
The Cache-Oblivious Gaussian Elimination Paradigm: Theoretical Framework,

Parallelization and Experimental Evaluation ∗

Rezaul Alam Chowdhury Vijaya Ramachandran

December 31, 2009

Abstract

We consider triply-nested loops of the type that occur in the standard Gaussian elimination
algorithm, which we denote by GEP (or the Gaussian Elimination Paradigm). We present two related
cache-oblivious methods I-GEP and C-GEP, both of which reduce the number of I/Os performed by
the computation over that performed by standard GEP by a factor of

√
M , where M is the size of the

cache. Cache-oblivious I-GEP computes in-place and solves most of the known applications of GEP
including Gaussian elimination and LU-decomposition without pivoting and Floyd-Warshall all-pairs
shortest paths. Cache-oblivious C-GEP uses a modest amount of additional space, but is completely
general and applies to any code in GEP form. Both I-GEP and C-GEP produce system-independent
cache-efficient code, and are potentially applicable to being used by optimizing compilers for loop
transformation.

We present parallel I-GEP and C-GEP that achieve good speed-up and match the sequential
caching performance cache-obliviously for both shared and distributed caches for sufficiently large
inputs.

We present extensive experimental results for both in-core and out-of-core performance of our
algorithms. We consider both sequential and parallel implementations, and compare them with finely-
tuned cache-aware BLAS code for matrix multiplication and Gaussian elimination without pivoting.
Our results indicate that cache-oblivious GEP offers an attractive trade-off between efficiency and
portability.

1 Introduction

Memory in modern computers is typically organized in a hierarchy with registers in the lowest level
followed by several levels of caches (L1, L2 and possibly L3), RAM, and disk. The access time and size
of each level increases with its depth, and block transfers are used between adjacent levels to amortize
the access time cost.

The two-level I/O model [3] is a simple abstraction of the memory hierarchy that consists of a cache
(or internal memory) of size M , and an arbitrarily large main memory (or external memory) partitioned
into blocks of size B. An algorithm is said to have caused a cache-miss (or page fault) if it references
a block that does not reside in the cache and must be fetched from the main memory. The cache
complexity (or I/O complexity) of an algorithm is the number of block transfers or I/O operations it
causes, which is equivalent to the number of cache misses it incurs. Algorithms designed for this model
often crucially depend on the knowledge of M and B, and thus do not adapt well when these parameters
change.

∗Department of Computer Sciences, University of Texas, Austin, TX 78712. Email: {shaikat,vlr}@cs.utexas.edu. This work was
supported in part by NSF Grant CCF-0514876 and NSF CISE Research Infrastructure Grant EIA-0303609. This journal submission
incorporates results on the cache-oblivious paradigm that were presented in preliminary form in [9] and [10].

The ideal-cache model [17] is an extension of the two-level I/O model which assumes that an optimal
cache replacement policy is used, and requires that the algorithm remains oblivious of cache parameters
M and B. A cache-oblivious algorithm is flexible and portable, and simultaneously adapts to all levels
of a multi-level memory hierarchy. The assumption of an optimal cache replacement policy can be
reasonably approximated by a standard cache replacement method such as LRU. A well-designed cache-
oblivious algorithm typically has the feature that whenever a block is brought into internal memory it
contains as much useful data as possible (‘spatial locality’), and also that as much useful work as possible
is performed on this data before it is written back to external memory (‘temporal locality’).

In this paper we introduce a cache-oblivious framework, which we call GEP or the Gaussian
Elimination Paradigm. This framework applies to problems that can be solved using a construct similar
to the computation in Gaussian elimination without pivoting. Traditional algorithms that use this
construct fully exploit the spatial locality of data but they fail to exploit the temporal locality, and they

run in O
(

n3
)

time, use O
(

n2
)

space and incur O
(

n3

B

)

cache-misses. We present two versions of our

cache-oblivious framework:

• In-place cache-oblivious I-GEP, which executes generalized versions of several important special
cases of GEP including Gaussian elimination and LU-decomposition without pivoting, Floyd-
Warshall all-pairs shortest paths and matrix multiplication. This framework takes full advantage

of both spatial and temporal locality of data to incur only O
(

n3

B
√

M

)

cache-misses while still

running in O
(

n3
)

time and without using any extra space.

• Cache-oblivious C-GEP, which executes GEP in its full generality with the same time and cache-
bounds as I-GEP while using O(n2) space.

We present a parallel version of I-GEP(as well as C-GEP), and we analyze the parallel running
time as well as the caching performance under both distributed and shared caches. In both cases our
parallel algorithm is cache-oblivious and matches the sequential cache-complexity while achieving good
speed-up.

We present extensive experimental results. Our experimental results show the following:

• Both I-GEP and C-GEP significantly outperform GEP especially in out-of-core computations,
although improvements in computation time are already realized during in-core computations.

• A pthreads implementation of parallel I-GEP on an 8-core CMP gives good speed-up.

• Experimental results comparing performance of I-GEP with that of highly optimized cache-aware
BLAS routines for square matrix multiplication and Gaussian elimination without pivoting show
that our implementation of I-GEP runs moderately slower than native BLAS; however, I-GEP
performs fewer number of cache misses. It should also be noted that I-GEP is much simpler to
code, easily supports pthreads and is portable across machines.

One potential application of the I-GEP and C-GEP framework is in compiler optimizations for
the memory hierarchy. ‘Tiling’ is a powerful loop transformation technique employed by optimizing
compilers that improves temporal locality in nested loops. However, this technique is cache-aware, and
thus does not produce machine-independent code nor does it adapt simultaneously to multiple levels of
the memory hierarchy. In contrast, the cache-oblivious GEP framework produces I/O-efficient portable
code for a form of triply nested loops that occurs frequently in practice.

2

G(c, 1, n)

(The input c[1 . . . n, 1 . . . n] is an n× n matrix. Function f(·, ·, ·, ·) is a problem-specific function, and
ΣG is a problem-specific set of updates to be applied on c.)

1. for k ← 1 to n do

2. for i← 1 to n do

3. for j ← 1 to n do

4. if 〈i, j, k〉 ∈ ΣG then c[i, j]← f(c[i, j], c[i, k], c[k, j], c[k, k])

Figure 1: GEP: Triply nested for loops typifying code fragment with structural
similarity to the computation in Gaussian elimination without pivoting.

F(X, k1, k2)

(X is a 2q × 2q square submatrix of c such that X[1, 1] = c[i1, j1] and X[2q, 2q] = c[i2, j2] for some integer q ≥ 0.
Function F assumes the following:

(a) i2 − i1 = j2 − j1 = k2 − k1 = 2q − 1
(b) [i1, i2] 6= [k1, k2] ⇒ [i1, i2] ∩ [k1, k2] = ∅ and [j1, j2] 6= [k1, k2] ⇒ [j1, j2] ∩ [k1, k2] = ∅,

where, the notation [u, v] represents the closed integer range {x ∈ Z| u ≤ x ≤ v} in the standard interval notation.

The initial call to F is F(c, 1, n) for an n× n input matrix c, where n is assumed to be a power of 2.)

1. if no update 〈 i, j, k 〉 ∈ ΣG applicable on X with k ∈ [k1, k2] exists then return {Section 1.1 defines ΣG}
2. if k1 = k2 then {Base case}
3. c[i1, j1]← f(c[i1, j1], c[i1, k1], c[k1, j1], c[k1, k1])

4. else {The top-left, top-right, bottom-left and bottom-right quadrants

of X are denoted by X11, X12, X21 and X22, respectively.}

5. km ←
j

k1+k2

2

k
6. F (X11, k1, km), F (X12, k1, km), F (X21, k1, km), F (X22, k1, km) {forward pass}
7. F (X22, km + 1, k2), F (X21, km + 1, k2), F (X12, km + 1, k2), F (X11, km + 1, k2) {backward pass}

Figure 2: Cache-oblivious I-GEP. For several special cases of f and ΣG in Figure 1, we show
that F performs the same computation as G (see Section 3), though there are some cases of
f and ΣG where the computations return different results.

22

X 11 X 12

X

(a) (b)
kk1

<_ <_ km

X

km k<_ <_ k2+ 1

21 X 22

X 11 X 12

X 21

Figure 3: Processing order of quadrants of X
by F : (a) forward pass, (b) backward pass.

3

1.1 The Gaussian Elimination Paradigm (GEP)

Let c[1 . . . n, 1 . . . n] be an n × n matrix with entries chosen from an arbitrary set S, and let
f : S × S × S × S → S be an arbitrary function. The algorithm G given in Figure 1 modifies c by
applying a given set of updates of the form c[i, j] ← f(c[i, j], c[i, k], c[k, j], c[k, k]), where i, j, k ∈ [1, n].
By 〈i, j, k〉 we denote an update of the form c[i, j]← f(c[i, j], c[i, k], c[k, j], c[k, k]), and we let ΣG denote
the set of such updates that the algorithm needs to perform.

In view of the structural similarity between the construct in G and the computation in Gaussian
elimination without pivoting, we refer to this computation as the Gaussian Elimination Paradigm or
GEP. Many practical problems fall in this category, for example:

• LU decomposition and Gaussian elimination without pivoting with ΣG =
{〈i, j, k〉 : (1 ≤ k ≤ n− 2) ∧ (k < i < n) ∧ (k < j ≤ n)} and f(x, u, v, w) = x− u

w × v.

• Floyd-Warshall all-pairs shortest paths with ΣG = {〈i, j, k〉 : 1 ≤ i, j, k ≤ n} and f(x, u, v, ·) =
min {x, u + v}

Some other problems including matrix multiplication can be solved using GEP through structural
transformation.

The running time of G is O
(

n3
)

provided both the test 〈i, j, k〉 ∈ ΣG and the update 〈i, j, k〉 in

line 4 can be performed in constant time. The cache complexity is O
(

n3

B

)

provided the cache misses

incurred in line 4, if any, are only for accessing c[i, j], c[i, k], c[k, j] and c[k, k]; i.e., neither the evaluation
of 〈i, j, k〉 ∈ ΣG nor the evaluation of f incurs any additional cache misses.

In the rest of the paper we assume, without loss of generality, that n = 2q for some integer q ≥ 0.

1.2 Organization of the Paper

In Section 2, we present and analyze an O
(

n3

B
√

M

)

I/O in-place cache-oblivious algorithm, called

I-GEP, which solves several important special cases of GEP. We prove some theorems relating the
computation in I-GEP to the computation in GEP. In Section 3, we describe generalized versions of
three major applications of I-GEP (Gaussian elimination without pivoting, matrix multiplication and
Floyd-Warshall’s APSP). Succinct proofs of correctness of these I-GEP implementations can be obtained
using results from Section 2.

In Section 4, we present cache-oblivious C-GEP, which solves G in its full generality with the same
time and I/O bounds as I-GEP, but uses n2+n extra space (recall that n2 is the size of the input/output
matrix c). In Section 5 we present parallel I-GEP (and C-GEP) and analyze its performance on both
distributed and shared caches.

We consider the potential application of the GEP framework in compiler optimizations in Section
6. In Section 7 we present all of our experimental results: in Section 7.1 we present results comparing
C-GEP, I-GEP and GEP for Floyd-Warshall, in Section 7.2 results comparing I-GEP to BLAS routines,
and in Section 7.3 experimental results on parallel I-GEP using pthreads. Finally, we present some
concluding remarks in Section 8.

1.3 Related Work

Known cache-oblivious algorithms for Gaussian elimination for solving systems of linear equations

are based on LU decomposition. In [33, 7] cache-oblivious algorithms performing O
(

n3

B
√

M

)

I/O

operations are given for LU decomposition without pivoting; the algorithm in [30] performs LU

4

decomposition with partial pivoting within the same I/O bound. These algorithms use matrix
multiplication and solution of triangular linear systems as subroutines. Our algorithm for Gaussian
elimination without pivoting (see Section 3.1) is not based on LU decomposition, i.e., it does not call
subroutines for multiplying matrices or solving triangular linear systems, and is thus arguably simpler
than existing algorithms.

Cache-oblivious multiplication of rectangular matrices is presented in [17]. The matrix multiplication
algorithm for square matrices that we obtain with I-GEP is essentially the same as the one in [17].

A cache-oblivious algorithm for Floyd-Warshall’s APSP algorithm is given in [27] (see also [14]).

The algorithm runs in O
(

n3
)

time and incurs O
(

n3

B
√

M

)

cache misses. Our I-GEP implementation of

Floyd-Warshall’s APSP (see Section 3.3) produces exactly the same algorithm.
The main attraction of the Gaussian Elimination Paradigm is that it unifies all problems mentioned

above and possibly many others under the same framework, and presents a single I/O-efficient cache-
oblivious solution for all of them.

2 Cache-oblivious I-GEP

In this section we introduce and analyze I-GEP, a recursive function F given in Figure 2 that is cache-
oblivious, computes in-place, and is a provably correct implementation of GEP in Figure 1 for several
important special cases of f and ΣG including Floyd-Warshall’s APSP, Gaussian elimination without
pivoting and matrix multiplication. We call this implementation I-GEP to denote an initial attempt at
a general cache-oblivious version of GEP as well as an in-place implementation, in contrast to the other
implementation (C-GEP) which we give in Section 4 that solves GEP in its full generality but uses a
modest amount of additional space.

The inputs to F are a square submatrix X of c[1 . . . n, 1 . . . n], and two indices k1 and k2. The top-
left cell of X corresponds to c[i1, j1], and the bottom-right cell corresponds to c[i2, j2]. These indices
satisfy the following constraints, where, the notation [u, v] is used to represent the closed integer range
{x ∈ Z| u ≤ x ≤ v} in the standard interval notation:

Input Conditions 2.1. If X ≡ c[i1 . . . i2, j1 . . . j2], k1 and k2 are the inputs to F in Figure 2, then
(a) i2 − i1 = j2 − j1 = k2 − k1 = 2q − 1 for some integer q ≥ 0

(b) [i1, i2] 6= [k1, k2] ⇒ [i1, i2] ∩ [k1, k2] = ∅ and [j1, j2] 6= [k1, k2] ⇒ [j1, j2] ∩ [k1, k2] = ∅

Let U ≡ c[i1 . . . i2, k1 . . . k2] and V ≡ c[k1 . . . k2, j1 . . . j2]. Then for every entry c[i, j] ∈ X, c[i, k] can
be found in U and c[k, j] can be found in V . Input condition (a) requires that X, U and V must all
be square matrices of the same size. Input condition (b) requires that

(

X ≡ U
)

∨
(

X ∩ U = ∅
)

, i.e.,
either U overlaps X completely, or does not intersect X at all. Similar constraints are imposed on V ,
too.

The base case of F occurs when k1 = k2, and the function updates c[i1, j1] to f(c[i1, j1], c[i1, k1],
c[k1, j1], c[k1, k1]). Otherwise it splits X into four quadrants (X11,X12,X21 and X22), and recursively
updates the entries in each quadrant in two passes: forward (line 6) and backward (line 7). The
processing order of the quadrants are shown in Figure 3. The initial function call is F(c, 1, n).

Some Basic Properties of GEP. We note the following properties of G, which are easily verified by
inspection:

• Given ΣG, G applies each 〈i, j, k〉 ∈ ΣG on c exactly once, and in a specific order.

• Given any two distinct updates 〈i1, j1, k1〉 ∈ ΣG and 〈i2, j2, k2〉 ∈ ΣG, the update 〈i1, j1, k1〉 will
be applied before 〈i2, j2, k2〉 if k1 < k2, or if k1 = k2 and i1 < i2, or if k1 = k2 and i1 = i2 but
j1 < j2.

5

Properties of I-GEP. We prove two theorems that reveal several important properties of F. Theorem
2.2 states that F and G are equivalent in terms of the updates applied, i.e., both of them apply exactly
the same updates on the input matrix exactly the same number of times. The theorem also states that
both F and G apply the updates applicable to any fixed entry in the input matrix in exactly the same
order. However, it does not say anything about the total order of the updates. Theorem 2 identifies the
exact states of c[i, k], c[k, j] and c[k, k] (in terms of the updates applied on them) immediately before
c[i, j] is updated to f(c[i, j], c[i, k], c[k, j], c[k, k]). One implication of this theorem is that the total
order of the updates as applied by F and G can be different.

Recall that in Section 1.1 we defined ΣG to be the set of all updates 〈i, j, k〉 performed by the original
GEP algorithm G in Figure 1. Analogously, for the transformed cache-oblivious algorithm F, let ΣF be
the set of all updates 〈i, j, k〉 performed by F(c, 1, n).

We assume that each instruction executed by F receives a unique time stamp, which is implemented
by initializing a global variable t to 0 before the algorithm starts execution, and incrementing it by 1
each time an instruction is executed (we consider only sequential algorithms until Section 5). By the
quadruple 〈i, j, k, t〉 we denote an update 〈i, j, k〉 that was applied at time t. Let ΠF be the set of all
updates 〈i, j, k, t〉 performed by F(c, 1, n).

The following theorem states that F applies each update performed by G exactly once, and no other
updates; it also identifies a partial order on the updates performed by F.

Theorem 2.2. Let ΣG, ΣF and ΠF be the sets as defined above. Then
(a) ΣF = ΣG, i.e., both F and G perform the same set of updates;
(b) 〈i, j, k, t1〉 ∈ ΠF ∧ 〈i, j, k, t2〉 ∈ ΠF ⇒ t1 = t2, i.e., function F performs each update 〈i, j, k〉

at most once; and
(c) 〈i, j, k′1, t1〉 ∈ ΠF ∧ 〈i, j, k′2, t2〉 ∈ ΠF ∧ k′2 > k′1 ⇒ t2 > t1, i.e., function F updates each c[i, j]

in increasing order of k values.

Proof. (a) 〈i, j, k〉 ∈ ΣF ⇒ 〈i, j, k〉 ∈ ΣG holds by the check in line 1 of Figure 2. The reverse direction
can be proved by induction on q, where 2q × 2q is the size of the matrix X input to F.

Let ΣF (X,k1,k2) denote the set of updates performed by F when called with parameters X, k1 and
k2. Then ΣF = ΣF (c,1,n) by definition. Also let TX,[k1,k2] = {〈i, j, k〉|c[i, j] ∈ X ∧ k ∈ [k1, k2]}, i.e., the
set of all updates 〈i, j, k〉 with k ∈ [k1, k2] that are applicable on X.

We will prove that 〈i, j, k〉 ∈ ΣG ∩ TX,[k1,k2] ⇒ 〈i, j, k〉 ∈ ΣF (X,k1,k2). If q = 0, then X has only one
entry, and clearly the proposition holds (base case). Now suppose the proposition holds for some value
p (≥ 0) of q (inductive hypothesis) and consider q = p + 1. Function F recursively calls itself on each
quadrant of X for k ∈ [k1, km] in line 6, and for k ∈ [km +1, k2] in line 7, where km = ⌊k1+k2

2 ⌋. Thus the
recursive calls cover all entries of TX,[k1,k2], and also ΣF (X,k1,k2) is the union of all updates performed
by them. Hence by inductive hypothesis 〈i, j, k〉 ∈ ΣG ∩ TX,[k1,k2] ⇒ 〈i, j, k〉 ∈ ΣF (X,k1,k2). Since the
initial call to F is made with X = c[1 . . . n, 1 . . . n] and [k1, k2] = [1, n], we have ΣG ⊆ TX,[k1,k2] in that
case, and therefore, 〈i, j, k〉 ∈ ΣG ⇒ 〈i, j, k〉 ∈ ΣF .

(b) Suppose t1 6= t2. Observe that all recursive calls in lines 6 and 7 of F are made on mutually
disjoint 3 dimensional subranges of [i1, i2]×[j1, j2]×[k1, k2], and also that all updates to the input matrix
c are performed when F is called with an input submatrix X consisting of a single cell of c, and each
such call applies only one update to that cell (in line 3). Therefore, at some level of recursion 〈i, j, k, t1〉
and 〈i, j, k, t2〉 must have ended up in the subranges of two different recursive calls, i.e., the first three
components (i, j, k) of 〈i, j, k, t1〉 and 〈i, j, k, t2〉 cannot be exactly the same, which is a contradiction.
Hence t1 = t2.

(c) Observe that for all recursive calls in line 6, k ∈ [k1, km], and for those in line 7, k ∈ [km + 1, k2],
where k1 ≤ km ≤ k2. Hence at some level of recursion 〈i, j, k′1, t1〉 will end up in a recursive call in line

6

.321 4 x

q
2

z.

. . . .321 4 x ... z.

. . . x321 4 . q
2

(x,z)π (z,x)π

.

1 4 x2

q
2

z.3
q

2

z

Figure 4: Evaluating π(x, z) and π(z, x) for x > z: Given x, z ∈ [1, 2q] such that x > z, we start with
an initial sequence of 2q consecutive integers in [1, 2q], and keep splitting the segment containing both
x and z at midpoint until x and z fall into different segments. The largest integer in z’s segment gives
the value of π(x, z), and that in x’s segment gives the value of π(z, x).

6, and 〈i, j, k′2, t2〉 will end up in a recursive call in line 7. Since all updates due to the recursive calls in
line 6 will be made before any of those due to the recursive calls in line 7, it follows that t2 > t1. �

We now introduce some terminology as well as two functions π and δ which will be used later in
this section to identify the exact states of c[i, k], c[k, j] and c[k, k] at the time when F is about to apply
〈i, j, k〉 on c[i, j].

Definition 2.3. Let n = 2q for some integer q > 0.
(a) An aligned subinterval for n is an interval [a, b] with 1 ≤ a ≤ b ≤ n such that b − a + 1 = 2r

for some nonnegative integer r ≤ q and a = c · 2r + 1 for some integer c ≥ 0. The width of the aligned
subinterval is 2r.

(b) An aligned subsquare for n is a pair of aligned subintervals ([a, b], [a′, b′]) with b−a+1 = b′−a′+1.

The following observation can be proved by (reverse) induction on r, starting with q, where n = 2q.

Observation 2.4. Consider the call F (c, 1, n). Every recursive call is on an aligned subsquare of c,
and every aligned subsquare of c of width 2r for r ≤ q is invoked in exactly n/2r recursive calls on
disjoint aligned subintervals [k1, k2] of length 2r each.

Definition 2.5. Let x, y, and z be integers, 1 ≤ x, y, z ≤ n.
(a) For x 6= z or y 6= z, we define δ(x, y, z) to be b for the largest aligned subsquare [a, b], [a, b] that

contains (z, z), but not (x, y). If x = y = z we define δ(x, y, z) to be z − 1.
We will refer to the ([a, b], [a, b]) subsquare as the aligned subsquare S(x, y, z) for z with respect to

(x, y); analogously, S′(x, y, z) is the largest aligned subsquare ([c, d], [c′ , d′]) that contains (x, y) but not
(z, z).

(b) For x 6= z, the aligned subinterval for z with respect to x, I(x, z), is the largest aligned subinterval
[a, b] that contains z but not x; similarly the aligned subinterval for x with respect to z, I(z, x), is the
largest aligned subinterval [a′, b′] that contains x but not z;

We define π(x, z) to be the largest index b in the aligned subinterval I(x, z) if x 6= z, and
π(x, z) = z − 1 if x = z.

7

(),(x,y,z)δ (x,y,z)δ≡c

(x,y)≡a

P

1
2
3

321

a
c

b

(z,z)≡b

q−1
2

q
2

q−1
2

q
2

Figure 5: Evaluating δ(x, y, z): Given x, y, z ∈ [1, 2q] (where q ∈ Z
+), such that x 6= z ∨ y 6= z, we start

with an initial square P [1 . . . 2q, 1 . . . 2q], and keep splitting the square (initially the entire square P)
containing both P [x, y] and P [z, z] into subsquares (quadrants) until P [x, y] and P [z, z] fall into different
subsquares. The largest coordinate in P [z, z]’s subsquare at that point gives the value of δ(x, y, z).

Figures 4 and 5 illustrate the definitions of π and δ respectively. For completeness, more formal
definitions of δ and π are given in the appendix. The following observation summarizes some simple
properties that follow from Definition 2.5.

Observation 2.6.

(a) If x 6= z or y 6= z then δ(x, y, z) ≥ z, and if x 6= z then π(x, z) ≥ z; I(x, z) and I(z, x) have the
same length while S(x, y, z) and S′(x, y, z) have the same size; and S(x, y, z) is always centered along
the main diagonal while S′(x, y, z) in general will not occur along the main diagonal.

(b) If x = y = z then δ(x, y, z) = z − 1, and if x = z then π(x, z) = z − 1.

Part (a) in the following lemma will be used to pin down the state of c[k, k] at the time when update
〈i, j, k〉 is about to be applied, and parts (b) and (c) can be used to pin down the states at that time
of c[i, k] and c[k, j], respectively. As with Observation 2.4, this lemma can be proved by backward
induction on q. As before the initial call is to F(c, 1, n).

Lemma 2.7. Let i, j, k be integers, 1 ≤ i, j, k ≤ n, with not all i, j, k having the same value.
(a) There is a recursive call F(X, k1, k2) with k ∈ [k1, k2] in which the aligned subsquares S(i, j, k)

and S′(i, j, k) will both occur as (different) subsquares of X being called in steps 6 and 7 of the I-GEP
pseudocode. The aligned subsquare S(i, j, k) will occur only as either X11 or X22 while S′(i, j, k) can
occur as any one of the four subsquares except that it is not the same as S(i, j, k).

If S(i, j, k) occurs as X11 then k ∈ [k1, km] and δ(i, j, k) = km; if S(i, j, k) occurs as X22 then
k ∈ [km + 1, k2] and δ(i, j, k) = k2.

(b) If j 6= k, let T (i, j, k) be the largest aligned subsquare that contains (i, k) but not (i, j) and let
T ′(i, j, k) be the largest aligned subsquare that contains (i, j) but not (i, k). There is a recursive call
F(X, k′1, k

′
2) with k ∈ [k′1, k

′
2] in which the aligned subsquares T (i, j, k) and T ′(i, j, k) will both occur as

8

(different) subsquares of X being called in steps 6 and 7 of the I-GEP pseudocode. The set {T (i, j, k),
T ′(i, j, k)} is either {X11, X12} or {X21, X22}, and π(j, k) = k′, where k′ is the largest integer such
that (i, k′) belongs to T (i, j, k).

(c) If i 6= k, let R(i, j, k) be the largest aligned subsquare that contains (k, j) but not (i, j) and let
R′(i, j, k) be the largest aligned subsquare that contains (i, j) but not (k, j). There is a recursive call
F(X, k′′1 , k′′2) with k ∈ [k′′1 , k′′2] in which the aligned subsquares R(i, j, k) and R′(i, j, k) will both occur as
(different) subsquares of X being called in steps 6 and 7 of the I-GEP pseudocode. The set {R(i, j, k),
R′(i, j, k)} is either {X11, X21} or {X12, X22}, and π(i, k) = k′′, where k′′ is the largest integer such
that (k′′, j) belongs to R(i, j, k).

Let ck(i, j) denote the value of c[i, j] after all updates 〈i, j, k′〉 ∈ ΣG with k′ ≤ k have been performed
by F, and no other updates have been performed on it. We now present the second main theorem of
this section.

Theorem 2.8. Let δ and π be as defined in Definition 2.5. Then immediately before function F performs
the update 〈i, j, k〉 (i.e., before it executes c[i, j]← f(c[i, j], c[i, k], c[k, j], c[k, k])), the following hold:

• c[i, j] = ck−1(i, j),

• c[i, k] = cπ(j,k)(i, k),

• c[k, j] = cπ(i,k)(k, j),

• c[k, k] = cδ(i,j,k)(k, k).

Proof. We prove each of the four claims one by one.
c[i, j]: By Theorem 2.2, for any given i, j ∈ [1, n] the value of c[i, j] is updated in increasing value of

k, hence at the time when update 〈i, j, k〉 is about to be applied, the state of c[i, j] must equal ck−1(i, j).
c[k, k]: Assume that either k 6= i or k 6= j, and consider the state of c[k, k] when update 〈i, j, k〉

is about to be applied. Let S(i, j, k) and S′(i, j, k) be as specified in Definition 2.5, and consider the
recursive call F(X, k1, k2) with k ∈ [k1, k2] in which S(i, j, k) and S′(i, j, k) are both called during the
execution of lines 6 and 7 of the I-GEP code (this call exists as noted in Lemma 2.7). Also, as noted
in Lemma 2.7, the aligned subsquare S(i, j, k) (which contains position (k, k) but not (i, j)) will occur
either as X11 or X22.

If S(i, j, k) occurs as X11 when it is invoked in the pseudocode, then by Lemma 2.7 we also know
that k ∈ [k1, km], and S′(i, j, k) will be invoked as X12,X21 or X22 in the same recursive call. Thus,
c[k, k] will have been updated by all 〈i, j, k′〉 ∈ ΣG for which (k′, k′) ∈ S(i, j, k), before update 〈i, j, k〉 is
applied to c[i, j] in the forward pass. By Definition 2.5 the largest integer k′ for which (k′, k′) belongs
to S(i, j, k) is δ(i, j, k). Hence the value of c[k, k] that is used in update 〈i, j, k〉 is cδ(i,j,k)(k, k).

Similarly, if S(i, j, k) occurs as X22 when it is invoked in the pseudocode, then k ∈ [km + 1, k2], and
S′(i, j, k) will be invoked as X11,X12 or X21 in the same recursive call. Since the value of k is in the
higher half of [k1, k2], the update 〈i, j, k〉 will be performed in the backward pass in line 7, and hence
c[k, k] will have been updated by all 〈i, j, k′〉 ∈ ΣG with k′ ≤ k2. As above, by Definition 2.5, δ(i, j, k) is
the largest value of k′ for which (k′, k′) belongs to S(i, j, k), which is k2, hence the value of c[k, k] that
is used in update 〈i, j, k〉 is cδ(i,j,k)(k, k).

Finally, if i = j = k, we have c[k, k] = ck−1(i, j) = cδ(i,j,k)(k, k) by definition of δ(i, j, k).

c[i, k] and c[k, j]: Similar to the proof for c[k, k] but using parts (b) and (c) of Lemma 2.7. �

9

Cache Complexity. Let Q(n) be an upper bound on the number of cache-misses incurred by F for
an input of size n × n. The following recurrence follows from the observation that when the input is
small enough to fit into the cache the only cache-misses incurred by F are those for reading in the initial
input matrices to the cache and for writing out the final output to the main memory, otherwise the
total number of cache-misses is simply the sum of the cache-misses incurred by the recursive calls.

Q(n) ≤
{

O
(

n + n2

B

)

if n2 ≤ γM ,

8Q
(

n
2

)

otherwise;
(2.1)

where γ is the largest constant sufficiently small that four
√

γM × √γM submatrices fit in the cache.

The solution to the recurrence is Q(n) = O
(

n3

M + n3

B
√

M

)

= O
(

n3

B
√

M

)

(assuming a tall cache, i.e.,

M = Ω
(

B2
)

).
Since I-GEP can be used for multiplying matrices, it follows from the I/O lower bound of matrix

multiplication [22] that the cache complexity of I-GEP is, in fact, tight for any algorithm that performs
Θ
(

n3
)

operations in order to implement the general version of the GEP computation as defined in
Section 1.1.

Time and Space Complexities. Since I-GEP is in-place, its space complexity is determined by the
size of its input matrices which is clearly Θ

(

n2
)

. Time complexity of I-GEP is given by the following
recurrence relation, where T (n) denotes the running time of I-GEP on an input of size n× n.

T (n) ≤
{

O (1) if n ≤ 1,
8T
(

n
2

)

+O (1) otherwise;
(2.2)

Solving, we get T (n) = O
(

n3
)

.

Static Pruning of I-GEP. In line 1 of Figure 2, function F(X, k1, k2) performs dynamic pruning of its
recursion tree by computing the the set of all updates 〈i, j, k〉 ∈ ΣG with k ∈ [k1, k2] that are applicable
on the input submatrix X. However, sometimes it is possible to perform some static pruning during the
transformation of G to F, i.e., recursive calls for processing of some quadrants of X in lines 6 and/or 7
of F can be eliminated completely from the code. In Appendix B we describe how this static pruning
of F can be performed.

3 Applications of Cache-Oblivious I-GEP

In this section we consider I-GEP for three major GEP instances. Though the C-GEP implementation
given in Section 4 works for all instances of f and ΣG, it uses extra space, and is slightly more complicated
than I-GEP. Our experimental results in Section 7 also show that I-GEP performs slightly better than
both variants of C-GEP. Hence an I-GEP implementation is preferable to a C-GEP implementation if
it can be proved to work correctly for a given GEP instance.

We consider the following applications of I-GEP in this section.

• A class of applications that includes Gaussian elimination without pivoting, where we restrict ΣG

but allow f to be unrestricted.

• A class of applications where we do not impose any restrictions on ΣG, but restrict f to receive all
its inputs except the first one (i.e., except c[i, j]) from matrices that remain unmodified throughout
the computation. An important problem in this class is matrix multiplication.

• Path computations over closed semirings which includes Floyd-Warshall’s APSP algorithm [16]
and Warshall’s algorithm for finding transitive closures [31]. For this class of problems we specify
both f and ΣG.

10

G(c, 1, n)

(The input c[1 . . . n, 1 . . . n] is an n × n matrix. Function f(·, ·, ·, ·) is a problem-specific function, and
for Gaussian elimination without pivoting f(x, u, v, w) = x − u

w
× v. The set of updates is ΣG =

{〈i, j, k〉 : (1 ≤ k ≤ n− 2) ∧ (k < i < n) ∧ (k < j ≤ n)} which is applied in step 4 of the algorithm.)

1. for k ← 1 to n do

2. for i← 1 to n do

3. for j ← 1 to n do

4. if (k ≤ n− 2) ∧ (k < i < n) ∧ (k < j) then c[i, j]← f(c[i, j], c[i, k], c[k, j], c[k, k])

Figure 6: A general form of the first phase of Gaussian elimination without pivoting.

1. for k ← 1 to n do

2. for i← 1 to n do

3. for j ← 1 to n do

4. c[i, j]← c[i, j]+a[i, k]× b[k, j]

1. for k ← 1 to n do

2. for i← 1 to n do

3. for j ← 1 to n do

4. if 〈i, j, k〉 ∈ ΣG then

c[i, j]← f(c[i, j], a[i, k], b[k, j], d[k, k]) {a, b, d 6= c}
(a) (b)

Figure 7: (a) Modified matrix multiplication algorithm, (b) A more general form of the algorithm in
Figure 7(a).

3.1 Gaussian Elimination without Pivoting
Gaussian elimination without pivoting is used in the solution of systems of linear equations and LU

decomposition of symmetric positive-definite or diagonally dominant real matrices [13]. We represent a
system of n− 1 equations in n− 1 unknowns (x1, x2, . . . , xn−1) using an n× n matrix c, where the i’th
(1 ≤ i < n) row represents the equation ai,1x1 + ai,2x2 + . . . + ai,n−1xn−1 = bi. The method proceeds in
two phases. In the first phase, an upper triangular matrix is constructed from c by successive elimination
of variables from the equations. This phase requires O(n3) time and O(n3

B) I/Os. In the second phase,
the values of the unknowns are determined from this matrix by back substitution. It is straight-forward

to implement this second phase in O(n2) time and O
(

n2

B

)

I/Os, so we will concentrate on the first

phase.
The first phase is an instantiation of the GEP code in Figure 1. In Figure 6 we give a

computation that is a general form of the computation in the first phase of Gaussian elimination
without pivoting in the sense that the update function f in Figure 6 is arbitrary. The if condition
in line 4 ensures that i > k and j > k hold for every update 〈i, j, k〉 applied on c, i.e., ΣG =
{〈i, j, k〉 : (1 ≤ k ≤ n− 2) ∧ (k < i < n) ∧ (k < j ≤ n)}.

The correctness of the I-GEP implementation of the code in Figure 6 can be proved by induction on
k using Theorem 2.8 and by observing that each c[i, j] (1 ≤ i, j ≤ n) settles down (i.e., is never modified
again) before it is ever used on the right hand side of an update.

As described in Appendix B, we can apply static pruning on the resulting I-GEP implementation
to remove unnecessary recursive calls from the pseudocode.

A similar method solves LU decomposition without pivoting within the same bounds. Both
algorithms are in-place. Our algorithm for Gaussian elimination is arguably simpler than existing
algorithms since it does not use LU decomposition as an intermediate step, and thus does not invoke
subroutines for multiplying matrices or solving triangular linear systems, as is the case with other
cache-oblivious algorithms for this problem [33, 7, 30].

11

Initial Values:

∀1≤i,j≤nc[i, j] =

�
1 if i = j,
l (vi, vj) otherwise.

(a)

Computation of Path Costs:

1. for k ← 1 to n do

2. for i← 1 to n do

3. for j ← 1 to n do

4. c[i, j]← c[i, j]⊕ (c[i, k]⊙ c[k, j])

(b)
Figure 8: Computation of path costs over a closed semiring (S,⊕,⊙, 0, 1): (a) Initialization of c, (b)
Computation of path costs.

3.2 Matrix Multiplication
We consider the problem of computing C = A × B, where A, B and C are n × n matrices. Though

standard matrix multiplication does not fall into GEP, it does after the small structural modification
shown in Figure 7(a) (index k is in the outermost loop in the modified algorithm, while in the standard
algorithm it is in the innermost loop); correctness of this transformed code is straight-forward.

The algorithm in Figure 7(b) generalizes the computation in step 4 of Figure 7(a) to update c[i, j]
to a new value that is an arbitrary function of c[i, j], a[i, k], b[k, j] and d[k, k], where matrix c is disjoint
from matrices a, b, and d.

The correctness of the I-GEP implementation of the code in Figure 7(b) follows from Theorem 2.2
and from the observation that matrices a, b and d remain unchanged throughout the computation.

3.3 Path Computations Over a Closed Semiring
An algebraic structure known as a closed semiring [4] serves as a general framework for solving path

problems in directed graphs. In [4], an algorithm is given for finding the set of all paths between each
pair of vertices in a directed graph. Both Floyd-Warshall’s algorithm for finding all-pairs shortest paths
[16] and Warshall’s algorithm for finding transitive closures [31] are instantiations of this algorithm.

Consider a directed graph G = (V,E), where V = {v1, v2, . . . , vn}, and each edge (vi, vj) is labeled
by an element l(vi, vj) of some closed semiring (S,⊕,⊙, 0, 1). If (vi, vj) /∈ E, l(vi, vj) is assumed to have
a value 0. The path-cost of a path is defined as the product (⊙) of the labels of the edges in the path,
taken in order. The path-cost of a zero length path is 1. For each pair vi, vj ∈ V , c[i, j] is defined to be
the sum of the path-costs of all paths going from vi to vj . By convention, the sum over an empty set of
paths is 0. Even if there are infinitely many paths between vi and vj (due to presence of cycles), c[i, j]
will still be well-defined due to the properties of a closed semiring.

The algorithm given in Figure 8(b), which is an instance of GEP, computes c[i, j] for all pairs of
vertices vi, vj ∈ V . This algorithm performs O

(

n3
)

operations and uses O
(

n2
)

space. Floyd-Warshall’s
APSP is a specialization of the algorithm in Figure 8(b) in that it performs computations over a
particular closed semiring (ℜ,min,+,+∞, 0).

Correctness of I-GEP Implementation of Figure 8(b). Recall that c0(i, j) is the initial value of
c[i, j] received by the I-GEP function F in Figure 2, and ck(i, j) (1 ≤ i, j ≤ n) denotes the value of c[i, j]
after all updates 〈i, j, k′〉 ∈ ΣG with k′ ≤ k, and no other updates have been performed on it by F.

For i, j ∈ [1, n] and k ∈ [0, n], let P k
i,j denote the set of all paths from vi to vj with no intermediate

vertex higher than vk, and let Qk
i,j be the set of all paths from vi to vj that have contributed to the

computation of ck(i, j).
The correctness of the I-GEP implementation of the code in Figure 8(b) follows from the following

lemma.

12

Lemma 3.1. For all i, j, k ∈ [1, n], Qk
i,j ⊇ P k

i,j.

Proof. The proof is by induction on k. The proposition holds trivially for k = 0, since for all i, j ∈ [1, n],
c0(i, j) is just the cost of edge (vi, vj), and P 0

i,j contains only the edge (vi, vj) (observe that because
of the initialization in Figure 8(a), we can assume that (vi, vj) always exists with the cost of this edge
being 1 if i = j, and l(vi, vj) otherwise).

Now suppose the proposition holds for all k ∈ [0, k′], where k′ ∈ [0, n − 1]. We will prove that it
holds for k = k′ + 1 and thus for all k ∈ [0, k′ + 1].

For any i, j ∈ [1, n], consider the update 〈i, j, k′ + 1〉, i.e., c[i, j] = c[i, j]⊕ (c[i, k′ + 1]⊙ c[k′ + 1, j]).
We know from Theorem 2.2 that immediately before this update c[i, j] = ck′(i, j), and immediately after
this update c[i, j] = ck′+1(i, j). We also know from Theorem 2.8 that immediately before this update
c[i, k′ + 1] = cπ(j,k′+1)(i, k

′ + 1) and c[k′ + 1, j] = cπ(i,k′+1)(k
′ + 1, j) hold. Since π(j, k′ + 1) ≥ k′ and

π(i, k′ + 1) ≥ k′ follow from the definition of π, we have Q
π(j,k′+1)
i,k′+1 ⊇ Qk′

i,k′+1 and Q
π(i,k′+1)
k′+1,j ⊇ Qk′

k′+1,j.

From inductive hypothesis we know that Qk′

i,j ⊇ P k′

i,j, Qk′

i,k′+1 ⊇ P k′

i,k′+1 and Qk′

k′+1,j ⊇ P k′

k′+1,j. Hence,
the addition of c[i, k′ + 1]⊙ c[k′ + 1, j] to c[i, j] ensures that all paths that first go from vi to vk′+1 and
then from vk′+1 to vj such that neither subpath has an intermediate vertex higher than vk′ are also

considered in the computation of ck′+1(i, j). Therefore, Qk′+1
i,j ⊇ P k′+1

i,j . Thus, the proposition holds for
all i, j ∈ [1, n] and all k ∈ [0, k′ + 1].

Now proceeding upto k′ = n − 1, we conclude that Qk
i,j ⊇ P k

i,j holds for all i, j ∈ [1, n] and all
k ∈ [0, n]. �

Since for i, j ∈ [1, n], Pn
i,j contains all paths from vi to vj , we have Qn

i,j ⊆ Pn
i,j, which when combined

with Qn
i,j ⊇ Pn

i,j obtained from Lemma 3.1, results in Qn
i,j = Pn

i,j .

4 C-GEP: Extension of I-GEP to Full Generality

In this section we present a completely general cache-oblivious framework for GEP that matches the
time and cache complexity of I-GEP. In order to express mathematical expressions with conditionals in
compact form, in this section we will use Iverson’s convention [23, 24] for denoting values of Boolean
expressions. In this convention we use |E| to denote the value of a Boolean expression E , where |E| = 1
if E is true and |E| = 0 if E is false.

4.1 A Closer Look at I-GEP

Recall that ck(i, j) denotes the value of c[i, j] after all updates 〈i, j, k′〉 ∈ ΣG with k′ ≤ k, and no
other updates have been applied on c[i, j] by F, where i, j ∈ [1, n] and k ∈ [0, n]. Let ĉk(i, j) be the
corresponding value for G, i.e., let ĉk(i, j) be the value of c[i, j] immediately after the k-th iteration of
the outer for loop in G, where i, j ∈ [1, n] and k ∈ [0, n].

In the following table, we tabulate the exact states of c[i, j], c[i, k], c[k, j] and c[k, k] immediately
before G or F applies an update 〈i, j, k〉 ∈ ΣG. Entries in the 2nd column are determined by inspecting
the code in Figure 1, while those in the 3rd column follows from Theorem 2.8.

Cell G F

c[i, j] ĉk−1(i, j) ck−1(i, j)

c[i, k] ĉk−|j≤k|(i, k) cπ(j,k)(i, k)

c[k, j] ĉk−|i≤k|(k, j) cπ(i,k)(k, j)

c[k, k] ĉk−|(i<k) ∨ (i=k ∧ j≤k)|(k, k) cδ(i,j,k)(k, k)

Table 1: States of c[i, j], c[i, k], c[k, j] and c[k, k] immediately before applying 〈i, j, k〉 ∈ ΣG.

13

�� ���� �� �� �� �� �� ���� �	 ��	 �

 �� ���� �	 ��	 �
 �
 � ���� �	 ��	 �
�
� �� �� �� �� ���� �� �� �� �� � �� � �� ���� �� �� �� �� �� ��
�� � �� � �� �� � � �� �� � �� � �� �� � � ������ ������ ������������ ������ ������������ ������ ������
���� ���� ���� ���� ���� ���� ���� ���� ���� ����

������ ������ ������
���� ���� ���� ���� ���� ���� ���� ���� ���� �������� ���� ���� ���� ���� ����

���� ���� ���� ���� ���� ����
 !" # $%&'()*& + !,-'%()*& !" # $%&'()*& + !,-'%()*& ..// !" # $%&'()*& $ + !,-'%()*& !" # $%&'()*& $ + !,-'%()*&
�� � �� 0 �� �� 0 � �� �� � �� � �� �� � ��� � 0� � �� 0� � � �� �� � �� � �� �� � ��� � 0� 0 �� 0� 0 � �� �� � �� � �� �� � �

�� � 0� 0 �� 0� 0 � �� �� � 0� 0 �� 0� 0 ��� � 0� � �� 0� � � �� �� � 0� 0 �� 0� 0 ��� � �� 0 �� �� 0 � �� �� � 0� 0 �� 0� 0 ��� � �� � �� �� � � �� �� � 0� 0 �� 0� 0 �
11 � �� � �� �� � � � 2� 2 � �� � �� �� � �11 � �� 0 �� �� 0 � � 2� 2 � �� � �� �� � �11 � 0� � �� 0� � � � 2� 2 � �� � �� �� � �11 � 0� 0 �� 0� 0 � � 2� 2 � �� � �� �� � �

11 � �� � �� �� � � � 2� 2 � 0� 0 �� 0� 0 �11 � �� 0 �� �� 0 � � 2� 2 � 0� 0 �� 0� 0 �11 � 0� � �� 0� � � � 2� 2 � 0� 0 �� 0� 0 �11 � 0� 0 �� 0� 0 � � 2� 2 � 0� 0 �� 0� 0 �3456768995:3456768995:22 � 0� 0 �� 0� 0 �;<=>?@A<=BC;<=>?@A<=BC
Figure 9: An instance of GEP for which GEP (function G in Figure 1) and I-GEP (function F in
Figure 2) compute different output values for the same input matrix. The input is a 2 × 2 matrix c,
ΣG = {〈i, j, k〉|1 ≤ i, j, k ≤ 2}, and f(x, y, z, w) = x + w. The figure shows step-by-step execution
of both G and F on the same input matrix, and the steps in which the two functions produce different
output values are drawn with thick lines.

It follows from Definition 2.5 that for i, j < k, π(j, k) 6= k − |j ≤ k|, π(i, k) 6= k − |i ≤ k| and
δ(i, j, k) 6= k − |(i < k) ∨ (i = k ∧ j ≤ k)|. Therefore, though both G and F start with the same
input matrix, at certain points in the computation F and G would supply different input values to f
while applying the same update 〈i, j, k〉 ∈ ΣG, and consequently f could return different output values.
Whether the final output matrix returned by the two algorithms are the same depends on f , ΣG and
the input values.

As an example (see Figure 9), consider a 2×2 input matrix c, and let ΣG = {〈i, j, k〉|1 ≤ i, j, k ≤ 2}.
Then G will compute the entries in the following order: ĉ1(1, 1), ĉ1(1, 2), ĉ1(2, 1), ĉ1(2, 2), ĉ2(1, 1),
ĉ2(1, 2), ĉ2(2, 1), ĉ2(2, 2); on the other hand, F will compute in the following order: c1(1, 1), c1(1, 2),
c1(2, 1), c1(2, 2), c2(2, 2), c2(2, 1), c2(1, 2), c2(1, 1). Since both G and F use the same input matrix, the
first 5 values computed by F will be correct, i.e., c1(1, 1) = ĉ1(1, 1), c1(1, 2) = ĉ1(1, 2), c1(2, 1) = ĉ1(2, 1),
c1(2, 2) = ĉ1(2, 2) and c2(2, 2) = ĉ2(2, 2). However, the next value, i.e., the final value of c[2, 1], computed
by F is not necessarily correct, since F sets c2(2, 1)← f(c1(2, 1), c2(2, 2), c1(2, 1), c2(2, 2)), while G sets
ĉ2(2, 1) ← f(ĉ1(2, 1), ĉ1(2, 2), ĉ1(2, 1), ĉ1(2, 2)). For example, if initially c[1, 1] = c[1, 2] = c[2, 1] = 0 and
c[2, 2] = 1, and f(x, y, z, w) = x + w, then F will output c[2, 1] = 8, while G will output ĉ[2, 1] = 2.

4.2 C-GEP using 4n2 Additional Space

We first define a quantity τij, which plays a crucial role in the extension of I-GEP to the completely
general C-GEP.

Definition 4.1. For 1 ≤ i, j, l ≤ n, we define τij(l) to be the largest integer l′ ≤ l such that
〈i, j, l′〉 ∈ ΣG provided such an update exists, and 0 otherwise. More formally, for all i, j, l ∈ [1, n],
τij(l) = max l′ {l′ | l′ ≤ l ∧ 〈i, j, l′〉 ∈ ΣG ∪ {〈i, j, 0〉}}.

The significance of τ of can be explained as follows. We know from Theorem 2.2 that both F and

14

G apply the updates 〈i, j, k〉 in increasing order of k values. Hence, at any point of time during the
execution of F (or G) if c[i, j] is in state cl(i, j) (ĉl(i, j), resp.), where l 6= 0, then 〈i, j, τij(l)〉 is the
update that has left c[i, j] in this state. We also note the difference between π (defined in Definition
2.5) and τ : we know from Theorem 2.8 that immediately before applying 〈i, j, k〉 function F finds c[i, k]
in state cπ(j,k)(i, k), and from the definition of τ we know that 〈i, k, τik(π(j, k))〉 is the update that has
left c[i, k] in this state. A similar observation holds for δ defined in Definition 2.5.

We extend I-GEP to full generality by modifying F in Figure 2 so that it performs updates according
to the second column of Table 1 instead of the third column. As described below, we achieve this by
saving suitable intermediate values of the entries of c in auxiliary matrices as F generates them. Note
that for all i, j, k ∈ [1, n], F computes ck−|j≤k|(i, k), ck−|i≤k|(k, j) and ck−|(i<k) ∨ (i=k ∧ j≤k)|(k, k) before
it computes ck(i, j) since we know from Observation 2.6 that π(j, k) ≥ k − |j ≤ k|, π(i, k) ≥ k − |i ≤ k|
and δ(i, j, k) ≥ k − |(i < k) ∨ (i = k ∧ j ≤ k)| for all i, j, k ∈ [1, n]. However, these values could be
overwritten before F needs to use them. In particular, we may lose certain key values as summarized
in the observation below which follows from Theorem 2.2 and the definition of τ .

Observation 4.2. Immediately before F applies the update 〈i, j, k〉 ∈ ΣG:
(a) if τik (π(j, k)) > k − |j ≤ k| then c[i, k] may not necessarily contain ck−|j≤k|(i, k);
(b) if τkj (π(i, k)) > k − |i ≤ k| then c[k, j] may not necessarily contain ck−|i≤k|(i, k); and
(c) if τkk (δ(i, j, k)) > k − |(i < k) ∨ (i = k ∧ j ≤ k)| then c[k, k] may not necessarily contain

ck−|(i<k) ∨ (i=k ∧ j≤k)|(k, k).

If the condition in Observation 4.2(a) holds, we must save ck−|j≤k|(i, k) as soon as it is generated
so that it can be used later by 〈i, j, k〉. However, ck−|j≤k|(i, k) is not necessarily generated by
〈i, k, k − |j ≤ k|〉 since this update may not exist in ΣG in the first place. If τij(k − |j ≤ k|) 6= 0,
then 〈i, k, τij(k − |j ≤ k|)〉 is the update that generates ck−|j≤k|(i, k), and we must save this value
after applying this update and before some other update modifies it. If τij(k − |j ≤ k|) = 0, then
ck−|j≤k|(i, k) = c0(i, k), i.e., update 〈i, j, k〉 can use the initial value of c[i, k]. A similar argument
applies to c[k, j] and c[k, k] as well.

Now in order to identify the intermediate values of each c[i, j] that must be saved, consider the
accesses made to c[i, j] when executing the original GEP code in Figure 1.

Observation 4.3. The GEP code in Figure 1 accesses each c[i, j]:
(a) as c[i, j] at most once in each iteration of the outer for loop for applying updates 〈i, j, k〉 ∈ ΣG;
(b) as c[i, k] only in the j-th iteration of the outer for loop, for applying updates 〈i, j′, j〉 ∈ ΣG for

all j′ ∈ [1, n];
(c) as c[k, j] only in the i-th iteration of the outer for loop, for applying updates 〈i′, j, i〉 ∈ ΣG for

all i′ ∈ [1, n]; and
(d) if i = j, as c[k, k] in the i-th iteration of the outer for loop for applying updates 〈i′, j′, i〉 ∈ ΣG

for all i′, j′ ∈ [1, n].

The updates in Observation 4.3(a) do not need to be stored separately, since we know from Theorem
2.2 that both GEP and I-GEP apply the updates on a fixed c[i, j] in exactly the same order.

Now consider the accesses to c[i, j] in parts (b), (c) and (d) of Observation 4.3. By inspecting
the code in Figure 1 (see also the 2nd column of Table 1), we observe that immediately before G

applies the update 〈i, j′, j〉 in Observation 4.3(b), c[i, j] = ĉj−1(i, j) = ĉτij (j−1)(i, j) if j′ ≤ j, and
c[i, j] = ĉj(i, j) = ĉτij(j)(i, j) otherwise. Similarly, immediately before applying the update 〈i′, j, i〉 in
Observation 4.3(c), c[i, j] = ĉi−1(i, j) = ĉτij (i−1)(i, j) if i′ ≤ i, and c[i, j] = ĉi(i, j) = ĉτij (i)(i, j) otherwise.
When G is about to apply an update 〈i′, j′, i〉 from Observation 4.3(d), c[i, j] = ĉi−1(i, j) = ĉτij(i−1)(i, j)
if i′ < i ∨ (i′ = i ∧ j′ ≤ j), and c[i, j] = ĉi(i, j) = ĉτij(i)(i, j) otherwise.

15

H(X, k1, k2)

(X is a 2q × 2q submatrix of c such that X[1, 1] = c[i1, j1] and X[2q, 2q] = c[i2, j2] for some integer q ≥ 0. Matrices
u0, u1, v0 and v1 are global, and each initialized to c before the initial call to H is made. Similar to F in Figure 2, H

assumes the following: (a) i2 − i1 = j2 − j1 = k2 − k1 = 2q − 1
(b) [i1, i2] 6= [k1, k2] ⇒ [i1, i2]∩ [k1, k2] = ∅ and [j1, j2] 6= [k1, k2] ⇒ [j1, j2]∩ [k1, k2] = ∅

The initial call to H is H(c, 1, n) for an n× n input matrix c, where n is assumed to be a power of 2.)

1. if no update 〈 i, j, k 〉 ∈ ΣG applicable on X with k ∈ [k1, k2] exists then return {Section 1.1 defines ΣG}
2. if k1 = k2 then {Base case}
3. i← i1, j ← j1, k ← k1

4. c[i, j]← f(c[i, j], u|j>k|[i, k], v|i>k|[k, j], u|(i>k) ∨ (i=k ∧ j>k)|[k, k]) {Update c[i, j]}
5. {Update appropriate u0/u1/v0/v1 values}

if k = τij(j − 1) then u0[i, j]← c[i, j] {τij (l) = max l′ {l′ | l′ ≤ l ∧ 〈i, j, l′〉 ∈ ΣG ∪ {〈i, j, 0〉}}}
if k = τij(j) then u1[i, j]← c[i, j]

if k = τij(i− 1) then v0[i, j]← c[i, j]

if k = τij(i) then v1[i, j]← c[i, j]

6. else {The top-left, top-right, bottom-left and bottom-right quadrants

of X are denoted by X11, X12, X21 and X22, respectively.}

7. km ←
j

k1+k2

2

k
{Steps 7–9 are similar to steps 5–7 of function F in Figure 2.}

8. H(X11, k1, km), H(X12, k1, km), H(X21, k1, km), H(X22, k1, km) {forward pass}
9. H(X22, km + 1, k2), H(X21, km + 1, k2), H(X12, km + 1, k2), H(X11, km + 1, k2) {backward pass}

Figure 10: C-GEP: A cache-oblivious implementation of GEP (i.e., G in Figure 1) that works
for all f and ΣG.

Therefore, F must be modified to save the value of c[i, j] immediately after applying the update
〈i, j, k〉 ∈ ΣG for k ∈ {τij(i− 1), τij(i), τij(j − 1), τij(j)}. Observe that since there are exactly n2 possible
(i, j) pairs, we need to save at most 4n2 intermediate values.

The modified version of F, which we call H, is shown in Figure 10. Function H uses four n × n
matrices u0, u1, v0 and v1 for saving appropriate intermediate values computed for the entries of c as
discussed above, which it uses for future updates. After it reaches the base case (i.e., i1 = i2, j1 = j2

and k1 = k2) and computes the value of c[i, j] (assuming i = i1 = i2, j = j1 = j2 and k = k1 = k2),
it saves c[i, j] to u|1−l|[i, j] provided k = τij(j − l), and to v|1−l|[i, j] provided k = τij(i − l), where
l ∈ {0, 1}. Moreover, during the computation of c[i, j] in the base case, instead of using the current
values of c[i, k], c[k, j] and c[k, k] directly from matrix c, it extracts them from u|j>k|[i, k], v|i>k|[k, j]
and u|(i>k) ∨ (i=k ∧ j>k)|[k, k], respectively. We assume that each of the tests comparing k to τij(·) can
be performed in constant time without incurring any additional cache misses.

Cache Complexity & Running Time. The number of cache misses incurred by H can be described
using the same recurrence relation (2.1) that was used to describe the cache misses incurred by F in

Section 2, and hence the cache complexity remains the same, i.e., O
(

n3

B
√

M

)

. Function H also has the

same O
(

n3
)

running time as F, since it only incurs a constant overhead per update applied.

Correctness. Since Theorems 2.2 and 2.8 in Section 2 were proved based on the structural properties
of F and not on the actual form of the updates, they continue to hold for H.

The correctness of H, i.e., that it correctly implements column 2 of Table 1 and thus G, follows
directly from the following lemma, which can be proved by induction on k using Theorems 2.2 and 2.8,
and by observing that H saves all required intermediate values in lines 5–8.

16

Lemma 4.4. Immediately before H performs the update 〈i, j, k〉, the following hold: c[i, j] =
ĉk−1(i, j), u|j>k|[i, k] = ĉk−|j≤k|(i, k), v|i>k|[k, j] = ĉk−|i≤k|(k, j) and u|(i>k) ∨ (i=k ∧ j>k)|[k, k]) =
ĉk−|(i<k) ∨ (i=k ∧ j≤k)|(k, k).

4.3 Reducing the Additional Space

We can reduce the amount of extra space used by H (see Figure 10) by observing that at any point
during the execution of H we do not need to store more than n2 + n intermediate values for future use.
In fact, we will show that it is sufficient to use four n

2 × n
2 matrices and two vectors of length n

2 each for
storing intermediate values, instead of using four n× n matrices.

Let U ≡ u0[1 . . . n, 1 . . . n], U ≡ u1[1 . . . n, 1 . . . n], V ≡ v0[1 . . . n, 1 . . . n] and V ≡ v1[1 . . . n, 1 . . . n].
By U11, U12, U21 and U22 we denote the top-left, top-right, bottom-left and bottom-right quadrants of
U , respectively. We identify the quadrants of U , V and V similarly. For i ∈ [1, 2], let Di and Di denote
the diagonal entries of Uii and U ii, respectively.

Now consider the initial call to H, i.e., H(X, k1, k2) where X = c, k1 = 1 and k2 = n. We show
below that the forward pass in step 8 of this call can be implemented using only n2 + n extra space. A
similar argument applies to the backward pass (step 9) as well.

The first recursive call H(X11, k1, k2) in step 8 will generate U11, U11, V11, V 11, D1 and D1. The
amount of extra space used by this recursive call is thus n2+n. The entries in U11 and V11, however, will
not be used by any future updates, and hence can be discarded. The second recursive call H(X12, k1, k2)
will use U11, D1 and D1, and generate V12 and V 12 in the space freed by discarding U11 and V11. Each
update 〈i, j, k〉 applied by this recursive call retrieves u|j>k|[i, k] from U11, v|i>k|[k, j] from V12 or V 12,

and u|(i>k) ∨ (i=k ∧ j>k)|[k, k] from D1 or D1. Upon return from H(X12, k1, k2) we can discard the

entries in U11 and V12 since they will not be required for any future updates. The next recursive call
H(X12, k1, k2) will use V 11, D1 and D1, and generate U21 and U21 in the space previously occupied
by U11 and V12. Each update performed by this recursive call retrieves u|j>k|[i, k] from U21 or U21,

v|i>k|[k, j] from V 11, and u|(i>k) ∨ (i=k ∧ j>k)|[k, k] from D1 or D1. The last function call H(X22, k1, k2)

in line 11 will use U21, V 12, D1 and D1 for updates, and will not generate any intermediate values.
Thus step 8 can be implemented using four additional n

2 × n
2 matrices and two vectors of length n

2 each.
Therefore, H can be implemented to work with an arbitrary f and arbitrary ΣG at the expense of

only n2 + n extra space. The running time and the cache complexity of this implementation remain

O
(

n3
)

and O
(

n3

B
√

M

)

, respectively.

5 Parallel I-GEP and C-GEP

In this section we consider parallel implementations of I-GEP and C-GEP. We observe that the second
and third calls to F in line 5 of the pseudocode for I-GEP given in Figure 2 can be executed in parallel
while maintaining correctness and all properties we have established for I-GEP; similarly the second
and third calls to F in line 6 can be performed in parallel. A similar observation holds for lines 11 and
12 of H (see Figure 10). The resulting parallel code performs a sequence of 6 parallel calls (four calling
F or H once and two calling F or H twice), and hence with p processors its parallel execution time is

O
(

n3

p + nlog2 6
)

.

In Figures 11 – 14 we present a better parallel implementation of I-GEP. This implementation
explicitly refers to the different types of functions invoked by I-GEP based on the relative values
of the i, j, and k intervals. We assume that X ≡ c[i1 . . . i2, j1 . . . j2], U ≡ c[i1 . . . i2, k1 . . . k2],
V ≡ c[k1 . . . k2, j1 . . . j2] and W ≡ c[k1 . . . k2, k1 . . . k2], where [i1, i2], [j1, j2] and [k1, k2] are the ranges
of i, j and k values, respectively, supplied to F. Then for every entry c[i, j] ∈ X, c[i, k] can be found in
U , c[k, j] in V , and c[k, k] can be found in W . Note that only the diagonal entries of W are used.

17

F(X, U, V, W) {F can be any of the 9 functions (A, B1, B2, C1, C2, D1, D2, D3, D4) in column 1 of Figure 12}
(X ≡ c[i1..i2, j1..j2], U ≡ c[i1..i2, k1..k2], V ≡ c[k1..k2, j1..j2] and W ≡ c[k1..k2, k1..k2]. Function F assumes the
following: (a) i2 − i1 = j2 − j1 = k2 − k1 = 2q − 1, for some integer q ≥ 0.

(b) [i1, i2] 6= [k1, k2] ⇒ [i1, i2] ∩ [k1, k2] = ∅ and [j1, j2] 6= [k1, k2] ⇒ [j1, j2] ∩ [k1, k2] = ∅
(c) P (F) (see Figure 13)

The initial call to F is A(c, c, c, c) for an n× n input matrix c, where n is assumed to be a power of 2.)

1. if no update 〈 i, j, k 〉 ∈ ΣG with (i, j) ∈ X, (i, k) ∈ U , (k, j) ∈ V exists then return {Section 1.1 defines ΣG}
2. if X is a 1× 1 matrix then X ← f(X, U, V, W) {Base case}

else {The following function calls are determined from the table in Figure 12. The top-left, top-right,

bottom-left and bottom-right quadrants of X are denoted by X11, X12, X21 and X22, respectively.}
3. for r ← 0 to 3 do {forward pass}

Fij(Xij , Uik, Vkj , Wkk) with i ← 1 +
�

r
2

�
, j ← 3 + r − 2i, k ← 1

4. for r ← 3 downto 0 do {backward pass}
F ′

ij(Xij , Uik, Vkj , Wkk) with i ← 1 +
�

r
2

�
, j ← 3 + r − 2i, k ← 2

Figure 11: Cache-oblivious I-GEP reproduced from Figure 2, but here F is assumed to be a
template function that can be instantiated to any of the 9 functions given in Figure 13. The
recursive calls in lines 6 and 7 are replaced with appropriate instantiations of F which can
be determined from Figure 12.

F F11 F12 F21 F22 F ′
22 F ′

21 F ′
12 F ′

11

A A 1 B1 2 C1 2 D1 3 A 4 B2 5 C2 5 D4 6

Bl (l = 1, 2) Bl 1 Bl 1 Dl 2 Dl 2 Bl 3 Bl 3 Dl+2 4 Dl+2 4

Cl (l = 1, 2) Cl 1 D2l−1 2 Cl 1 D2l−1 2 Cl 3 D2l 4 Cl 3 D2l 4

Dl (l ∈ [1, 4]) Dl 1 Dl 1 Dl 1 Dl 1 Dl 2 Dl 2 Dl 2 Dl 2

Figure 12: Different instantiations of F (from Figure 11), and the parallelism in each. Each row lists
the instantiations of the functions called in steps 3 and 4 of F when F is instantiated to the function in
column 1. Functions in columns 2–9 are executed by F in nondecreasing order of the sequence numbers
given inside the small boxes. Two functions with the same sequence number can be executed in parallel.

F P (F)

A i1 = k1 ∧ j1 = k1

B1 i1 = k1 ∧ j1 > k2

B2 i1 = k1 ∧ j2 < k1

C1 i1 > k2 ∧ j1 = k1

C2 i2 < k1 ∧ j1 = k1

D1 i1 > k2 ∧ j1 > k2

D2 i1 > k2 ∧ j2 < k1

D3 i2 < k1 ∧ j1 > k2

D4 i2 < k1 ∧ j2 < k1

Figure 13: Function specific
pre-condition P (F) for F in
Figure 2.

U

B B C C

D D D D

1 2 1 2

4321

A

U

V

V

U X X U

VV U X

V V

X U

X
V

X U

V
X

X
V

X U

U

Figure 14: Relative positions of U ≡ c[i1 . . . i2, k1 . . . k2]
and V ≡ c[k1 . . . k2, j1 . . . j2] w.r.t. X ≡ c[i1 . . . i2, j1 . . . j2]
assumed by different instantiations of F.

18

Input condition 2.1(a) implies that X, U and V must all be square matrices of the same dimensions.
Input condition 2.1(b) requires that each of U and V either overlaps X completely, or does not intersect
X at all. These conditions on the inputs to F implies nine possible arrangements (i.e., relative positions)
of X, U and V . For different arrangements of these matrices we give a different name to F. Figure
14 identifies each of the nine names (A, B1, B2, C1, C2, D1, D2, D3 and D4) with the corresponding
arrangement of the matrices. Each of these nine functions will be called an instantiation of F. Observe
that the four types of functions (i.e., A, Bl, Cl and Dl) differ in the amount and type of overlap the
input matrices X, U and V have among them. Function A assumes that all three matrices overlap,
while function Dl expects completely non-overlapping matrices. Function Bl assumes that only X and
V overlap, while Cl assumes overlap only between X and U . Intuitively, the less the overlap among the
input matrices the more flexibility the function has in ordering its recursive calls, thus leading to better
parallelism.

In Figure 11 we reproduce F from Figure 2, but replace the recursive calls in lines 6 and 7 of
Figure 2 with instantiations of F. By Fpq (p, q ∈ [1, 2]), we denote the instantiation of F that processes
quadrant Xpq in the forward pass (line 3 of Figure 11), and by F′pq (p, q ∈ [1, 2]) we denote the same in
the backward pass (line 4 of Figure 11). For each of the nine instantiations of the calling function F,
Figure 12 associates Fpq and F′pq (p, q ∈ [1, 2]) with appropriate instantiations, and also identifies the
recursive calls that can be executed in parallel. The initial call is to a function of type A, where the
input matrices X, U , V and W completely overlap.

We now analyze the parallel execution time for I-GEP on function A. Let TA(n) = T∞ denote the
parallel running time when A is invoked with an unbounded number of processors on an n× n matrix.
Let TB(n), TC(n) and TD(n) denote the same for Bi, Ci and Di, respectively. We will assume for
simplicity that TA(1) = TB(1) = TC(1) = TD(1) = O (1). Hence we have the following recurrences:

TA(n) ≤ 2
(

TA

(n

2

)

+ max
{

TB

(n

2

)

, TC

(n

2

)}

+ TD

(n

2

))

+O (1)

TB(n) ≤ 2
(

TB

(n

2

)

+ TD

(n

2

))

+O (1)

TC(n) ≤ 2
(

TC

(n

2

)

+ TD

(n

2

))

+O (1)

TD(n) ≤ 2TD

(n

2

)

+O (1)

Solving these recurrences we obtain T∞ = O
(

n log2 n
)

, and thus the following theorem:

Theorem 5.1. When executed with p processors, multithreaded I-GEP performs T1 = O
(

n3
)

work and

terminates in T1
p + T∞ = O

(

n3

p + n log2 n
)

parallel steps on an n× n input matrix.

A similar parallel algorithm with the same parallel time bound applies to C-GEP.
For specific applications of I-GEP, the actual recursive function calls may not take the most general

form analyzed above (see Appendix B). For instance, only a subset of the calls are made for Gaussian
elimination without pivoting. However, the parallel time bound remains the same as in Theorem 5.1
for this problem as well as for all-pairs shortest paths. On the other hand, for matrix multiplication,
we can perform all four recursive calls in each of steps 3 and 4 of Figure 11 in parallel and hence the

parallel time bound is reduced to O
(

n3

p + n
)

. Note that this matrix multiplication computation does

not assume associativity of addition.

We have implemented this multithreaded version of I-GEP for Floyd-Warshall’s APSP, square matrix
multiplication and Gaussian elimination without pivoting in pthreads, and we report some experimental
results in Section 7.3.

19

5.1 Cache Complexity We first consider distributed caches, where each processor has its own
private cache, and then a shared cache, where all processors share the same cache.

Distributed Caches. The following lemma is obtained by considering the schedule that executes each
subproblem of size n√

p × n√
p entirely on a single processor. Since there are p

3
2 such subproblems, and

according to Recurrence 2.1 the sequential execution of each of them on a processor with a private cache

of size M and block size B causes O
(

(n/
√

p)
3

B
√

M
+

(n/
√

p)
2

B

)

cache-misses, the lemma follows.

Lemma 5.2. There exists a deterministic schedule that incurs only O
(

n3

B
√

M
+
√

p · n2

B

)

cache misses

when executing multithreaded I-GEP on a machine with p processors, each with a private cache of size
M and block size B.

Using results from [2, 19] (e.g., Theorem 2 and Equation 4 of [19]) one can show that I-GEP incurs

O
(

n3

B
√

M
+

(p·n log2 n)
1
3 n2

B + p · n log2 n

)

cache misses w.h.p. under the state-of-the-art general-purpose

work-stealing Cilk scheduler [18] for distributed caches. The bound in Lemma 5.2 is much better.

Shared Caches. Here we consider the case when the p processors share a single cache of size Mp.
Part (a) of Lemma 5.3 below is obtained using a general result for shared caches given in [6] for a PDF
(parallel depth first search) schedule. Better bounds are obtained in part (b) of Lemma 5.3 through the
following hybrid depth-first schedule.

Let G denote the computation DAG of I-GEP (i.e., function A), and let C(G) denote a new DAG
obtained from G by contracting each subDAG of G corresponding to a recursive function call on an
r × r submatrix to a supernode, where r is a power of 2 such that

√
p ≤ r < 2

√
p. The subDAG in G

corresponding to any supernode v is denoted by S(v).
Now the hybrid scheduling scheme is applied on G as follows. The scheduler executes the nodes

(i.e., supernodes) of C(G) under 1df-schedule (sequential depth-first schedule) [6]. However, for each
supernode v, the scheduler uses a pdf-schedule with all p processors in order to execute the subDAG
S(v) of G before moving to the next supernode. This leads to the following.

Lemma 5.3. For p ≥ 1 let multithreaded I-GEP execute Tp parallel steps and incur Qp cache misses
with p processors and on a shared ideal cache of Mp blocks. Then under the hybrid depth-first schedule,

(a) i. Qp ≤ Q1 if Mp ≥M1 + Θ (p),
ii. If M1 = Mp then Qp = O(Q1) provided p = O(Mp).

(b) Tp = O
(

n3

p + n log2 n
)

.

Proof. (a.i) Since for each supernode v in C(G) the subDAG S(v) in G accesses at most Θ
(

r2
)

locations of the input matrix, when executing S(v) under pdf-schedule no more than Θ
(

r2
)

= Θ (p)
nodes can become premature [6] simultaneously. Since supernodes are executed one at a time, having
Mp ≥ M1 + Θ (p) ensures that there is always enough space in the shared cache to accommodate the
premature nodes without ever incurring any extra cache misses. Therefore, Qp ≤ Q1.

(a.ii) Suppose Mp = M1 = M . Since the hybrid schedule never creates more than Θ (p)
simultaneous premature nodes (see part (a)), we can set aside Θ (p) locations in the shared cache
for holding the premature nodes. The effective cache size thus reduces to M − Θ (p), and assuming
M − Θ (p) = Ω (M) ⇒ p = O (M), the number of cache misses incurred by multithreaded I-GEP is

Qp ≤ O
(

n3

B
√

M−Θ(p)

)

= O (Q1).

20

F(v) A Bi (i = 1, 2) Ci (i = 1, 2) Di (i ∈ [1, 4])

n(F(v)) n
r

(

n
r

)2 − n
r

(

n
r

)2 − n
r

(

n
r

)3 − 2
(

n
r

)2
+ n

r

s(F(v)) O
(

r log2 r
)

O (r log r) O (r log r) O (r)

Table 2: Properties of supernodes in C(G): for a given supernode v, F(v) denotes the recursive function
represented by subDAG S(v) in G while n(F(v)) and s(F(v)) denote the number of supernodes in C(G)
representing F(v) and the number of parallel steps required to execute F(v), respectively.

(b) The number of parallel steps for pdf-schedule follows from the results in [6]. Therefore, we
restrict our attention to the hybrid scheduler below.

Observe that G has Θ
(

n3
)

nodes, and each subDAG in G corresponding to supernodes in C(G) has

Θ
(

r3
)

nodes. Therefore, C(G) has only Θ
(

(

n
r

)3
)

nodes.

For a given supernode v, let F(v) denote the recursive function represented by subDAG S(v)
in G. Let n(F(v)) and s(F(v)) denote the number of supernodes in C(G) representing F(v) and
the number of parallel steps required to execute F(v), respectively. The values of n(F(v)) and
s(F(v)) for F(v) ∈ {A,Bi, Ci,Di} are tabulated in Table 2 (the calculations are not difficult and
are omitted for brevity). Therefore, the number of parallel steps required to execute all supernodes is
∑

F(v)∈{A,Bi,Ci,Di} n(F(v)) × s(F(v)) = O
(

n3

r2 + n2

r log r + n log r
)

= O
(

n3

p + n log2 n
)

(since p ≤ n2).

Since C(G) has only Θ
(

(

n
r

)3
)

nodes, the number of steps required to execute C(G) under

1df-schedule is O
(

(

n
r

)3
)

= O
(

n3

p
√

p

)

. Therefore, the total number of parallel steps required to

execute multithreaded I-GEP under the hybrid depth-first schedule is O
(

n3

p + n3

p
√

p + n log2 n
)

=

O
(

n3

p + n log2 n
)

= O
(

T1
p + T∞

)

since T1 = n3 and T∞ = O
(

n log2 n
)

. �

When executing I-GEP under the state-of-the-art pdf-scheduler [6] for shared caches, Qp ≤ Q1 provided
Mp ≥M1 + Θ (p · T∞(n)) = M1 + Θ

(

pn log2 n
)

, which is much weaker than the bound given above for
the hybrid depth-first scheduler.

In a recent work [5] we have introduced the multicore-cache model that reflects the reality that
multicore processors have both per-processor private (L1) caches and a large shared (L2) cache on chip,
and presented an online scheduler for cache-efficient execution of a broad class of parallel divide-and-
conquer algorithms (that includes I-GEP) on this model. The new scheduler is competitive with the
standard sequential scheduler in the following sense. Given any dynamically unfolding computation
DAG from this class of algorithms, the cache complexity on the multicore-cache model under our new
scheduler is within a constant factor of the sequential cache complexity for both L1 and L2, while the
time complexity is within a constant factor of the sequential time complexity divided by the number of
processors p. In a more recent work [11] we have shown that for both shared and distributed caches the
depth of any GEP computation can be improved to O (n) while still matching its optimal sequential
cache complexity by choosing tile sizes that depend only on the number of cores/processors and thus
still remaining cache-oblivious. This is the maximum parallelism achievable when staying within the
GEP framework. There is a well-known purely parallel NC algorithm with lower depth for matrix
multiplication (a specific GEP problem), but that algorithm uses extra space.

Very recently [12] we have extended the 3-level multicore-cache model described in [5] to the
hierarchical multi-level caching model (HM) for multicores1. The HM model consists of a collection

1we briefly described the HM model in [11].

21

of cores sharing an arbitrarily large main memory through a hierarchy of caches of finite but increasing
sizes that are successively shared by larger groups of cores. We have also introduced the notion of
multicore-oblivious (MO) algorithms for the HM model, i.e., algorithms that make no mention of the
number of cores and the cache parameters. For improved performance, however, an MO algorithm is
allowed to provide advice or “hints” to the run-time scheduler through a small set of instructions on how
to schedule the parallel tasks it spawns. We have shown that I-GEP can be solved multicore-obliviously
on the HM model in time proportional to its sequential time complexity divided by the number of cores,
while still remaining within a constant factor of its optimal sequential cache-complexity at each level of
the cache hierarchy.

6 Cache-Oblivious GEP and Compiler Optimization

‘Tiling’ is a powerful loop transformation technique employed by optimizing compilers for improving
temporal locality in nested loops [25]. This transformation partitions the iteration-space of nested loops
into a series of small polyhedral areas of a given tile size which are executed one after the other. Tiling
a single loop replaces it by a pair of loops, and if the tile size is T then the inner loop iterates T times,
and the outer loop has an increment equal to T (assuming that the original loop had unit increments).
This transformation can be applied to arbitrarily deep nested loops. Figure 15(b) shows a tiled version
of the triply nested loop shown in Figure 15(a) that occurs in matrix multiplication [25].

Cache performance of a tiled loop depends on the chosen tile size T . The choice of T , in turn,
crucially depends on (1) the type of the cache (direct mapped or set associative), (2) cache size, (3)
block transfer size (i.e., cache line size), and (4) the loop bounds [25, 32]. Thus tiling is a highly system-
dependent technique. Moreover, since only a single tile size is chosen, tiling cannot be optimized for all
levels of a memory hierarchy simultaneously.

The I-GEP code in Figure 2 and the C-GEP code given in Figure 10 can be viewed as cache-oblivious
versions of tiling for the triply nested loops of the form as shown in Figure 1. The nested loop in Figure
1 has an n×n×n iteration-space. Both I-GEP and C-GEP are initially invoked on this n×n×n cube,
and at each stage of recursion they partition the input cube into 8 equal-sized subcubes, and recursively
process each subcube. Hence, at some stage of recursion, they are guaranteed to generate subcubes of
size T ′×T ′×T ′ such that T

2 < T ′ ≤ T , where T is the optimal tile size for any given level of the memory
hierarchy. Thus for each level of the memory hierarchy both I-GEP and C-GEP cache-obliviously choose
a tile size that is within a constant factor of the optimal tile size for that level. We can, therefore, use
I-GEP and C-GEP as cache-oblivious loop transformations for the memory hierarchy.

C-GEP. C-GEP is a legal transformation for any nested loop that conforms to the GEP format given
in Figure 1. In order to apply this transformation the compiler must be able to evaluate τij(i − 1),
τij(i), τij(j − 1) and τij(j) for all i, j ∈ [1, n]. For most practical problems this is straight-forward; for
example, when ΣG = {〈i, j, k〉 | i, j, k ∈ [1, n]} which occurs in path computations over closed semirings
(see Section 3.3), or even if the computation is not over a closed semiring, we have τij(l) = l for all
i, j, l ∈ [1, n].

I-GEP. Though C-GEP is always a legal transformation for GEP loops, I-GEP is not. Due to the
space overhead of C-GEP, I-GEP should be the transformation of choice wherever it is applicable.
Moreover, experimental results (see Section 7) suggest that I-GEP outperforms C-GEP in both in-core
and out-of-core computations.

We will now look at some general conditions under which I-GEP is a legal transformation for a given
GEP code. Consider the general GEP code in Figure 1. Recall the definition of π from Section 2, and
the definition of τij from Section 4.2 (Definition 4.1). The following lemma follows from Observations
4.2 and 4.3 in Section 4.2, and also from the observation that I-GEP will correctly implement GEP if

22

1. for i← 1 to n do

2. for j ← 1 to n do

3. for k ← 1 to n do

4. c[i, j]← c[i, j] + a[i, k]× b[k, j]

1. for i← 1 to n by T do {T is the tile size}
2. for j ← 1 to n by T do

3. for k ← 1 to n by T do

4. for i′ ← i to min(i + T − 1, n) do

5. for j′ ← j to min(j + T − 1, n) do

6. for k′ ← k to min(k + T − 1, n) do

7. c[i′, j′]← c[i′, j′] + a[i′, k′]× b[k′, j′]

Figure 15: (a) Traditional matrix multiplication algorithm, (b) Tiled version of the matrix multiplica-
tion algorithm of part (a) [25].

for each c[i, j] and each update in ΣG that uses c[i, j] on the right hand side, c[i, j] retains the correct
value needed for that update until I-GEP applies the update.

Lemma 6.1. If τij(π(k, i)) ≤ i − |k ≤ i| for all 〈i, k, j〉 ∈ ΣG, and τij(π(k, j)) ≤ j − |k ≤ j| for all
〈k, j, i〉 ∈ ΣG, then I-GEP is a legal transformation for the GEP code in Figure 1.

7 Experimental Results

We ran our experiments on the three architectures listed in Table 3. Each machine can perform at most
two double precision floating point operations per clock cycle. The peak performance of each machine
is thus measured in terms of GFLOPS (or Giga FLoating point Operations Per Second) which is two
times the clock speed of the machine in GHz.

Model
Processors

/Cores
Speed

Peak GFLOPS
(per core)

L1 Cache L2 Cache RAM

Intel P4 Xeon 2 3.06 GHz 6.12 8 KB (4-way) 512 KB (8-way) 4 GB

AMD Opteron 250 2 2.4 GHz 4.8 64 KB (2-way) 1 MB (8-way) 4 GB

AMD Opteron 875
8

(4 dual-cores)
2.2 GHz 4.4 64 KB (2-way) 1 MB (16-way) 32 GB

Table 3: Machines used for experiments. All block sizes (B) are 64 bytes.

The Intel P4 Xeon machine is also equipped with a 73.5 GB Fujitsu MAP3735NC hard disk (10K
RPM, 4.5 ms avg. seek time, 64.1 to 107.86 MB/s data transfer rate) [1]. Our out-of-core experiments
were run on this machine. All machines run Ubuntu Linux 5.10 “Breezy Badger”. Each machine was
exclusively used for experiments.

We used the Cachegrind profiler [29] for simulating cache effects. For in-core computations all
algorithms were implemented in C using a uniform programming style and compiled using gcc 3.3.4
with optimization parameter -O3 and limited loop unrolling.

We summarize our results below.

7.1 GEP, I-GEP and C-GEP for APSP
In this section we present experimental results comparing GEP, I-GEP and C-GEP implementations of
Floyd-Warshall’s APSP algorithm [16, 31] for both in-core and out-of-core computations.

Out-of-Core Computation. For out-of-core computations we implemented GEP, I-GEP and C-GEP
in C++, and compiled using g++ 3.3.4 compiler with optimization level -O3 and STXXL software
library version 0.9 [15] for external memory accesses. The STXXL library maintains its own fully
associative cache in RAM with pages from the disk, and allows users set the size of the cache (M) and

23

Out-of-Core Performance of GEP, I-GEP and C-GEP for Floyd-Warshall’s APSP on Intel P4 XeonDEF GHIJK LMNOP Q RST U VWXYZ [\] ^ \ _
(a) I/O Wait Time with n = 4096 and B = 64 KB as M Varies

``a`aa`baaa`abaaa`aabaaa
cdefghicjk l m̀ cdefghicjk l n cdefghicjk l o cdefghicjk l pqrstuv wxyr z { |}~�������������� �

(b) I/O Wait Time with n = 4096 and M = 2n2 bytes as M/B Varies

���������������������������������
�� �� ��� ��� ��� ����������� �� ���� ¡ ¢ £ ¤ ¥ ¦§̈©ª«¬®¬̄°±²°³́µ

Figure 16: Comparison of out-of-core performance of GEP, I-GEP and C-GEP on Intel Pentium 4 Xeon
with a fast hard disk (10K RPM, 4.5 ms avg. seek time, 64 to 107 MB/s transfer rate).

In-Core Performance of I-GEP and GEP for Floyd-Warshall’s APSP¶·¸ ¹º»¼½
(a) Rate of Execution on Intel Pentium 4 Xeon

¾¿¾¾À¾¾Á¾¾Â¾¾
ÃÄ¾¾¾ÃÄ¿¾¾ÃÄÀ¾¾

ÅÆÆ ÇÆÆ ÈÉÊÆÆ ÈÉËÆÆ ÊÉÆÆÆ ÊÉÅÆÆ ÊÉÇÆÆ ÌÉÊÆÆ ÌÉËÆÆ ÅÉÆÆÆ ÅÉÅÆÆ ÅÉÇÆÆ ÍÉÊÆÆ ÍÉËÆÆ ËÉÆÆÆ ËÉÅÆÆ ËÉÇÆÆ ÎÉÊÆÆ ÎÉËÆÆ ÇÉÆÆÆÏÐÑÒÓÔÐÕÓ Ö × ØÙÚÛÛÚÜÝÞßÛàáâãâáäÜÝåæ çèéãêàÝëÚÙáì
(b) Rate of Execution on AMD Opteron 250

íîííïííðííñííòííóíí
ôííõííöííî÷ííí

øùù úùù ûüýùù ûüþùù ýüùùù ýüøùù ýüúùù ÿüýùù ÿüþùù øüùùù øüøùù øüúùù �üýùù �üþùù þüùùù þüøùù þüúùù �üýùù �üþùù úüùùù��������� 	
 �������������������� �����������
Figure 17: Comparison of I-GEP and GEP on Intel Xeon and AMD Opteron for computing Floyd-
Warshall’s all-pairs shortest paths. Both machines have two processors, but only one was used.

In-Core Performance of C-GEP relative to I-GEP for Floyd-Warshall’s APSP on Intel P4 Xeon !"#$ %&'() * +,- . /0123 4 56 7 5 8
(a) Runtimes (w.r.t. I-GEP) on Intel Xeon

9:;9:<=:9=:>=:?=:;=:<>:9
>@; @=> =A9>? >A9?< ?A9B; <A=B>CDEFGHDIG J K LMNOOPOQRPST UVWXWY WZ [\]̂_ (b) L2 Misses (w.r.t. I-GEP) on Intel Xeon

`à`abcàcabdàdabeàeabfàfabbà
dbg bcd ch̀ df dh̀ fi fh̀ jgklmnoplqo r s tuvwxyyzy {|}~}� }� �����

Figure 18: Comparison of in-core performance of I-GEP and C-GEP on Intel Pentium 4 Xeon.

the block transfer size (B) manually. We compiled STXXL with DIRECT-I/O turned on so that the
OS does not cache data from hard disk.

When the computation is out-of-core I/O wait times dominate computation times. In Figure 16(a)
we keep n and B fixed and vary M . We observe that M has almost no effect on the I/O wait time
of GEP while that of both I-GEP and C-GEP decrease as M increases. This result is consistent with
theoretical predictions since the cache complexity of GEP is independent of M and that of I-GEP and
C-GEP vary inversely with

√
M . In general, the I/O wait time of GEP is several hundred times more

24

Comparison of I-GEP and GotoBLAS for Gaussian Elimination without Pivoting��� ����� ��������
(a) Rate of Execution on Intel Pentium 4 Xeon

����������������������
� ¡ ¢£¤ ¢£¥ ¤£ ¤£� ¤£¡ ¦£¤ ¦£¥ �£ �£� �£¡ §£¤ §£¥ ¥£ ¥£� ¥£¡ ¨£¤ ¨£¥ ¡£ ©ª«¬®ª̄ ° ± ²³́µ¶· (b) Rate of Execution on AMD Opteron 250

¸¹¸º¸»¸¼¸½¸¾¸¿¸À¸Á¸¹¸¸
ÂÃÃ ÄÃÃ ÅÆÇÃÃ ÅÆÈÃÃ ÇÆÃÃÃ ÇÆÂÃÃ ÇÆÄÃÃ ÉÆÇÃÃ ÉÆÈÃÃ ÂÆÃÃÃ ÂÆÂÃÃ ÂÆÄÃÃ ÊÆÇÃÃ ÊÆÈÃÃ ÈÆÃÃÃ ÈÆÂÃÃ ÈÆÄÃÃ ËÆÇÃÃ ËÆÈÃÃ ÄÆÃÃÃÌÍÎÏÐÑÍÒÐ Ó Ô ÕÖ×ØÙÚ

Figure 19: Comparison of I-GEP and GotoBLAS on Intel Xeon and AMD Opteron for performing
Gaussian elimination without pivoting. Both machines have two processors, but only one was used.

than that of I-GEP and C-GEP; for example, when only half of the input matrix fits in internal memory
GEP waits 500 times more than I-GEP, and almost 180 times more than both variants of C-GEP. In
Figure 16(b) we keep n and M fixed, and vary M/B (by varying B), and observe that in general, I/O
wait times increase linearly with the increase of M/B. The theoretical I/O complexities of all these
algorithms vary inversely with B, which explains the observed trend. However, when M/B is small, the
number of page faults increases which affects the cache performance of all algorithms.

In-Core Computation. In Figure 17 we plot the performance of GEP and I-GEP on both Intel Xeon
and AMD Opteron 250. We optimized I-GEP as described in Section 7.2. On Intel Xeon I-GEP runs
around 5 times faster than GEP while on AMD Opteron it runs around 4 times faster.

In Figure 18 we plot the relative performance of I-GEP and C-GEP on Intel Xeon. As expected,
both versions of C-GEP run slower and incur more L2 misses than I-GEP, since they perform more
write operations. However, this overhead diminishes as n becomes larger. The (n2 + n)-space variant
of C-GEP performs slightly worse than the 4n2-space variant which we believe is due to the fact that
the (n2 + n)-space C-GEP needs to perform more initializations and re-initializations of the temporary
matrices (i.e., u0, u1, v0 and v1) compared to the 4n2-space C-GEP.

7.2 Comparison of I-GEP and BLAS Routines
We compared the performance of our I-GEP code for square matrix multiplication and Gaussian
elimination without pivoting on double precision floats with algorithms based on highly fine-tuned
Basic Linear Algebra Subprograms (BLAS). We applied the following major optimizations on our basic
I-GEP routines before the comparison:

– In order to reduce the overhead of recursion we solve the problem directly using a GEP-like
iterative kernel as the input submatrix X received by the recursive functions becomes very small. We
call the size of X at which we switch to the iterative kernel the base-size. On each machine the best
value of base-size, i.e., for which the implementation ran the fastest, was determined empirically. On
Intel Xeon it is 128 × 128 and on AMD Opteron it is 64× 64.

– We use SSE2 (“Streaming SIMD Extension 2”) instructions for increased throughput.
– For Gaussian elimination without pivoting we use a standard technique for reducing the number

of division operations to o
(

n3
)

(i.e., by moving the division operations out of the innermost loops).
– We use the bit-interleaved layout (e.g., see [17, 8]) for reduced TLB misses. More specifically, we

arrange the base case size blocks in the bit-interleaved layout with data within the blocks arranged in
row-major layout. We include the cost of converting to and from this format in the time bounds.

25

Comparison of I-GEP and Native BLAS Square Matrix Multiplication Routines on AMD Opteron 250ÛÜÝ Þßàáâ ãäåæçè éêëì
(a) Rate of Execution

íîíïíðíñíòíóíôíõíöí ÷øø ùøø úûüøø úûýøø üûøøø üû÷øø üûùøø þûüøø þûýøø ÷ûøøø ÷û÷øø ÷ûùøø ÿûüøø ÿûýøø ýûøøø ýû÷øø ýûùøø �ûüøø �ûýøø ùûøøø������ ���	
���
 � ������ (b) L1 Misses

����
���

��� ��� � !�� � "�� ! ��� ! ��� ! ��� # !�� # "�� � ���$%&'() *(+,-.(/- 0 1 2345677879:4;<=
(c) L2 Misses

>?>@>>@?>A>>A?>B>>B?>
CDD EDD FGHDD FGIDD HGDDD HGCDD HGEDD JGHDD JGIDD CGDDDKLMNOP QORSTUOVT W X YZ[\]̂̂_̀̂abcde

(d) Instruction Cache References

fgfhfifjfkffkgfkhfkifkjf
lmm nmm opqmm oprmm qpmmm qplmm qpnmm spqmm sprmm lpmmmtuvwxy zx{|}~x�} � � �� ����������������

Figure 20: Comparison of I-GEP and native BLAS square matrix multiplication routines on a 2.4 GHz
dual processor AMD Opteron 250 (only one processor was used).

In Figure 20 we show the performance of square matrix multiplication on AMD Opteron 250 with
GEP (an optimized version), I-GEP and Native BLAS, i.e., BLAS generated for the native machine
using the automated empirical optimization tool ATLAS [28]. We report the results in ‘% peak’, e.g.,
an algorithm executing at ‘x% of peak’ spends x% of its execution time performing floating point
operations while remaining time is spent in other overheads including recursion, loops, cache misses,
etc. From the plots in Figure 20 we observe:

– Native BLAS executes at 78–83% of peak while I-GEP executes at 50–56% of peak. Traditional
GEP reaches only 9–13% of peak. The GotoBLAS [20] which is usually the fastest BLAS available for
most machines (not shown in the plots) runs at 85–88% of peak.

– I-GEP incurs fewer L1 and L2 misses than native BLAS.
– I-GEP executes more instructions than native BLAS.

We obtained similar results on Intel P4 Xeon.
In Figure 19 we plot the performance of Gaussian elimination without pivoting using GEP, I-GEP

and GotoBLAS [20] on both Intel Xeon and AMD Opteron 250. (Recall that GotoBLAS is the fastest
BLAS available for most machines.) We used the LU decomposition (without pivoting) routine available
in FLAME [21] to implement Gaussian elimination without pivoting using GotoBLAS. On both machines
GotoBLAS executes at around 75–83% of peak while I-GEP runs at around 45–55% of peak. Traditional
GEP reaches only 7–9% of peak.

Recursive square matrix multiplication using an iterative base case similar to our implementations
is studied in [34]. The experimental results in [34] report performance level of only about 35% of peak
for Intel P4 Xeon which is significantly lower than what we obtain for the same machine (50–58%). We
conjecture that our improved performance is partly due to our use of SSE2 instructions, especially since
[34] obtained performance levels of 60–75% for SUN UltraSPARC IIIi, IBM Power 5 and Intel Itanium
2 using FMA instructions. These latter results nicely complement our results for Intel P4 Xeon and

26

Performance of I-GEP and GotoBLAS on a 4×dual-core AMD Opteron 875 as the Number of Concurrent Threads Vary����� ��������
(a) Square Matrix Multiplication

� ¡¢£¤¥
¦§

 ¡ ¢ £ ¤ ¥ ¦ §¨©ª«¬ ®¯ °±¬²³´µ¶··̧¹º¶»¼½¾¿À ÁÂÃÀÃ¾ ÃºÄ¾ÅÀ·¼̧·̧½¿̧·Æ Ã (b) Gaussian Elimination w/o Pivoting

ÇÈÉÊËÌÍ
ÎÏ

È É Ê Ë Ì Í Î ÏÐÑÒÓÔÕ Ö× ØÙÕÔÚÛÜÝÞßßàáâÞãäåæçè éêëèëæ ëâìæíèßäàßàåçàßî ë (c) Floyd-Warshall’s APSP

ïðñòóôõ
ö÷

ð ñ ò ó ô õ ö ÷øùúûüý þÿ ��ýü��������	
������ ������ �
������������� �
Figure 21: Performance of I-GEP on a 4×dual-core AMD Opteron 875 for square matrix multiplication,
Gaussian elimination w/o pivoting and Floyd-Warshall’s all-pairs shortest paths on 5000×5000 matrices
as number of concurrent threads is varied. For matrix multiplication and Gaussian elimination w/o
pivoting we compare IGEPs performance with that of GotoBLAS.

AMD Opteron and further suggest that reasonable performance levels can be reached for square matrix
multiplication on different architectures using relatively simple code that does not directly depend on
cache parameters.

Both our implementations and the ones in [34] experimentally determined the best base-size since
the overhead of recursion becomes excessive if the recursion extends all the way down to size 1. In [34]
this is viewed as not being purely cache-oblivious; however we consider the fine-tuning of the base-size
in recursive algorithms to be a standard optimization during implementation.

7.3 Multithreaded I-GEP
We implemented multithreaded I-GEP using the standard pthreads library. We varied the number of
concurrent threads from 1 to 8 on a 4×dual-core AMD Opteron 875 (with private L1 and L2 caches for
each core) and used I-GEP to perform matrix multiplication, Gaussian elimination without pivoting and
Floyd-Warshall’s APSP on input 5000×5000 matrices. We used the default scheduling policy on Linux.
In Figure 21 we plot the speed-up factors achieved by multithreaded I-GEP over its unthreaded version
as the number of concurrent threads is increased. For matrix multiplication and Gaussian elimination
without pivoting we also plot the speed-up factors achieved by multithreaded GotoBLAS.

For square matrix multiplication I-GEP speeds up by a factor of 6 when the number of concurrent
threads increases from 1 to 8, while for Gaussian elimination without pivoting and Floyd-Warshall’s
APSP the speed-up factors are smaller, i.e., 5.33 and 5.73, respectively. As mentioned in Section 5,
I-GEP for matrix multiplication has more parallelism than I-GEP for Gaussian elimination without
pivoting and Floyd-Warshall’s APSP, which could explain the better speed-up factor for matrix
multiplication. We also observe from Figure 21 that the I-GEP ’s performance gain with each additional
thread drops when the number of threads exceeds 4. This happens because the two cores in each Opteron
875 processor share one memory controller. Since there are 4 processors, when the number of threads
is at most 4, the scheduler can assign each thread to a different processor so that each thread can
utilize the full memory controller throughput of the processor it is assgined to. However, when the
number of threads exceeds 4, both cores of one or more processors will have threads assigned to them,
and thus the memory controller of each such processor will be shared by at least two threads. As a
result performance gain drops when a memory controller can not keep up with the combined memory
bandwidth requirements of the threads it is serving. This situation can be improved by assigning
concurrent threads that share input data to the same processor whenever two or more such threads
must be executed by the same processor.

27

Gijk(c, 1, n)

(The input c[1 . . . n, 1 . . . n] is an n × n matrix. Func-
tion f(·, ·, ·, ·) is a problem-specific function, and ΣGijk

is a
problem-specific set of updates to be applied on c.)

1. for i← 1 to n do

2. for j ← 1 to n do

3. for k ← 1 to n do

4. if 〈i, j, k〉 ∈ ΣGijk
then

c[i, j]← f(c[i, j], c[i, k], c[k, j], c[k, k])

Gikj(c, 1, n)

(The input c[1 . . . n, 1 . . . n] is an n × n matrix. Func-
tion f(·, ·, ·, ·) is a problem-specific function, and ΣGikj

is a
problem-specific set of updates to be applied on c.)

1. for i← 1 to n do

2. for k ← 1 to n do

3. for j ← 1 to n do

4. if 〈i, j, k〉 ∈ ΣGikj
then

c[i, j]← f(c[i, j], c[i, k], c[k, j], c[k, k])

Figure 22: Two simple variants of GEP (Figure 1) obtained by rearranging the for loops.

GotoBLAS scales up better than our current implementation of multithreaded I-GEP as the
number of threads increases, and with 8 threads it reaches speed-up factors of 7.6 and 6.75 for matrix
multiplication (Figure 21(a)) and Gaussian elimination without pivoting (Figure 21(b)), respectively.
Though in the first case GotoBLAS scales up almost linearly up to 8 threads, in the second case its
performance gain drops more noticably after 4 threads.

We consider it likely that the performance of multithreaded I-GEP can be improved by using the
scheduling policies described in Section 5 instead of the default policy on Linux.

7.4 Summary of Experimental Results
We draw the following conclusions from our results:

– In our experiments I-GEP always outperformed both variants of C-GEP (see Section 7.1). The
4n2-space variant of C-GEP almost always outperformed the (n2 +n)-space variant, and it is also easier
to implement. Therefore, if disk space is not at a premium, the 4n2-space C-GEP should be used instead
of the (n2 + n)-space variant, and I-GEP is preferable to both variants of C-GEP whenever applicable.

– When the computation is in-core, I-GEP runs about 5–6 times faster than even some reasonably
optimized versions of GEP. It has been reported in [26] that I-GEP runs slightly slower than GEP on
Intel P4 Xeon for Floyd-Warshall’s APSP when the prefetchers are turned on. We believe that we get
dramatically better results for I-GEP in part because unlike [26] we arrange the entries of each base-
case submatrix in a prefetecher-friendly layout, i.e., in row-major order (see Section 7.2). Note that we
include the cost of converting to and from this layout in the time bounds we report.

– BLAS routines run about 1.5 times faster than I-GEP. However, I-GEP is cache-oblivious and is
implemented in a high level language, while BLAS routines are cache-aware and employ numerous low-
level machine-specific optimizations in assembly language. The cache-miss results in Section 7.2 indicate
that the cache performance of I-GEP is at least as good as that of native BLAS. Hence the performance
gain of native BLAS over I-GEP is most likely due to optimizations other than cache-optimizations.

– Our I-GEP/C-GEP code for in-core computations can be used for out-of-core computations
without any changes, while BLAS is optimized for in-core computations only.

– I-GEP/C-GEP can be parallelized very easily, and speeds up reasonably well as the number of
processors (i.e., concurrent threads) increases. However, current systems offer very limited flexibility
in scheduling tasks to processors, and we believe that performance of multithreaded I-GEP can be
improved further if better scheduling policies are used.

8 Conclusion

We have presented a cache-oblivious framework for problems that can be solved using a construct
similar to the computation in Gaussian elimination without pivoting (i.e., using a GEP construct). We
have proved that this framework can be used to obtain efficient in-place cache-oblivious algorithms for

28

several important classes of practical problems. We have also shown that if we are allowed to use only
n2 + n extra space, where n2 is the size of the input matrix, we can obtain an efficient cache-oblivious
algorithm for any problem that can be solved using a GEP construct. In addition to the practical
problems solvable using this framework, it also has the potential of being used by optimizing compilers
for loop transformation [25]. However, several important open questions still exist. For example, can we
solve GEP in its full generality without using any extra space, or at least using o

(

n2
)

space? Also can
we obtain general cache-oblivious frameworks for other variants of GEP (for example, for those shown
in Figure 22).

Acknowledgement. We would like to thank Matteo Frigo for his comments. We also thank David
Roche for his help in setting up STXXL.

References

[1] Fujitsu MAP3147NC/NP MAP3735NC/NP MAP3367NC/NP disk drives product/maintenance manual.
[2] U. A. Acar, G. E. Blelloch, and R. D. Blumofe. The data locality of work stealing. In Proceedings of the

12th annual ACM symposium on Parallel Algorithms and Architectures, pages 1–12, New York, NY, USA,
2000. ACM.

[3] A. Aggarwal and J. Vitter. The input/output complexity of sorting and related problems. Communications
of the ACM.

[4] A. Aho, J. Hopcroft, and J. Ullman. The Design and Analysis of Computer Algorithms. Addison-Wesley,
1974.

[5] G. Blelloch, R. Chowdhury, P. Gibbons, V. Ramachandran, S. Chen, and M. Kozuch. Provably good
multicore cache performance for divide-and-conquer algorithms. In Proceedings of the 19th Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 501–510, San Francisco, California, 2008.

[6] G. Blelloch and P. Gibbons. Effectively sharing a cache among threads. In Proceedings of the 16th ACM
Symposium on Parallelism in Algorithms and Architectures, pages 235–244, Barcelona, Spain, 2004.

[7] R. Blumofe, M. Frigo, C. Joerg, C. Leiserson, and K. Randall. An analysis of DAG-consistent distributed
shared-memory algorithms. In Proceedings of the 8th ACM Symposium on Parallel Algorithms and
Architectures, pages 297–308, 1996.

[8] S. Chatterjee, A. Lebeck, P. Patnala, and M. Thotethodi. Recursive array layouts and fast parallel matrix
multiplication. In Proceedings of the 11th ACM Symposium on Parallel Algorithms and Architectures, pages
222–231, 1999.

[9] R. Chowdhury and V. Ramachandran. Cache-oblivious dynamic programming. In Proceedings of the 17th
ACM-SIAM Symposium on Discrete Algorithms, pages 591–600, Miami, Florida, 2006.

[10] R. Chowdhury and V. Ramachandran. The cache-oblivious Gaussian Elimination Paradigm: Theoretical
framework, parallelization and experimental evaluation. In Proceedings of the 19th ACM Symposium on
Parallelism in Algorithms and Architectures, pages 71–80, San Diego, California, 2007.

[11] R. Chowdhury and V. Ramachandran. Cache-efficient dynamic programming algorithms for multicores. In
Proceedings of the 20th ACM Symposium on Parallelism in Algorithms and Architectures, pages 207–216,
Munich, Germany, 2008.

[12] R. Chowdhury, F. Silvestri, B. Blakeley, and V. Ramachandran. Oblivious algorithms for multicores and
network of processors (to appear). In Proceedings of the 24th IEEE International Parallel and Distributed
Processing Symposium, Atlanta, Georgia, April 2010.

[13] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms. The MIT Press, second
edition, 2001.

[14] P. D’Alberto and A. Nicolau. R-Kleene: a high-performance divide-and-conquer algorithm for the all-pair
shortest path for densely connected networks. Algorithmica, 47(2):203–213, 2007.

[15] R. Dementiev, L. Kettner, and P. Sanders. STXXL: Standard template library for XXL data sets. In
Proceedings of the 13th Annual European Symposium on Algorithms, LNCS 1004, pages 640–651. Springer-
Verlag, 2005.

29

[16] R. Floyd. Algorithm 97 (SHORTEST PATH). Communications of the ACM, 5(6):345, 1962.
[17] M. Frigo, C. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious algorithms. In Proceedings of

the 40th Annual Symposium on Foundations of Computer Science, pages 285–297, 1999.
[18] M. Frigo, C. Leiserson, and K. Randall. The implementation of the Cilk-5 multithreaded language. In

Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation,
pages 212–223, Montreal, Canada, 1998.

[19] M. Frigo and V. Strumpen. The cache complexity of multithreaded cache oblivious algorithms. In
Proceedings of the 18th ACM Symposium on Parallelism in Algorithms and Architectures, pages 271–280,
Cambridge, Massachusetts, 2006.

[20] K. Goto. GotoBLAS, 2005. url: http://www.tacc.utexas.edu/resources/software.
[21] J. Gunnels, F. Gustavson, G. Henry, and R. van de Geijn. FLAME: Formal linear algebra methods

environment. ACM Transactions on Mathematical Software, 27(4):422–455, 2001.
[22] J. Hong and H. Kung. I/O complexity: the red-blue pebble game. In Proceedings of the 13th Annual ACM

Symposium on Theory of Computing, pages 326–333, 1981.
[23] K. Iversion. A Programming Language. Wiley, 1962.
[24] D. Knuth. Two notes on notation. American Mathematical Monthly, 99:403–422, 1992.
[25] S. Muchnick. Advanced Compiler Design & Implementation. Morgan Kaufmann Publishers, Inc., 1997.
[26] S. Pan, C. Cherng, K. Dick, and R. Ladner. Algorithms to take advantage of hardware prefetching. In

Proceedings of the 9th Workshop on Algorithm Engineering and Experiments, pages 91–98, 2007.
[27] J. Park, M. Penner, and V. Prasanna. Optimizing graph algorithms for improved cache performance. IEEE

Transactions on Parallel and Distributed Systems, 15(9):769–782, 2004.
[28] D. Powell, L. Allison, and T. Dix. Automated empirical optimization of software and the ATLAS project.

Parallel Computing, 27(1–2):3–35, 2001. url: http://math-atlas.sourceforge.net.
[29] J. Seward and N. Nethercote. Valgrind (debugging and profiling tool for x86-Linux programs). url:

http://valgrind.kde.org/index.html.
[30] S. Toledo. Locality of reference in LU decomposition with partial pivoting. SIAM Journal on Matrix

Analysis and Applications, 18(4):1065–1081, 1997.
[31] S. Warshall. A theorem on boolean matrices. Journal of the ACM, 9(1):11–12, 1962.
[32] M. Wolf and M. Lam. A data locality optimizing algorithm. In Proceedings of the ACM SIGPLAN 1991

Conference on Programming Language Design and Implementation, pages 30–44, 1991.
[33] D. Womble, D. Greenberg, S. Wheat, and R. Riesen. Beyond core: Making parallel computer I/O practical.

In Proceedings of the 1993 DAGS/PC Symposium, pages 56–63, 1993.
[34] K. Yotov, T. Roeder, K. Pingali, J. Gunnels, and F. Gustavson. An experimental comparison of cache-

oblivious and cache-aware programs. In Proceedings of the 19th ACM Symposium on Parallelism in
Algorithms and Architectures, pages 93–104, San Diego, California, 2007.

30

APPENDIX

A Formal Definitions of δ and π

In Section 2 we defined functions π and δ (see Definition 2.5) based on the notions of aligned subintervals
and aligned subsquares. In this section we define these two functions more formally in closed form.

Recall from Definition 2.5(a) that for x, y, z ∈ [1, n], δ(x, y, z) is defined as follows.

• If x = y = z, then δ(x, y, z) = z − 1.

• If x 6= z or y 6= z, then δ(x, y, z) = b for the largest aligned subsquare [a, b], [a, b] of c[1 . . . n, 1 . . . n]
that contains (z, z), but not (x, y), and this subsquare is denoted by S(x, y, z). Now consider the
initial function call F(X, k1, k2) on c with X ≡ c, k1 = 1 and k2 = n, where n = 2q for some
integer q ≥ 0. We know from Lemma 2.7(a) that if S(x, y, z) is one of the quadrants of X then
it must be either X11 or X22, otherwise S(x, y, z) must be entirely contained in one of those two
quadrants. Hence, in order to locate S(x, y, z) in X and thus to calculate the value of δ(x, y, z)
we need to consider the following four cases:

(i) (z, z) ∈ X11 and (x, y) /∈ X11: X11 ≡ S(x, y, z) and δ(x, y, z) = 2q−1 by definition.

(ii) (z, z) ∈ X22 and (x, y) /∈ X22: X22 ≡ S(x, y, z) and δ(x, y, z) = 2q by definition.

(iii) (z, z) ∈ X11 and (x, y) ∈ X11: S(x, y, z) ∈ X11, and compute δ(x, y, z) recursively from X11.

(iv) (z, z) ∈ X22 and (x, y) ∈ X22: S(x, y, z) ∈ X22, and compute δ(x, y, z) recursively from X22.

Now for each integer u ∈ [1, 2q], define u′ = u− 1 which is a q-bit binary number u′qu
′
q−1 . . . u′2u

′
1.

Then it is easy to verify that the following recursive function ρ(x, y, z, q) captures the recursive
method of computing δ(x, y, z) described above, i.e., δ(x, y, z) = ρ(x, y, z, q) if x 6= z or y 6= z.

ρ (x, y, z, q) =

2q−1 if
(

x′q = 1 ∨ y′q = 1
)

∧ z′q = 0

2q if
(

x′q = 0 ∨ y′q = 0
)

∧ z′q = 1

ρ (x, y, z, q − 1) if x′q = y′q = z′q = 0,

2q−1 + ρ
(

x− 2q−1, y − 2q−1, z − 2q−1, q − 1
)

if x′q = y′q = z′q = 1.

We can derive a closed form for ρ (x, y, z, q) from its recursive definition given above. Let ⊡, ⊞,
and ⊠ denote the bitwise AND, OR and XOR operators, respectively, and define

(a) α(x, y, z) = 2⌊log2 {((x−1) ⊠ (z−1)) ⊞ ((y−1) ⊠ (z−1))}⌋,

(b) u = 2r − 1− u (bitwise NOT), and

(c) β(x, y, z) =
(

x− 1 ⊞ y − 1
)

⊡ (z − 1).

Then

ρ (x, y, z, q) =

⌊

z − 1

2α(x, y, z)

⌋

· 2α(x, y, z) + α(x, y, z) + α(x, y, z) ⊡ β(x, y, z) (A.3)

31

Now we can formally define function δ : [1, 2q]× [1, 2q]× [1, 2q]→ [0, 2q] as follows.

δ(x, y, z) =

{

z − 1 if x = y = z,
ρ(x, y, z, q) otherwise (i.e., x 6= z ∨ y 6= z).

The explicit (nonrecursive) definition of δ is the following, based on A.3.

δ(x, y, z) =

{

z − 1 if x = y = z,
⌊

z−1
2α(x,y,z)

⌋

· 2α(x, y, z) + α(x, y, z) + α(x, y, z) ⊡ β(x, y, z) otherwise.

From Definition 2.5(b), we have that function π : [1, 2q] × [1, 2q] → [0, 2q] is the specialization of δ
to one dimension, hence we obtain:

π(x, z) = δ(x, x, z) =

{

z − 1 if x = z,
ρ(x, x, z, q) otherwise (i.e., x 6= z).

Using the closed form for ρ, we can write π in a closed form as follows:

π(x, z) =

{

z − 1 if x = z,
⌊

z−1
2α′(x,z)

⌋

· 2α′(x, z) + α′(x, z) + x− 1 ⊡ (z − 1) ⊡ α′(x, z) otherwise;

where α′(x, z) = α(x, x, z) = 2⌊log2 {((x−1) ⊠ (z−1)⌋.

B Static Pruning of I-GEP

In Section 2, the test in line 1 of Figure 2 enables function F to decide during runtime whether the
current recursive call is necessary or not, and thus avoid taking unnecessary branches in its recursion
tree. However, if the update set ΣG is available offline (which is usually the case), we can eliminate
some of these unnecessary branchings from the code during the transformation of G to F, and thus save
on some overhead. We can perform this type of static pruning of F as follows.

Recall that X ≡ c[i1 . . . i2, j1 . . . j2] is the input submatrix, and [k1, k2] is the range of k-values
supplied to F, and they satisfy the input conditions 2.1. Let U ≡ c[i1 . . . i2, k1 . . . k2] and V ≡
c[k1 . . . k2, j1 . . . j2]. Input conditions 2.1 imply nine possible arrangements (i.e., relative positions) of
X, U and V . For each of these arrangement we give a different name (A, B1, B2, C1, C2, D1, D2,
D3 or D4) to F (see Figure 14) which we call an instantiation of F. Given an instantiation F′ of F,
Figure 13 expresses the corresponding arrangement of X, U and V as a relationship P (F ′) among the
indices i1, i2, j1, j2, k1 and k2. Figure 11 reproduces F from Figure 2, but replaces the recursive calls in
lines 6 and 7 of Figure 2 with instantiations of F (in lines 3 and 4 of Figure 11). A given computation
need not necessarily make all recursive calls in lines 3 and 4. Whether a specific recursive call to a
function F′ (say) will be made or not depends on P (F ′) (see Figure 13) and the GEP instance at hand.
For example, if i ≥ k holds for every update 〈i, j, k〉 ∈ ΣG, then we do not make any recursive call to
function C2 since the indices in the updates can never satisfy P (C2). The I-GEP implementation of
the code for Gaussian elimination without pivoting can employ static pruning very effectively, in which
case, we can eliminate all recursive calls except for those to A, B1, C1 and D1.

32

