ): Return the set of all 〈 i, s 〉 tuples
with i ∈ [l, h] stored in the data structure.

2.2 Description (Layout) of the Packing Grid
Data Structure

We are now in a position to present our data structure. Let
DPG be the data structure. We represent the entire 3-space
as a 2rmax-grid (see Definition 2.1), and maintain the non-
empty grid-planes (see Definition 2.3), grid-lines (see Defi-
nition 2.2) and grid-cells (see Definition 2.1) in DPG. A grid
component (i.e., cell, line or plane) is non-empty if it con-
tains the center of at least one ball in M . The data structure
can be described hierarchically. It has a tree structure with
5 levels: 4 internal levels (levels 3, 2, 1 and 0) and an ex-
ternal level of leaves (see Figure 3). The description of each
level follows.

The Leaf Level “Ball” Data Structure (DPG−1). The
data structure stores the center c = (cx, cy , cz) and the ra-
dius r of the given ball B. It also includes a Boolean flag
exposed which is set to true if B contributes to the outer
boundary of the union of the balls in M , and false other-
wise. If another ball B′ intersects B, it does so on a circle
which divides the boundary δB of B into two parts: one
part is buried inside B′ and hence cannot contribute to the
union boundary, and the other part is exposed w.r.t. B′

and hence might appear on the union boundary. The cir-
cular intersections of all balls intersecting B define a 2D
arrangement A on δB which according to Theorem 2.1 has
O (1) combinatorial complexity. A face of A is exposed, i.e.,
contributes to the union boundary, provided it is not buried
inside any other ball. Observe that if at least one other ball
intersects B, and A has an exposed face f , then each edge
of f separates f from another exposed face f ′ which belongs
to the arrangement A′ of a ball intersecting B. We store all
exposed faces (if any) of A in a set F of size O (1), and with
each face f we store pointers to the data structures of O (1)
other balls that share edges with f and also the identifier
of the corresponding face on each ball. Observe that if B
does not intersect any other balls then F will contain only
a single face and no pointers to any other balls.

The Level 0 “Grid-Cell”Data Structure (DPG0). The
“grid-cell” data structure stores the root (see Definition 2.1)
(a, b, c) of the grid-cell it corresponds to. A grid-cell can
contain the centers of at most O (1) balls in M (see Lemma
2.1). Pointers to data structures of all such balls are stored
in a set S of size O (1). Since we create “grid-cell” data
structures only for non-empty grid-cells, there will be at
most n (and possibly ≪ n) such data structures, where n is
the current number of balls in M .

The Level 1 “Grid-Line” Data Structure (DPG1). We
create a “grid-line” data structure for a (b, c)-line provided
it contains at least one non-empty grid-cell. The data struc-
ture stores the values of b and c. Each (a, b, c)-cell lying
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Figure 3: Hierarchical structure of DPG.

on this line is identified with the unique integer a, and the
identifier of each such non-empty grid-cell is stored in an
integer range search data structure RR as described in Sec-
tion 2.1 (see Theorem 2.2). We augment RR to store the
pointer to the corresponding “grid-cell” data structure with
each identifier it stores. The total number of “grid-line”data
structure created is upper bounded by n and possibly much
less than n.

The Level 2 “Grid-Plane” Data Structure (DPG2).
A “grid-plane” data structure is created for a c-plane pro-
vided it contains at least one non-empty grid-line. Similar
to the “grid-line” data structure it identifies each non-empty
(b, c)-line lying on the c-plane with the unique integer b, and
stores the identifiers in a range reporting data structure RR
described in Section 2.1. A pointer to the corresponding
“grid-line” data structure is also stored with each identifier.
The data structure also stores c. The total number of “grid-
plane” data structures created cannot exceed n, and will
possibly be much less than n.

The Level 3 “Grid”Data Structure (DPG3). This data
structure maintains the non-empty grid-planes of the 2rmax-
grid in an integer range reporting data structure RR (see
Section 2.1). Each c-plane is identified by the unique integer
c, and each such integer stored in RR is also accompanied by
a pointer to the corresponding “grid-plane” data structure.
The “grid” data structure also stores a surface-root pointer
which points to the “Ball” data structure of an arbitrary ex-
posed ball in M .

We have the following lemma on the space usage of the data
structure.

Lemma 2.2. Let M be a collection of n balls as defined
in Theorem 2.1, and let Assumption 2.1 holds. Then the
packing grid data structure storing M uses O (n) space.

Proof. The space usage of the data structure is domi-
nated by the space used by the range reporting data struc-
tures, the grid-cells and the “ball” data structures. Since the
range reporting data structures use linear space (see Theo-
rem 2.2) and total number of non-empty grid components
(i.e., planes, lines and cells) is O (n) (see Lemma 2.1), total
space used by all such data structures is O (n). The grid cells
contain pointers to “ball” data structures, and since no two
grid-cells point to the same“ball” data structure, total space
used by all grid-cells is also O (n). Each “ball” data struc-
ture contains the arrangement A and the face decomposition



F of the exposed (if any) faces of the ball. The total space
needed to store all such arrangements and decompositions
is O

`
(rmax/dmin)3 · n

´
(see Theorem 2.1) which reduces to

O (n) under Assumption 2.1. Thus the total space used by
the data structure is O (n). �

2.3 Queries and Updates
The queries and updates supported by the data structure
are implemented as follows.

2.3.1 Queries.

(1) Range( p, δ ): Let p = (px, py, pz). We perform the
following steps.

i. Level 3 Range Query: We invoke the function
Query( l, h ) of the range reporting data structure
RR under DPG3 (i.e., the level 3 “grid” data structure)
with l = ⌊(pz − δ)/(2rmax)⌋ and h = ⌊(pz + δ)/(2rmax)⌋.
This query returns a set S2 of tuples, where each tuple
〈 c, Pc 〉 ∈ S2 refers to a non-empty c-plane with a
pointer Pc to its level 2 “grid-plane” data structure.

ii. Level 2 Range Query: For each 〈 c, Pc 〉 ∈ S2, we
call the range query function under the corresponding
level 2 data structure with l = ⌊(py − δ′)/(2rmax)⌋ and
h = ⌊(py + δ′)/(2rmax)⌋, where (δ′)2 = δ2 − (c − pz)

2

if c − pz < δ, and δ′ = rmax otherwise. This query re-
turns a set S1,c of triples, where each triple 〈 b, c, Pb,c 〉 ∈
S1,c refers to a non-empty ( b, c )-line with a pointer
Pb,c to its level 1 “grid-line” data structure. We obtain
the set S1 by merging all S1,c sets.

iii. Level 1 Range Query: For each 〈 b, c, Pb,c 〉 ∈ S1,
we call the integer range query function under the
corresponding level 1 “grid-line” data structure with
l = ⌊(px − δ′′)/(2rmax)⌋ and h = ⌊(px + δ′′)/(2rmax)⌋,
where (δ′′)2 = δ2−(b − py)2−(c − pz)

2 if δ2 > (b − py)2+
(c − pz)

2, and δ′′ = rmax otherwise. This query re-
turns a set S0,b,c of quadruples, where each quadru-
ples 〈 a, b, c, Pa,b,c 〉 ∈ S0,b,c refers to a non-empty
( a, b, c )-cell with a pointer Pa,b,c to its level 0 “grid-
cell” data structure. We obtain the set S0 by merging
all S0,b,c sets.

iv. Ball Collection: For each 〈 a, b, c, Pa,b,c 〉 ∈ S0,
we collect from the level 0 data structure of the cor-
responding ( a, b, c )-cell each ball whose center lies
within distance δ from p. We collect the pointer to the
leaf level “ball” data structure of each such ball in a
set S, and return this set.

The correctness of the function follows trivially since it queries
a region in 3-space which includes the region covered by
a ball of radius δ centered at p. It is straight-forward to
see that the function makes at most O

`
π · (⌈δ/rmax⌉ + 1)2

´

calls to a range reporting data structure, and collects balls
from at most O

`
4
3
π · (⌈δ/rmax⌉ + 1)3

´
grid-cells. Using Lemma

2.1 and Theorem 2.2, we conclude that w.h.p. the func-
tion terminates in O

`
(δ/rmax)2 · tq + ((δ + rmax)/dmin)3

´

time. Assuming rmax = O (dmin) (i.e., Assumption 2.1)
and δ = O (rmax), the complexity reduces to O (tq) (w.h.p.).

(2) Intersect( c, r ): Let B = (c, r) be the given ball. We
perform the following two steps.

i. Ball Collection: We call Range( c, r + rmax ) and
collect the output in set S which contains pointers to
the data structure of each ball in M with its center
within distance r + rmax from c.

ii. Identifying Intersecting Balls: From S we remove
the data structure of each ball that does not intersect
B, and return the resulting (possibly reduced) set.

We know from elementary geometry that two balls of radii
r1 and r2 cannot intersect unless their centers lie within dis-
tance r1 + r2 of each other. Therefore, step (i) correctly
identifies all balls that can possibly intersect B, and step
(ii) completes the identification. Step (i) takes
O

`
tq + (rmax/dmin)3

´
time w.h.p., and step (ii) terminates

in O
`
(rmax/dmin)3

´
time in the worst case. Therefore, un-

der Assumption 2.1 w.h.p. this function runs in O (tq) time.

(3) Exposed( c, r ): Let B = (c, r) be the given ball. We
locate B’s data structure by calling Range( c, 0 ), and
return the value stored in its exposed field. Clearly, the
function takes O

`
tq + (rmax/dmin)3

´
time (w.h.p.) which

reduces to O (tq) (w.h.p.) under Assumption 2.1.

(4) Surface( ): The surface-root pointer under the level
3 “grid” data structure points to the “ball” data structure
of a ball B on the union boundary of M . We scan the set
F of exposed faces of B, and using the pointers to other
exposed balls stored in F we perform a depth-first traversal
of all exposed balls in M and return the exposed faces on
each such ball. Let m be the number of balls contributing
to the union boundary of M . Then according to Theorem
2.1 the depth-first search takes O

`
(rmax/dmin)3 · m

´
time

in the worst case which reduces to O (m) under Assumption
2.1.

2.3.2 Updates.

(1) Add( c, r ): Let c = (cx, cy, cz) and let c′u =
j

cu

2rmax

k
,

where u ∈ {x, y, z}. We perform the following steps.

i. If M 6= ∅, let G be the grid data structure, otherwise
create and initialize G. Add input ball to M .

ii. Query the range reporting data structure G.RR to lo-
cate the data structure P for the c′z-plane. If P does
not exist create and initialize P , and insert c′z along
with a pointer to P into G.RR.

iii. Query P.RR and locate the data structure L for the
(c′y, c′z)-line. If L does not exist then create and ini-
tialize L, and insert c′y along with a pointer to L into
P.RR.

iv. Locate the data structure C for the (c′x, c′y, c′z)-cell by
querying L.RR. Create and initialize C if it does not
already exist, and insert c′x and a pointer to C into
L.RR.

v. Create and initialize a data structure B for the input
ball and add it to the set C.S.

vi. Call Intersect( c, r ) and find the set I of the “ball”
data structures of all balls that intersect the input ball.
Create the arrangement B.A using the balls in I . The
new ball may partly or fully bury some of the balls it



intersects, and hence we need to update the arrange-
ment B′.A, the set B′.F and the flag B′.exposed of
each B′ ∈ I . The set B.F is created and B.exposed is
initialized using the information in the updated data
structures in I . If the surface-root pointer was point-
ing to a ball in I that got completely buried by the
new ball, we update it to point to B instead.

Observe that the introduction of a new ball may affect the
surface exposure of only the balls it intersects (i.e., bury
some/all of them partly or completely), and no other balls.
Hence, the updates performed in step (vi) (in addition to
those in earlier steps) are sufficient to maintain the correct-
ness of the entire data structure.

Steps (i) and (v) take O (1) time in the worst case, and
w.h.p. each of steps (ii), (iii) and (iv) takes O (tq + tu)
time. Finding the intersecting balls in step (vi) takes
O

`
tq + (rmax/dmin)3

´
time w.h.p., according to Theorem

2.1 creating and updating the arrangements and faces will
take O

`
(rmax/dmin)3 × (rmax/dmin)3

´
= O

`
(rmax/dmin)6

´

time (w.h.p.). Thus the Add function terminates in
O

`
tq + tu + (rmax/dmin)6

´
time w.h.p., which reduces to

O (tu) (w.h.p.) assuming rmax = O (dmin) (i.e., Assump-
tion 2.1).

(2) Remove( c, r ): This function is symmetric to the
Add function, and has exactly the same asymptotic time
complexity. Hence, we do not describe it here.

(3) Move( c1, c2, r ): This function is implemented in
the obvious way by calling Remove( c1, r ) followed by
Add( c2, r ). It has the same asymptotic complexity as the
two functions above.

Therefore, we have the following theorem.

Theorem 2.3. Let M be a collection of n balls in 3-space
as defined in Theorem 2.1, and let Assumption 2.1 holds. Let
tq and tu be as defined in Theorem 2.2. Then the packing
grid data structure storing M on a word RAM:

(i) uses O (n) space;

(ii) supports updates (i.e., insertion/deletion/movement of
a ball) in O (tu) time w.h.p.;

(iii) reports all balls intersecting a given ball or within O (rmax)
distance from a given point in O (tq) time w.h.p., where
rmax is the radius of the largest ball in M ; and

(iv) reports whether a given ball is exposed or buried in
O (tq) time w.h.p., and returns the entire outer union
boundary of M in O (m) worst-case time, where m is
the number of balls on the boundary.

In Table 1 we list the time complexities of the operations
supported by our data structure.

3. EFFICIENT MAINTENANCE OF FLEX-
IBLE MOLECULES UNDER DOMAIN MO-
TIONS

Suppose we are given a flexible molecule decomposed into
several (mostly) rigid domains which interact either through
connected chain segments or large interfaces. We refer to
these chain segments and interfaces as connectors. Domains

may move with respect to each other through motions ap-
plied to the connectors. Two domains connected by at least
one connector may undergo bending motion applied to some
hinge point around some hinge axis. If they are connected
by only one connector, a twisting motion can also be ap-
plied to the connector by updating torsion angles along its
backbone. If two domains share a large interface area they
may undergo a shearing motion with respect to each other.
However, though domains are mostly rigid they may have
flexible loops and side-chains on their surfaces.

We maintain a separate packing grid data structure Pi for
each domain Di. If two domains Di and Dj are connected
and i < j, the set Sij of all connectors between these two
domains are included in Pi, and a transformation matrix
Mij is kept with Pi that describes the exact location and
orientation of the grid structure of Pj with respect to that
of Pi. Whenever some motion is applied to the connectors
in Sij , we update Pi in order to reflect the changes in the
locations of the atoms in these connectors, and also update
Mij in order to reflect the new relative position and orienta-
tion of Pj with respect to Pi. Hence such an update requires
O (1 + mij log w) time (w.h.p.), where mij is the number of
atoms in the connectors in Sij . We defer the tests to check
whether any two domains intersect due to these movements
until we need to construct the surface of the entire molecule
in response to a surface query. At that point we extract the
surface atoms from each Pi and insert them into an initially
empty packing grid data structure P after applying neces-
sary transformations. Thus generating the surface of the
entire molecule requires O ( bm log w) time (w.h.p.), where bm
is the sum of the number of atoms on the surface of each
domain. If we need to update the conformation of a flexi-
ble loop or a side-chain on the surface of some domain Di,
we directly update the locations of the atoms affected by
this change in Pi. Such an update requires O ( em log w) time
(w.h.p.), where em is the number of atoms affected. There-
fore, we have the following lemma.

Lemma 3.1. The surface of a flexible molecule decom-
posed into (mostly) rigid domains can be maintained using
packing grid data structures so that

(i) updating for a bending/shearing/twisting motion ap-
plied between two domains takes O (1 + m log w) time
(w.h.p.), where m is the number of atoms in the con-
nectors between the two domains;

(ii) updating the conformation of a flexible loop or a side-
chain on the surface of a domain takes O ( em log w)
time (w.h.p.), where em is the number of atoms affected
by this change; and

(iii) generating the surface of the entire molecule requires
O ( bm log w) time (w.h.p.), where bm is the sum of the
number of atoms on the surface of each domain.

4. HIERARCHICAL PACKING GRIDS FOR
MIXED RESOLUTION SURFACES

We construct a k-level hierarchical packing grid data struc-
ture HPG(k) as follows. For i ∈ [0, k − 1], level i con-

tains a packing grid data structure DPG
(i) with parameters

〈r(i)
max, d

(i)
min〉 for which Assumption 2.1 holds. We also as-

sume that for i ∈ [0, k − 2], r
(i+1)
max = Θ

“
r
(i)
max

”
and d

(i+1)
min =

Θ
“
d
(i)
min

”
. The level 0 data structure DPG

(0) contains the



Figure 4: (LEFT) Gaussian integration points on the surface of peptide antibiotic Gramicidin A (1MAG).
The surface is partitioned into 30,624 triangular patches, and there are three Gaussian quadrature nodes per
triangle. The nodes are then mapped onto the ASMS to form the red point cloud. (RIGHT) Electrostatic
solvation force computation for Gramicidin A. Atoms with the greatest electrostatic solvation force (top 5%)
are colored in red; atoms having the weakest electrostatic solvation force (bottom 5%) are colored in blue.

atomic level union of balls representation of the given molecule
M . For i ∈ [1, k − 1], DPG

(i) contains a coarser represen-

tation of the molecule represented in DPG
(i−1). Each ball

in DPG
(i) represents a grouping several neighboring balls

in DPG
(i−1). A single doubly linked list links the parent

ball in DPG
(i) to all its child balls in DPG

(i−1). Addition-
ally, each child ball maintains a direct pointer to its parent
ball. Thus given the center of any ball in DPG

(i), the set
of all its children in DPG

(i−1) can be found in O (tq + l)
time w.h.p., where l is the number of children of the given
ball, and tq is as defined in Theorem 2.2. We assume that
each ball in DPG

(i−1) has at most one parent in DPG
(i), and

thus the balls in HPG(k) form a forest. Now in order to
create a mixed resolution surface of the given molecule M ,
we start at coarse resolution, say at some level j > 0, and
copy DPG

(i) to an initially empty packing grid DPG with
the same parameters. Now we selectively replace balls in
DPG with finer resolution balls from the appropriate level
in HPG(k), and we keep replacing until we get the required
mixed resolution representation of M in DPG.

5. ADDITIONAL INFORMATICS
We briefly describe some applications of the packing grid

data structure below.

Maintaining van der Waals Surface of Molecules.
For dynamic maintenance of the van der Waals surface of
a molecule we can use the packing grid data structure di-
rectly. Each atom is treated as a ball with a radius equal to
the van der Waals radius of the atom (see [10] for a list of
van der Waals radius of different atoms).

Maintaining Lee-Richards (SCS/SES) Surface. We
can use the packing grid data structure for the efficient main-
tenance of the Lee-Richards surface of a molecule under
insertion/deletion/movement of atoms. The performance
bounds given in Table 1 remain unchanged. We maintain
two packing grid data structures: DPG and DPG’. The DPG

data structure keeps track of the patches on the Lee-Richards
surface, and DPG’ is used for detecting intersections among
concave patches.

Before adding an atom to DPG, we increase its radius
rs, where rs is the radius of the rolling solvent atom. The

DPG data structure keeps track of all solvent exposed atoms,
i.e., all atoms that contribute to the outer boundary of the
union of these enlarged atoms. Theorem 2.1 implies that
each atom in DPG contributes O (1) patches to the Lee-
Richards surface, and the insertion/deletion/movement of
an atom results in local changes of only O (1) patches. We
can modify DPG to always keep track of where two or three
of the solvent exposed atoms intersect, and once we know
the atoms contributing to a patch we can easily compute the
patch in O (1) time [6].

The Lee-Richards surface can self-intersect in two ways:
(i) a toroidal patch can intersect itself, and (ii) two different
concave patches may intersect [6]. The self-intersections of
toroidal patches can be easily detected from DPG. In order to
detect the intersections among concave patches, we maintain
the centers of all current concave patches in DPG’, and use
the Intersect query to find the concave patch (if any) that
intersects a given concave patch.

Energetics (Force) Computation. The solvation energy
Gsol of a molecule consists of the energy to form cavity in the
solvent (Gcav), the solute-solvent van der Waals interaction
energy (Gvdw), and the electrostatic potential energy change
due to the solvation (also known as the polarization energy,
Gpol).

Gsol = Gcav + Gvdw + Gpol (5.1)

The first two terms Gcav and Gvdw in the sum above are
linearly related to the solvent accessible surface area ΩSAS

of the molecule.

Gcav + Gvdw = γ · ΩSAS (5.2)

The last term, Gpol, can be approximated using the Gen-
eralized Born (GB) theory as follows [48].

Gpol = −
τ

2

X

i,j

qiqjr

r2
ij + RiRje

−

r2
ij

4RiRj

, (5.3)

where τ = 1− 1
ǫ
, and Ri is the effective Born radius of atom

i. The Ri’s can be approximated as follows.



R−1
i =

1

4π

Z

Γ

(r− xi) · n(r)

|r− xi|4
dS, (5.4)

where Γ is the boundary of the molecule, n(r) is the normal
of the molecular surface at r pointing out of the molecule,
and xi is the center of atom i. A discrete approximation of
R−1

i based on equation 5.4 is as follows [9].

R−1
i =

1

4π

NX

k=1

wk
(rk − xi) · n(rk)

|rk − xi|4
, (5.5)

where the rk’s are N carefully chosen integration points on
the boundary of the molecule, and wk is a weight assigned
to rk in order to achieve higher order of accuracy for small
N .

The non-polar terms Gcav and Gvdw can be computed
directly from the solvent accessible surface (SAS) area ΩSAS

of the molecule (see equation 5.2). The SAS of the molecule
can be extracted in O ( em log w) (w.h.p.) time and O ( em)
space using a DPG data structure, where em is the number of
atoms in the molecule. The DPG data structure outputs the
SAS as a set of spherical (convex and concave) and toroidal
patches, and we add up the area of each patch in order to
calculate ΩSAS.

In order to approximate the polar term Gpol first we need
to approximate the Born radius Ri of each atom i. We use
the discrete approximation equation 5.5 for computing Ri.
Given the solvent excluded surface (SES) of the molecule, it
has been shown in [9] how to choose N integration points
rk and weights wk optimally in order to reduce the error
in approximation. Figure 4 shows the distribution of inte-
gration points on the surface of 1MAG.PDB. We compute
the SES of the molecule in O ( em log w) time (w.h.p.) and
O ( em) space using a DPG data structure D, and then use the
method in [9] in order to choose the integration points and
weights in O (N) time. We use em initially empty buckets
Bi (i ∈ [1, em]) in order to collect in each Bi the integration

points within distance eδ from atom center xi, where eδ is a
user-defined distance threshold. Assuming that all atoms of
the molecule have already been inserted into D, we perform
a range query on D for each integration point rk in order to

collect all atoms within distance eδ from that point and in-
sert rk into the bucket corresponding to each atom obtained
from this query. Then for each atom i, we compute Ri using
equation 5.5 using the integration points collected in bucket
Bi. Assuming that emeδ

is an upper bound on the number of

atoms within distance eδ from any given point in space, the
time spent for computing all Ri’s is O

`
N log log w + N emeδ

´

which reduces to O (N log log w) (w.h.p.) since emeδ
is a con-

stant (though could be quite large) for constant eδ. Once
all Ri’s are computed Gpol can be computed using equation
5.3 in O

`
em2

´
time in the worst case. The space usage is

O
`

em + N emeδ

´
which is O ( em + N) for constant eδ.

Solvation force calculations require computations of simi-
lar integrals (as solvation energy) which in turn reduces to
numerical summation of distances from quadrature points.
Details are in [9].

6. IMPLEMENTATION AND EXPERIMEN-
TAL RESULTS

In our current implementation, instead of the 1D integer
range-reporting data structure presented in [37], we have im-
plemented a much simpler data structure that supports both
updates and distance queries in expected O (log w) time and
uses linear space [15]. Since w is usually not more than 64,
for most practical purposes a O (log w) query time should
be almost as good as O (log log w) time. This data struc-
ture builds on binary search trees, dynamic perfect hashing,
and y-fast trees [54]. However, instead of dynamic perfect
hashing we used “cuckoo hashing” [40] since it is much sim-
pler, and still supports lookups in O (1) worst-case time, and
updates in expected O (1) time.

In subsequent discussion we report the results on the per-
formance of our implementation of the packing grid data
structure. All experiments are performed on a 3 GHz 2×dual-
core (only one core was used) AMD Opteron 2222 processor
with 4 GB RAM.

In our first experiment that measures the performance of
the Query function of DPG, we use more than 180k quadra-
ture points, generated for energetics computations by sam-
pling uniformly at random on the surface of PSTI (a vari-
ant of human pancreatic trypsin inhibitor: 1HPT.pdb) after
protonation using PDB2PQR [1]. These points were ran-
domly partitioned into four equal groups. Group 1 was first
inserted into DPG and range queries were performed from
each atom center of the molecule to report all quadrature
points lying within a given distance from the center. Aver-
age running time was measured after executing each query
multiple times. The same experiment was carried out with
query distances 2, 4, 8 and 16 . After running experiments
with group 1, group 2 was also inserted into the data struc-
ture and the same set of experiments were performed again.
In the same manner groups 3 and 4 were also added subse-
quently so that the results gives a clear measure of the scal-
ability of the data structure. Table 2 shows the results of
this experiment. The time required is O (log w + K) where
K is the size of the output or in this case, the number of
points returned. The fifth column of the table shows that,
as the point set becomes denser, the efficiency of the data
structure remains almost the same.

Table 3 reports the performance of update functions of
DPG’s range reporting data structure. Four different macro-
molecules were used, and for each of them all atoms were
first randomly inserted into the data structure followed by
the random deletion of all atoms. The reported insertion
and deletion times are averages of four such independent
runs. The average time for a single insertion/deletion was
never more than 5 µs.

We also compared the performance of the range reporting
data structure used by DPG with the 3D hashing used in
[19, 20] to produce molecular surfaces. As our experimen-
tal setup we used the same implementation of 3D arrange-
ment and surface generation [20], but switched between the
two different range query data structures. We measured the
space and time requirements for generating the surface of
various molecules and macromolecules. In addition to the
molecules used in the experiments of [19, 20], we ran our ex-
periments on some viruses and ribosomes we are interested
in. To verify scalability, multiple chains of the same pro-
tein were inserted. For virus capsids as multiple chains are



Quadr.
Points

Query
Distance

(Å)
Avg. Time (ms) / Query

Avg. # Points Returned
/ Query

Avg. # Points Returned
/ ms

45, 654 2 | 4 | 8 | 16 0.311 | 0.566 | 1.420 | 3.379 118 | 775 | 4, 466 | 22, 839 379 | 1, 367 | 3, 144 | 6, 758
91, 309 2 | 4 | 8 | 16 0.588 | 1.139 | 2.801 | 6.158 225 | 1, 623 | 9, 284 | 44, 518 382 | 1, 425 | 3, 314 | 7, 229

136, 963 2 | 4 | 8 | 16 0.973 | 1.845 | 4.436 | 9.572 329 | 2, 435 | 14, 496 | 70, 016 338 | 1, 320 | 3, 268 | 7, 314
182, 618 2 | 4 | 8 | 16 1.304 | 3, 219 | 5.855 | 12.661 439 | 3, 401 | 19, 307 | 93, 443 377 | 1, 314 | 3, 297 | 7, 381

Table 2: Performance of the Query function of packing grid. We take a molecule (1HPT: a variant of human pancreatic

trypsin inhibitor) consisting of about 850 atoms after protonation using PDB2PQR [1], and sample approximately

184,000 quadrature points uniformly at random on its surface. We randomly assign each point to one of four groups

and thus obtain four approximately equal-sized groups. We then run queries from the 800 atom centers (100 queries

per atom) on group 1; merge groups 1 and 2, and run queries on this merged group; merge groups 1, 2 and 3, and run

queries again; and finally run queries on the entire set.

Molecule Number Insert Delete
(PDB File) of Atoms Total Time (ms) Avg. Time (µs) Total Time (ms) Avg. Time (µs)

GroEL (1GRL) 29,274 97 3.3 118 4.0
RDV P8 (1UF2: Chain P) 193,620 746 3.9 846 4.4
RDV P3 (1UF2: Chain A) 459,180 1,813 3.9 2,094 4.6

Dengue (1K4R) 545,040 2,176 4.0 2,432 4.5

Table 3: Insertion and deletion times of our current packing grid implementation. The results are averages
of 4 runs. In each run, all atom centers are randomly inserted into the data structure followed by random
deletion of all atom centers.

Molecule Number Number Number of Cells Time (sec)
(PDB File) of Chains of Atoms DPG 3D hash [20] DPG 3D hash [20]

Trypsin Inhibitor (4PTI) 1 454 196 1,089 0.58 0.54
Carbonic Anhydrase I (1BZM) 1 2,034 856 3,360 2.73 2.58

Fasciculin2 - Acetylcholinesterase (1MAH) 1 4,116 1,726 8,568 6.20 5.70
Anthrax Lethal Factor - MAPKK2 (1JKY) 1 5,614 2,389 16,456 8.52 8.13

RNA Polymerase II (1I3Q) 1 11,114 4,682 45,177 17.36 16.23

Glutamine Synthetase
(2GLS)

1 3,636 1,444 9,177 5.43 5.06
5 18,180 7,275 41,400 37.10 34.80

Nicotinic Acetylcholine Receptor
(2BG9)

1 2,991 1,199 10,752 4.44 4.29
5 14,955 6,027 31,200 24.31 22.95

Rice Dwarf Virus (RDV) P8
(1UF2: Chain P)

1 3,227 1,348 9,261 4.47 4.23
2 6,454 2,739 1,124,040 9.23 8.56
3 9,681 4,115 2,506,480 15.17 14.31
4 12,908 5,467 4,426,110 19.36 18.14
5 16,135 6,848 4,426,110 30.79 30.20
6 19,362 8,224 6,052,800 35.65 34.42
7 22,589 9,605 6,052,800 40.28 38.86
8 25,816 10,981 6,332,160 45.22 44.44

Rice Dwarf Virus (RDV) P3
(1UF2: Chain A)

1 7,653 3,229 38,760 10.99 10.23
2 15,306 6,458 927,442 22.73 21.44
3 22,959 9,739 1,992,747 40.48 39.62
4 30,612 12,985 2,591,700 119.28 128.37

Dengue Virus
(1K4R: Chains A & B)

2 6,056 2,622 20,706 8.46 7.71
4 12,112 5,237 138,600 17.56 16.52
6 18,168 7,846 333,060 33.73 32.62

Table 4: Comparison of the performance of the 3D range reporting data structure used by DPG, and the
3D hash table used in [20]. The same 3D arrangement code was used in both cases [20]. Table shows the
comparative running times and the space requirement (in terms of the number of cells used) for surface
generation of different molecules. To verify scalability, molecules of varying sizes and in some cases, multiple
chains were used. To generate multiple copies of the molecule we used the transformation matrices given in
the corresponding PDBs (e.g., to generate k copies we used the top k matrices).

inserted, not only the number of atoms increases but also
the overall structure becomes sparser. For example, Figure
5 shows that though a single chain is dense, if four chains
are considered together then their bounding volume becomes
sparse. The results of this experiment are reported in Table
4. From the table, one can verify that the space require-
ment of the DPG range query data structure is linear in the
number of atoms. Also, its running times are comparable

with that of 3D hash while using much less memory. The
difference in space requirement becomes more pronounced
for larger and sparser structures. Though 3D hash performs
insertions and queries in optimal constant time, using too
much memory can adversely affect its running time when
the set of atoms is sparse as in virus capsids. For example,
in the case of RDV P3 with 4 chains, 3D hash operations
run slower than DPG range reporting operations. We believe



Figure 5: RDV capsid protein P3 chain A. The en-
tire structure generated by applying all sixty trans-
formations is rendered in transparent green. The
chains generated by the first four transformations
are rendered opaque and in atom-based coloring.

that this slowdown is due to page faults caused by excessive
space requirement of 3D hash.
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E. van der Horst. Evolutionary algorithms for
automated drug design towards target molecule
properties. In GECCO ’08: Proceedings of the 10th
Annual Conference on Genetic and Evolutionary
Computation, pages 1555–1562, New York, NY, USA,
2008. ACM.

[30] E.-W. Lameijer, J. N. Kok, T. Bäck, and A. P.
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