
The Cache-oblivious Gaussian Elimination Paradigm:
Theoretical Framework, Parallelization and Experimental

Evaluation ∗

Rezaul Alam Chowdhury
The University of Texas at Austin

Department of Computer Sciences
Austin, TX 78712

shaikat@cs.utexas.edu

Vijaya Ramachandran
The University of Texas at Austin

Department of Computer Sciences
Austin, TX 78712

vlr@cs.utexas.edu

ABSTRACT
The Gaussian Elimination Paradigm (GEP) was introduced
by the authors in [6] to represent the triply-nested loop
computation that occurs in several important algorithms
including Gaussian elimination without pivoting and Floyd-
Warshall’s all-pairs shortest paths algorithm. An efficient
cache-oblivious algorithm for these instances of GEP was
presented in [6]. In this paper we establish several important
properties of this cache-oblivious framework, and extend the
framework to solve GEP in its full generality within the same
time and I/O bounds. We then analyze a parallel implemen-
tation of the framework and its caching performance for both
shared and distributed caches. We present extensive experi-
mental results for both in-core and out-of-core performance
of our algorithms. We consider both sequential and parallel
implementations of our algorithms, and compare them with
finely-tuned cache-aware BLAS code for matrix multiplica-
tion and Gaussian elimination without pivoting. Our results
indicate that cache-oblivious GEP offers an attractive trade-
off between efficiency and portability.

Categories and Subject Descriptors
B.3.2 [Memory Structures]: Design Styles—Cache mem-
ories; F.3.3 [Studies of Program Constructs]: Program
and recursion schemes

General Terms
Algorithms, Theory, Performance, Experimentation

Keywords
Cache-oblivious algorithm, Gaussian elimination, all-pairs
shortest path, matrix multiplication, tiling

1. INTRODUCTION
Cache-efficient algorithms improve execution time by ex-

ploiting data parallelism inherent in the transfer of blocks of
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useful data between adjacent memory levels. By increasing
locality in their memory access patterns, these algorithms
try to keep the number of block transfers small. The ideal-
cache model [11] is a further refinement that enables the de-
velopment of system-independent cache-efficient algorithms
that simultaneously adapt to all levels of a multi-level mem-
ory hierarchy. This leads to fuller use of data parallelism
and also produces portable code. The ideal-cache model
represents the memory hierarchy with two memory levels
— a cache of size M with an optimal offline cache replace-
ment policy and an unlimited main memory partitioned into
blocks of size B. The cache complexity of an algorithm is
the number of I/Os (i.e., block transfers) performed between
these two levels. Algorithms designed for this model are
known as cache-oblivious algorithms since they do not use
knowledge of M and B.

In [6] we introduced the Gaussian Elimination Paradigm
(GEP) for triply-nested loop computations similar to that
in Gaussian elimination without pivoting. Traditional GEP
implementations run in O

�
n3
�

time, O
�
n2
�

space and incur

O
�

n3

B

�
I/Os. In [6] we presented a framework for in-place

cache-oblivious execution of several important algorithms in
GEP including Gaussian elimination and LU-decomposition
without pivoting, all-pairs shortest paths and matrix mul-
tiplication; we also adapted this framework to solve impor-
tant non-GEP problems such as sequence alignment with
arbitrary gap function, and a class of dynamic programs
termed as ‘simple-DP’ [5]. This cache-oblivious implemen-

tation, which we call here I-GEP, incurs only O
�

n3

B
√

M

�
I/Os while still running in O

�
n3
�

time and without using
any extra space. However, there exist some examples of
GEP triply-nested loops for which I-GEP fails to produce
correct results.

In this paper we establish several properties of I-GEP. We
then build on these results to derive C-GEP, which has the
same time and I/O bounds as I-GEP, but unlike I-GEP is
a provably correct cache-oblivious implementation of GEP
in its full generality. C-GEP uses a modest amount of extra
space. We present experimental results that show that both
I-GEP and C-GEP significantly outperform GEP especially
in out-of-core computations, although improvements in com-
putation time are already realized during in-core computa-
tions. We present a parallel version of I-GEP, and analyze
its parallel running time as well as its caching performance
under both distributed and shared caches, and we present
some experimental results on our pthreads implementation



of parallel I-GEP. Finally we present experimental results
comparing performance of I-GEP with that of highly op-
timized cache-aware BLAS routines for matrix multiplica-
tion and Gaussian elimination without pivoting. Our results
show that our implementation of I-GEP runs moderately
slower than native BLAS; however, I-GEP performs fewer
number of cache misses, is much simpler to code, easily sup-
ports pthreads and is portable across machines.

Two papers related to our work appear in these proceed-
ings [3, 26]. Experimental studies similar to some of our
experimental work are reported in [26] and are discussed in
Section 4.2. The parallel performance of cache-aware dense
linear algebra matrix computations on SMP architectures is
considered in [3].

Organization of the Paper. In the rest of this section we
summarize the earlier results from [6] on I-GEP, and related
work. In Section 2 we derive some key properties of I-GEP,
and use these to derive the fully general C-GEP. We also
briefly address the potential application of I-GEP and C-
GEP in optimizing compilers in Section 2.3. In Section 3 we
present and analyze parallel I-GEP (and C-GEP). Finally,
in Section 4 we present all of our experimental results: in
Section 4.1 we present results comparing C-GEP, I-GEP and
GEP for Floyd-Warshall, in Section 4.2 results comparing
I-GEP to BLAS routines, and in Section 4.3 experimental
results on parallel I-GEP using pthreads.

1.1 The Gaussian Elimination Paradigm (GEP)
Let c[1 . . . n, 1 . . . n] be an n× n matrix with entries cho-

sen from an arbitrary set S , and let f : S × S × S × S → S
be an arbitrary function. By GEP (or the Gaussian Elimi-
nation Paradigm), we refer to the computation in Figure 1,
where the algorithm G modifies c by applying a given set of
updates of the form c[i, j] ← f(c[i, j], c[i, k], c[k, j], c[k, k]),
where i, j, k ∈ [1, n]; here 〈i, j, k〉 (1 ≤ i, j, k ≤ n) denotes
an update of the form c[i, j]← f(c[i, j], c[i, k], c[k, j], c[k, k]),
and we let ΣG denote the set of such updates that the algo-
rithm needs to perform.

As noted in [6] many practical problems can be solved
using the GEP construct, including all-pairs shortest paths,
LU decomposition, and Gaussian elimination without piv-
oting. Other problems such as simple dynamic program [5]
can be solved using GEP through structural transformation.

We note the following properties of G, which are easily
verified by inspection: Given ΣG, G applies each 〈i, j, k〉 ∈
ΣG on c exactly once, and in a specific order. Given any
two distinct updates 〈i1, j1, k1〉 ∈ ΣG and 〈i2, j2, k2〉 ∈ ΣG,
the update 〈i1, j1, k1〉 will be applied before 〈i2, j2, k2〉 if
k1 < k2, or if k1 = k2 and i1 < i2, or if k1 = k2 and i1 = i2
but j1 < j2. The running time of G is O

�
n3
�

and its I/O

complexity is O
�
n3/B

�
.

Figure 2 presents a recursive function F, also from [6],
which we will refer to as I-GEP. As noted in [6], I-GEP is
a provably correct implementation of GEP for several im-
portant special cases of f and ΣG, including all cases cor-
responding to the problems mentioned above. (I-GEP does
not solve GEP in its full generality, however.)

I-GEP is cache-oblivious with I/O complexity O
�

n3

B
√

M

�
assuming a tall cache (i.e., M = Ω

�
B2
�
) [6]. This bound is

tight for general GEP [6]. It also computes in-place.
In the rest of the paper we assume, without loss of gener-

ality, that n = 2q for some integer q ≥ 0.

1.2 Related Work
As discussed in [6] there exist O

�
n3
�

time and O
�

n3

B
√

M

�
I/O cache-oblivious algorithms for several problems that can
be solved using GEP: Floyd-Warshall’s APSP [20, 8], Gaus-
sian elimination w/o pivoting [23, 2], matrix multiplication
[11] and simple DP [5]. The main attraction of our cache-
oblivious approach to the Gaussian Elimination Paradigm
is that it unifies all problems mentioned above and possi-
bly many others under the same framework, and presents a
single I/O-efficient cache-oblivious solution for all of them.

2. I-GEP AND C-GEP
We start by analyzing F from [6] given in Figure 2, which

we call I-GEP. The inputs to F are a square submatrix X
of c[1 . . . n, 1 . . . n], and indices k1 and k2, which satisfy the
following constraints:

Input Conditions 2.1. If X ≡ c[i1 . . . i2, j1 . . . j2], and
k1 and k2 are the inputs to F in Figure 2, then

(a) i2 − i1 = j2 − j1 = k2 − k1 = 2q − 1 for some integer
q ≥ 0

(b) [i1, i2] 6= [k1, k2] ⇒ [i1, i2] ∩ [k1, k2] = ∅ and
[j1, j2] 6= [k1, k2] ⇒ [j1, j2] ∩ [k1, k2] = ∅

The base case occurs when k1 = k2, and F updates c[i1, j1]
to f(c[i1, j1], c[i1, k1], c[k1, j1], c[k1, k1]). Otherwise it splits
X into four quadrants (X11, X12, X21 and X22), and recur-
sively updates each quadrant in two passes: forward (line 5)
and backward (line 6). The initial function call is F(c, 1, n).

2.1 Properties of I-GEP
We state two theorems that reveal several important prop-

erties of F that will be used in Section 2.2 to extend I-GEP
to all GEP computations.

Recall that in Section 1.1 we defined ΣG to be the set of
all updates 〈i, j, k〉 performed by the original GEP algorithm
G in Figure 1. Analogously, let ΣF be the set of all updates
performed by F(c, 1, n). Assume each instruction executed
by F receives a unique time stamp, and let 〈i, j, k, t〉 denote
an update 〈i, j, k〉 applied by F at time t. Let ΠF be the set
of all updates 〈i, j, k, t〉 performed by F(c, 1, n).

The following theorem states that F applies each update
in ΣG exactly once, and no other updates; it also identifies
a partial order on the updates F performs. For the proof
see technical report [7].

Theorem 2.1. Let ΣG, ΣF and ΠF be the sets as defined
above. Then

(a) ΣF = ΣG, i.e., both F and G perform the same set of
updates;

(b) 〈i, j, k, t1〉 ∈ ΠF ∧ 〈i, j, k, t2〉 ∈ ΠF ⇒ t1 = t2, i.e.,
F performs each 〈i, j, k〉 at most once; and

(c) 〈i, j, k′
1, t1〉 ∈ ΠF ∧ 〈i, j, k′

2, t2〉 ∈ ΠF ∧ k′
2 >

k′
1 ⇒ t2 > t1, i.e., F updates each c[i, j] in increasing

order of k values.

We now introduce some terminology as well as two func-
tions π and δ which will be used in the next theorem. More
formal definitions of δ and π are in the technical report [7].

Definition 2.1. Let n = 2q for some integer q > 0.
(a) An aligned subinterval for n is an interval [a, b] with

1 ≤ a ≤ b ≤ n such that b−a+1 = 2r for some nonnegative
integer r ≤ q and a = c · 2r + 1 for some integer c ≥ 0.

(b) An aligned subsquare for n is a pair of aligned subin-
tervals [a, b], [a′, b′] with b− a + 1 = b′ − a′ + 1.



G(c, n, f, ΣG)

(Input c[1 . . . n, 1 . . . n] is an n×n matrix, f(·, ·, ·, ·) is an arbitrary problem-specific function, and ΣG is a problem-specific set
of triplets such that c[i, j]← f(c[i, j], c[i, k], c[k, j], c[k, k]) is executed in line 4 if 〈i, j, k〉 ∈ ΣG.)

1. for k ← 1 to n do

2. for i← 1 to n do

3. for j ← 1 to n do

4. if 〈i, j, k〉 ∈ ΣG then c[i, j] ← f(c[i, j], c[i, k], c[k, j], c[k, k])

Figure 1: GEP: Triply nested for loops typifying code fragment with structural similarity to the
computation in Gaussian elimination without pivoting.

F(X, k1, k2)

(X[1 . . . 2q, 1 . . . 2q ] ≡ c[i1 . . . i2, j1 . . . j2] for some integer q ≥ 0. Function f and set ΣG are as defined in Figure 1 and assumed
to be available globally. Function F assumes input conditions 2.1. The initial call to F is F(c, 1, n) for an n× n input matrix
c, where n is assumed to be a power of 2.)

1. if TX,[k1 ,k2] ∩ ΣG = ∅ then return
�

TX,[k1,k2] = {〈i, j, k〉|i ∈ [i1, i2] ∧ j ∈ [j1, j2] ∧ k ∈ [k1, k2]}
	

2. if k1 = k2 then c[i1, j1]← f(c[i1, j1], c[i1, k1], c[k1, j1], c[k1, k1])

3. else {quadrants of X: X11 (top-left), X12 (top-right), X21 (bottom-left) and X22 (bottom-right)}

4. km ←
j

k1+k2
2

k
5. F (X11, k1, km), F (X12, k1, km), F (X21, k1, km), F (X22, k1, km) {forward pass}

6. F (X22, km + 1, k2), F (X21, km + 1, k2), F (X12, km + 1, k2), F (X11, km + 1, k2) {backward pass}

Figure 2: Cache-oblivious I-GEP. For several special cases of f and ΣG in Figure 1, F performs
the same computation as G [6], though there are exceptions (see Section 2.2.1).

Definition 2.2. Let x, y, z ∈ [1, n] be integers.
(a) For x 6= z or y 6= z, we define δ(x, y, z) to be b for the

largest aligned subsquare [a, b], [a, b] that contains (z, z), but
not (x, y). If x = y = z we define δ(x, y, z) to be z − 1.

(b) For x 6= z, we define π(x, z) to be b for the largest
aligned subinterval [a, b] that contains z but not x. If x = z
we define π(x, z) = z − 1.

Let ck(i, j) denote the value of c[i, j] after all updates
〈i, j, k′〉 ∈ ΣG with k′ ≤ k, and no other updates have been
applied on it by F. The following theorem (proof in tech
report [7]) identifies the exact states of c[i, k], c[k, j] and
c[k, k] immediately before 〈i, j, k〉 is applied. One implica-
tion of this theorem is that the total order of the updates as
applied by F and G can be different (see Section 2.2.1).

Theorem 2.2. Let δ and π be as defined in Definition
2.2. Then immediately before function F performs the up-
date 〈i, j, k〉 (i.e., before it executes c[i, j] ← f(c[i, j], c[i, k],
c[k, j], c[k, k])), the following hold: c[i, j] = ck−1(i, j), c[i, k]
= cπ(j,k)(i, k), c[k, j] = cπ(i,k)(k, j) and c[k, k] = cδ(i,j,k)(k, k).

2.2 C-GEP: Extension of I-GEP to Full
Generality

In order to express mathematical expressions with condi-
tionals in compact form, in this section we will use Iverson’s
convention [16] in which |E| is used to denote the value of a
Boolean expression E , where |E| = 1 if E is true and |E| = 0
if E is false.

2.2.1 A Closer Look at I-GEP
Recall that ck(i, j) denotes the value of c[i, j] after all

updates 〈i, j, k′〉 ∈ ΣG with k′ ≤ k, and no other updates
have been applied on c[i, j] by F, where i, j ∈ [1, n] and
k ∈ [0, n]. Let ĉk(i, j) be the corresponding value for G.

In the following table, we tabulate the exact states of
c[i, j], c[i, k], c[k, j] and c[k, k] immediately before G or F

applies an update 〈i, j, k〉 ∈ ΣG. Entries in the 2nd column
are determined by inspecting the code in Figure 1, while
those in the 3rd column follows from Theorem 2.2.

Cell G F

c[i, j] ĉk−1(i, j) ck−1(i, j)
c[i, k] ĉk−|j≤k|(i, k) cπ(j,k)(i, k)

c[k, j] ĉk−|i≤k|(k, j) cπ(i,k)(k, j)

c[k, k] ĉk−|(i<k) ∨ (i=k ∧ j≤k)|(k, k) cδ(i,j,k)(k, k)

Table 1: States of c[i, j], c[i, k], c[k, j] and c[k, k] imme-
diately before applying 〈i, j, k〉 ∈ ΣG.

It follows from Definition 2.2 that for i, j < k, π(j, k) 6=
k − |j ≤ k|, π(i, k) 6= k − |i ≤ k| and δ(i, j, k) 6= k − |(i <
k) ∨ (i = k ∧ j ≤ k)|. Therefore, though both G and F

start with the same input matrix, at certain points in the
computation F and G would supply different input values
to f while applying the same update 〈i, j, k〉 ∈ ΣG, and con-
sequently f could return different output values. Whether
the final output matrix returned by the two algorithms are
the same depends on f , ΣG and the input values.

As an example, consider a 2 × 2 matrix c, and let ΣG =
{〈i, j, k〉|1 ≤ i, j, k ≤ 2}. If initially c[1, 1] = c[1, 2] = c[2, 1] =
0 and c[2, 2] = 1, and f returns the sum of its input values,
then F will output c[2, 1] = 8, while G will output c[2, 1] = 2.

2.2.2 C-GEP using 4n2 Additional Space
We first define a quantity τij , which plays a crucial role in

the extension of I-GEP to the completely general C-GEP.

Definition 2.3. For 1 ≤ i, j, l ≤ n, we define τij(l) to
be the largest integer l′ ≤ l such that 〈i, j, l′〉 ∈ ΣG provided
such an update exists, and 0 otherwise.

The significance of τ can be explained as follows. We know
from Theorem 2.1 that both F and G apply the updates
〈i, j, k〉 in increasing order of k values. Hence, at any point
of time during the execution of F (or G) if c[i, j] is in state



H(X, k1, k2)

(X[1 . . . 2q, 1 . . . 2q ] ≡ c[i1 . . . i2, j1 . . . j2] for some integer q ≥ 0. Matrices u0, u1, v0 and v1 are global, and each initialized to c before the
initial call to H. Function f and set ΣG are as defined in Figure 1 and assumed to be available globally. Similar to F, H assumes input
conditions 2.1. The initial call is H(c, 1, n) for an n× n input matrix c, where n is assumed to be a power of 2.)

1. if TX,[k1 ,k2] ∩ ΣG = ∅ then return
�

TX,[k1,k2] = {〈i, j, k〉|i ∈ [i1, i2] ∧ j ∈ [j1, j2] ∧ k ∈ [k1, k2]}
	

2. if k1 = k2 then

3. i← i1, j ← j1, k← k1

4. c[i, j] ← f(c[i, j], u|j>k|[i, k], v|i>k|[k, j], u|(i>k) ∨ (i=k ∧ j>k)|[k, k])

5. if k = τij(j − 1) then u0[i, j] ← c[i, j]
�

τij(l) = max l′
�

l′ | l′ ≤ l ∧ 〈i, j, l′〉 ∈ ΣG ∪ {〈i, j, 0〉}
		

6. if k = τij(j) then u1[i, j] ← c[i, j]

7. if k = τij(i− 1) then v0[i, j] ← c[i, j]

8. if k = τij(i) then v1[i, j]← c[i, j]

9. else {quadrants of X: X11 (top-left), X12 (top-right), X21 (bottom-left) and X22 (bottom-right)}

10. km ←
j

k1+k2
2

k
11. H(X11, k1, km), H(X12, k1, km), H(X21, k1, km), H(X22, k1, km) {forward pass}

12. H(X22, km + 1, k2), H(X21, km + 1, k2), H(X12, km + 1, k2), H(X11, km + 1, k2) {backward pass}

Figure 3: C-GEP: A cache-oblivious implementation of GEP (in Figure 1) that works for all f and ΣG.

cl(i, j) (ĉl(i, j), resp.), where l 6= 0, then 〈i, j, τij(l)〉 is the
update that has left c[i, j] in this state.

We extend I-GEP to full generality by modifying F in
Figure 2 so that it performs updates according to the sec-
ond column of Table 1 instead of the third column. For
this, it suffices to modify F to save the value of c[i, j] im-
mediately after applying the update 〈i, j, k〉 ∈ ΣG for k ∈
{τij(i− 1), τij(i), τij(j − 1), τij(j)}, and then access the ap-
propriate saved values when evaluating f (see tech. report
[7] for more details). Since there are exactly n2 possible (i, j)
pairs, we need to save at most 4n2 intermediate values.

In Figure 3 we present the modified version of F, which
we call H. The only difference between F and H is in the way
the updates are performed. In line 2, F updates c[i, j] using
entries directly from c, i.e., it updates c[i, j] using whatever
values c[i, j], c[i, k], c[k, j] and c[k, k] have at the time of the
update. In contrast, H uses four n × n matrices u0, u1, v0

and v1 for saving appropriate intermediate values computed
for the entries of c as discussed above, which it uses for
future updates. For more details on correctness of H see
tech. report [7]. Assuming that each of the tests in lines
5–8 can be performed in constant time without additional
cache misses, the I/O and time complexity of H are the same
as those of F. We will refer to H as C-GEP.

Reducing the Additional Space. The amount of extra
space used by H (Figure 3) can be reduced by observing that
at any point during the execution of H we do not need to
store more than n2+n intermediate values for future use. In
tech. report [7] we use this observation to implement H using
only four additional n

2
× n

2
matrices and two vectors of length

n
2

each. Its time and I/O complexity remain unchanged.

2.3 Cache-Oblivious GEP and Compiler
Optimization

Tiling is a powerful cache-aware loop transformation tech-
nique employed by optimizing compilers for improving tem-
poral locality in nested loops [18, 24]. In contrast, both

I-GEP and C-GEP can be viewed as cache-oblivious tiling
for the triply nested loops of the form as shown in Figure 1.

Though C-GEP is a legal transformation for any loop in
GEP format, I-GEP is not. In tech report [7] we discuss
several conditions under which I-GEP is a legal transforma-
tion for a given GEP instance. I-GEP performs better than
C-GEP in practice (see Section 4) and is in-place. However,
the full generality of C-GEP along with the fact that it is a
simple variant of I-GEP makes C-GEP a potentially more
useful compiler optimization technique than I-GEP.

3. PARALLEL I-GEP AND C-GEP
In this section we consider parallel implementations of

I-GEP and C-GEP. It is not difficult to observe that the
second and third calls to F in line 5 of the pseudocode for
I-GEP given in Figure 2 can be performed in parallel while
maintaining correctness and all properties we have estab-
lished for I-GEP; similarly the second and third calls to F

in line 6 can be performed in parallel. A similar observa-
tion holds for lines 11 and 12 of H. The resulting parallel
code performs a sequence of 6 parallel calls (four calling F

or H once and two calling F or H twice), and hence with p
processors its parallel execution time is O

�
n3/p + nlog2 6

�
.

In Figure 6 we present a better parallel implementation
of I-GEP. In this figure we have explicitly referred to the
different types of functions invoked by I-GEP based on the
relative values of the i, j, and k intervals. Here we use the
notation introduced in [6] and summarized in Figures 4 and
5 (and in Figures 13 and 14 in the Appendix). The four types
of functions (i.e., A, Bl, Cl and Dl) differ in the amount and
type of overlap the input matrices X, U and V have among
them (note that only the diagonal entries of W are used).
Function A assumes that all three matrices overlap, while
function Dl expects completely non-overlapping matrices.
Function Bl assumes that only X and V overlap, while Cl

assumes overlap only between X and U . Intuitively, the less
the overlap among the input matrices the more flexibility the
function has in ordering its recursive calls, and thus leading



F(X, k1, k2) {F ∈ {A, B1, B2, C1, C2, D1, D2, D3, D4}}

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

5. F11(X11, k1, km), F12(X12, k1, km),

F21(X21, k1, km), F22(X22, k1, km)

6. F ′
22(X22, km + 1, k2), F ′

21(X21, km + 1, k2),

F ′
12(X12, km + 1, k2), F ′

11(X11, km + 1, k2)

Figure 4: I-GEP (partial) from Figure 2, but
here F is a template function. Calls in lines 5 &
6 are determined from Figure 5.

F F11 F12 F21 F22 F ′
22 F ′

21 F ′
12 F ′

11

A A B1 C1 D1 A B2 C2 D4

Bl (l = 1, 2) Bl Bl Dl Dl Bl Bl Dl+2 Dl+2

Cl (l = 1, 2) Cl D2l−1 Cl D2l−1 Cl D2l Cl D2l

Dl (l ∈ [1, 4]) Dl Dl Dl Dl Dl Dl Dl Dl

Figure 5: Functions recursively called by F in Figure 4.

A( X, U, V, W )

(Each of X, U , V and W points to the same 2q × 2q square submatrix of c for some integer q ≥ 0. The initial call to A is A(c, c, c, c) for an
n × n input matrix c, where n is assumed to be a power of 2.)

1. if TXUV ∩ ΣG = ∅ then return {TXUV = { updates on X using (i, k) ∈ U and (k, j) ∈ V },

and ΣG is the set of updates performed by iterative GEP}

2. if X is a 1× 1 matrix then X ← f( X, U, V, W )

else {The top-left, top-right, bottom-left and bottom-right quadrants

of X are denoted by X11, X12, X21 and X22, respectively.}
3. A( X11, U11, V11, W11 )

4. parallel : B1( X12, U11, V12, W11 ), C1( X21, U21, V11, W11 )

5. D1( X22, U21, V12, W11 )

6. A( X22, U22, V22, W22 )

7. parallel : B2( X21, U22, V21, W22 ), C2( X12, U12, V22, W22 )

8. D4( X11, U12, V21, W22 )

Bl( X, U, V, W ) { l ∈ {1, 2} }

(X ≡ V ≡ c[i1..i2, j1..j2] and U ≡ W ≡ c[i1..i2, k1..k2], where i2−i1
= j2 − j1 = k2−k1 = 2q − 1 for some integer q ≥ 0, [i1, i2] = [k1, k2]
and [j1, j2] ∩ [k1, k2] = ∅.)

1. if TXUV ∩ ΣG = ∅ then return

2. if X is a 1× 1 matrix then X ← f( X, U, V, W )

else

3. parallel : Bl( X11, U11, V11, W11 )

Bl( X12, U11, V12, W11 )

4. parallel : Dl( X21, U21, V11, W11 )

Dl( X22, U21, V12, W11 )

5. parallel : Bl( X21, U22, V21, W22 )

Bl( X22, U22, V22, W22 )

6. parallel : Dl+2( X11, U12, V21, W22 )

Dl+2( X12, U12, V22, W22 )

Cl( X, U, V, W ) { l ∈ {1, 2} }

(X ≡ U ≡ c[i1..i2, j1..j2] and V ≡ W ≡ c[k1..k2, j1..j2], where i2−i1
= j2− j1 = k2−k1 = 2q − 1 for some integer q ≥ 0, [j1, j2] = [k1, k2]
and [i1, i2] ∩ [k1, k2] = ∅.)

1. if TXUV ∩ ΣG = ∅ then return

2. if X is a 1× 1 matrix then X ← f( X, U, V, W )

else

3. parallel : Cl( X11, U11, V11, W11 )

Cl( X21, U21, V11, W11 )

4. parallel : D2l−1( X12, U11, V12, W11 )

D2l−1( X22, U21, V12, W11 )

5. parallel : Cl( X12, U12, V22, W22 )

Cl( X22, U22, V22, W22 )

6. parallel : D2l( X11, U12, V21, W22 )

D2l( X21, U22, V21, W22 )

Dl( X, U, V, W ) { l ∈ {1, 2, 3, 4} }

(X ≡ c[i1..i2, j1..j2], U ≡ c[i1..i2, k1..k2], V ≡ c[k1..k2, j1..j2] and W ≡ c[k1..k2, k1..k2], where i2 − i1 = j2 − j1 = k2 − k1 = 2q − 1 for
some integer q ≥ 0, [i1, i2] ∩ [k1, k2] = ∅, and [j1, j2] ∩ [k1, k2] = ∅.)

1. if TXUV ∩ ΣG = ∅ then return

2. if X is a 1× 1 matrix then X ← f( X, U, V, W )

else {The top-left, top-right, bottom-left and bottom-right quadrants

of X are denoted by X11, X12, X21 and X22, respectively.}

3. parallel : Dl( X11, U11, V11, W11 ), Dl( X12, U11, V12, W11 ),

Dl( X21, U21, V11, W11 ), Dl( X22, U21, V12, W11 )

4. parallel : Dl( X11, U12, V21, W22 ), Dl( X12, U12, V22, W22 ),

Dl( X21, U21, V21, W22 ), Dl( X22, U22, V22, W22 )

Figure 6: Multithreaded I-GEP. Initial call is A( c, c, c, c ) on an n× n matrix c, where n is a power of 2.



to better parallelism. The initial call is to an input of type
A, where the intervals for i, j and k are identical.

We now analyze the parallel execution time for I-GEP on
function A. Let TA(n) = T∞ denote the parallel running
time when A is invoked with an unbounded number of pro-
cessors on an n × n matrix. Let TB(n), TC(n) and TD(n)
denote the same for Bi, Ci and Di, respectively. We will as-
sume for simplicity that TA(1) = TB(1) = TC(1) = TD(1) =
O (1). Hence we have the following recurrences:

TA(n) ≤ 2(TA (n/2)+max {TB (n/2) , TC (n/2)}+TD (n/2))+8

TB(n) ≤ 2 (TB (n/2) + TD (n/2)) + 8

TC(n) ≤ 2 (TC (n/2) + TD (n/2)) + 8

TD(n) ≤ 2TD (n/2) + 8

Solving these recurrences we obtain T∞ = O
�
n log2 n

�
,

and thus the following theorem:

Theorem 3.1. When executed with p processors, multi-
threaded I-GEP performs T1 = O

�
n3
�

work and terminates

in T1
p

+ T∞ = O
�

n3

p
+ n log2 n

�
parallel steps on an n× n

input matrix.

A similar parallel algorithm with the same parallel time
bound applies to C-GEP.

For specific applications of I-GEP, the actual recursive
function calls may not take the most general form analyzed
above. For instance as noted in [6], only a subset of the
calls are made for Gaussian elimination without pivoting.
However, the parallel time bound remains the same as in
Theorem 3.1 for this problem as well as for all-pairs short-
est paths. On the other hand, for matrix multiplication, we
can perform all four recursive calls in each of steps 5 and 6
of Figure 4 in parallel and hence the parallel time bound is

reduced to O
�

n3

p
+ n

�
. Note that this matrix multiplica-

tion computation does not assume associativity of addition.
We have implemented this multithreaded version of I-GEP

for Floyd-Warshalls’s APSP, square matrix multiplication
and Gaussian elimination w/o pivoting in pthreads, and we
report some experimental results in Section 4.3.

3.1 Cache-Complexity
We first consider distributed caches, where each processor

has its own private cache, and then a shared cache, where
all processors share the same cache.

Distributed Caches. Part (b) of the following lemma is
obtained by considering the schedule that executes each sub-
problem of size n√

p
× n√

p
entirely on a single processor. This

schedule gives a better result than the one given in part (a)
for the work-stealing scheduler Cilk [12]; the bound in part
(a) is obtained by applying a result in [13] on the caching
performance of parallel algorithms whose sequential cache
complexity is a concave function of work.

Lemma 3.1. Consider multithreaded I-GEP executed with
p processors, each with a private cache of size M and block
size B.

(a) When executed by Cilk, with high probability I-GEP in-

curs O
 

n3

B
√

M
+

(p·n log2 n)
1
3 n2

B
+ p · n log2 n

!
cache misses.

(b) There exists a deterministic schedule which incurs only

O
�

n3

B
√

M
+
√

p · n2

B

�
cache misses.

Shared Caches. Here we consider the case when the p
processors share a single cache of size Mp. Part (a) of lemma
3.2 below is obtained using a general result for shared caches
given in [1] for a PDF (parallel depth first search) schedule.
Better bounds are obtained in part (b) of lemma 3.2 through
the following hybrid depth-first schedule.

Let G denote the computation DAG of I-GEP (i.e., func-
tion A), and let C(G) denote a new DAG obtained from G by
contracting each subDAG of G corresponding to a recursive
function call on an r × r submatrix to a supernode, where
r is a power of 2 such that

√
p ≤ r < 2

√
p. The subDAG in

G corresponding to any supernode v is denoted by S(v).
Now the hybrid scheduling scheme is applied on G as fol-

lows. The scheduler executes the nodes (i.e., supernodes) of
C(G) under 1df-schedule [1]. However, for each supernode
v, the scheduler uses a pdf-schedule with all p processors in
order to execute the subDAG S(v) of G before moving to
the next supernode. This leads to the following.

Lemma 3.2. For p ≥ 1 let multithreaded I-GEP execute
Tp parallel steps and incur Qp cache misses with p processors
and on a shared ideal cache of Mp blocks. Then

(a) With a pdf-schedule,
Qp ≤ Q1 if Mp ≥M1 + 9

2
n(log2 n + 2)(p− 1).

(b) With the hybrid depth-first schedule,

(i) Qp ≤ Q1 if Mp ≥M1 + 16p
3
2 ,

(ii) If M1 = Mp then Qp = O(Q1) provided p = O(Mp

2
3 ).

(c) For both schedules, Tp = O
�

n3

p
+ n log2 n

�
.

4. EXPERIMENTAL RESULTS
We ran our experiments on the three architectures listed

in Table 2. Each machine can perform at most two double
precision floating point operations per clock cycle. The peak
performance of each machine is thus measured in terms of
GFLOPS (or Giga FLoating point Operations Per Second)
which is two times the clock speed of the machine in GHz.

The Intel P4 Xeon machine is also equipped with a 73.5
GB Fujitsu MAP3735NC hard disk (10K RPM, 4.5 ms avg.
seek time, 64.1 to 107.86 MB/s data transfer rate) [17]. Our
out-of-core experiments were run on this machine. All ma-
chines run Ubuntu Linux 5.10 “Breezy Badger”. Each ma-
chine was exclusively used for experiments.

We used the Cachegrind profiler [21] for simulating cache
effects. For in-core computations all algorithms were imple-
mented in C using a uniform programming style and com-
piled using gcc 3.3.4 with optimization parameter -O3 and
limited loop unrolling.

We summarize our results below; all plots appear at the
end of this section.

4.1 GEP, I-GEP and C-GEP for APSP
In this section we present experimental results compar-

ing GEP, I-GEP and C-GEP implementations of Floyd-
Warshall’s APSP algorithm [10, 22] for both in-core and
out-of-core computations.

Out-of-Core Computation. For out-of-core computa-
tions we implemented GEP, I-GEP and C-GEP in C++,
and compiled using g++ 3.3.4 compiler with optimization
level -O3 and STXXL software library version 0.9 [9] for
external memory accesses. The STXXL library maintains
its own fully associative cache in RAM with pages from the



Model Processors Speed
Peak GFLOPS
(per processor)

L1 Cache L2 Cache RAM

Intel P4 Xeon 2 3.06 GHz 6.12 8 KB (4-way, B = 64 B) 512 KB (8-way, B = 64 B) 4 GB

AMD Opteron 250 2 2.4 GHz 4.8 64 KB (2-way, B = 64 B) 1 MB (8-way, B = 64 B) 4 GB

AMD Opteron 850
8

(4 dual-core)
2.2 GHz 4.4 64 KB (2-way, B = 64 B) 1 MB (8-way, B = 64 B) 32 GB

Table 2: Machines used for experiments.

disk, and allows users set the size of the cache (M) and the
block transfer size (B) manually. We compiled STXXL with
DIRECT-I/O turned on so that the OS does not cache data
from hard disk.

When the computation is out-of-core I/O wait times dom-
inate computation times. In Figure 7(a) we keep n and B
fixed and vary M . We observe that M has almost no ef-
fect on the I/O wait time of GEP while that of both I-GEP
and C-GEP decrease as M increases. In general, the I/O
wait time of GEP is several hundred times more than that
of I-GEP and C-GEP; for example, when only half of the
input matrix fits in internal memory GEP waits 500 times
more than I-GEP, and almost 180 times more than both
variants of C-GEP. In Figure 7(b) we keep n and M fixed,
and vary M/B (by varying B), and observe that in general,
I/O wait times increase linearly with the increase of M/B.
However, when M/B is small, the number of page faults in-
creases which affects the I/O performance of all algorithms.

In-Core Computation. In Figure 8 we plot the perfor-
mance of GEP and I-GEP on both Intel Xeon and AMD
Opteron 250. We optimized I-GEP as described in Section
4.2. On Intel Xeon I-GEP runs around 5 times faster than
GEP while on AMD Opteron it runs around 4 times faster.

In Figure 9 we plot the relative performance of I-GEP
and C-GEP on Intel Xeon. As expected, both versions of
C-GEP run slower and incur more L2 misses than I-GEP,
since they perform more write operations. However, this
overhead diminishes as n becomes larger. The (n2 + n)-
space variant of C-GEP performs slightly worse than the
4n2-space variant which we believe is due to the fact that the
(n2 +n)-space C-GEP needs to perform more initializations
and reinitializations of the temporary matrices (i.e., u0, u1,
v0 and v1) compared to the 4n2-space C-GEP.

4.2 Comparison of I-GEP and BLAS Routines
We compared the performance of our I-GEP code for

square matrix multiplication and Gaussian elimination with-
out pivoting on double precision floats with algorithms based
on highly fine-tuned Basic Linear Algebra Subprograms (BLAS).
We applied the following major optimizations on our basic
I-GEP routines before the comparison:

– In order to reduce the overhead of recursion we solve
the problem directly using a GEP-like iterative kernel as
the input submatrix X received by the recursive functions
becomes very small. We call the size of X at which we switch
to the iterative kernel the base-size. On each machine the
best value of base-size, i.e., for which the implementation
ran the fastest, was determined empirically. On Intel Xeon
it is 128 × 128 and on AMD Opteron it is 64× 64.

– We use SSE2 (“Streaming SIMD Extension 2”) instruc-
tions for increased throughput.

– For Gaussian elimination without pivoting we use a stan-
dard technique for reducing the number of division opera-

tions to o
�
n3
�

(i.e., by moving the division operations out
of the innermost loops).

– We use the bit-interleaved layout (e.g., see [11, 4]) for
reduced TLB misses. More specifically, we arrange the base
case size blocks in the bit-interleaved layout with data within
the blocks arranged in row-major layout. We include the
cost of converting to and from this format in the time bounds.

In Figure 11 we show the performance of square matrix
multiplication on AMD Opteron 250 with GEP (an opti-
mized version), I-GEP and Native BLAS, i.e., BLAS gen-
erated for the native machine using the automated empir-
ical optimization tool ATLAS [25]. We report the results
in ‘% peak’, e.g., an algorithm executing at ‘x% of peak’
spends x% of its execution time performing floating point
operations while remaining time is spent in other overheads
including recursion, loops, cache misses, etc. From the plots
in Figure 11 we observe:

– Native BLAS executes at 78–83% of peak while I-GEP
executes at 50–56% of peak. Traditional GEP reaches only
9–13% of peak. The GotoBLAS [15] which is usually the
fastest BLAS available for most machines (not shown in the
plots) runs at 85–88% of peak.

– I-GEP incurs fewer L1 and L2 misses than native BLAS.
– I-GEP executes more instructions than native BLAS.

We obtained similar results on Intel P4 Xeon.
In Figure 10 we plot the performance of Gaussian elimi-

nation without pivoting using GEP, I-GEP and GotoBLAS
[15] on both Intel Xeon and AMD Opteron 250. (Recall that
GotoBLAS is the fastest BLAS available for most machines.)
We used the LU decomposition (without pivoting) routine
available in FLAME [14] to implement Gaussian elimination
without pivoting using GotoBLAS. On both machines Go-
toBLAS executes at around 75–83% of peak while I-GEP
runs at around 45–55% of peak. Traditional GEP reaches
only 7–9% of peak.

Recursive square matrix multiplication using an iterative
base case similar to our implementations is studied in [26].
The experimental results in [26] report performance level
of only about 35% of peak for Intel P4 Xeon which is sig-
nificantly lower than what we obtain for the same machine
(50–58%). We conjecture that our improved performance is
partly due to our use of SSE2 instructions, especially since
[26] obtained performance levels of 60–75% for SUN Ultra-
SPARC IIIi, IBM Power 5 and Intel Itanium 2 using FMA
instructions. These latter results nicely complement our re-
sults for Intel P4 Xeon and AMD Opteron and further sug-
gest that reasonable performance levels can be reached for
square matrix multiplication on different architectures us-
ing relatively simple code that does not directly depend on
cache parameters.

Both our implementations and the ones in [26] experi-
mentally determined the best base-size since the overhead



of recursion becomes excessive if the recursion extends all
the way down to size 1. In [26] this is viewed as not being
purely cache-oblivious; however we consider the fine-tuning
of the base-size in recursive algorithms to be a standard op-
timization during implementation.

4.3 Multithreaded I-GEP
We implemented multithreaded I-GEP using the stan-

dard pthreads library. We varied the number of concurrent
threads from 1 to 8 on an 8-processor AMD Opteron 850
and used I-GEP to perform matrix multiplication, Gaussian
elimination without pivoting and Floyd-Warshall’s APSP on
input 5000× 5000 matrices. We used the default scheduling
policy on Linux. In Figure 12 we plot the speed-up fac-
tors achieved by multithreaded I-GEP over its unthreaded
version as the number of concurrent threads is increased.

For square matrix multiplication I-GEP speeds up by a
factor of 6 when the number of concurrent threads increases
from 1 to 8, while for Gaussian elimination without piv-
oting and Floyd-Warshall’s APSP the speed-up factors are
smaller, i.e., 5.33 and 5.73, respectively. As mentioned in
Section 3, I-GEP for matrix multiplication has more paral-
lelism than I-GEP for Gaussian elimination without pivoting
and Floyd-Warshall’s APSP, which could explain the better
speed-up factor for matrix multiplication.

4.4 Summary of Experimental Results
We draw the following conclusions from our results:
– In our experiments I-GEP always outperformed both

variants of C-GEP (see Section 4.1). The 4n2-space variant
of C-GEP almost always outperformed the (n2 + n)-space
variant, and it is also easier to implement. Therefore, if disk
space is not at a premium, the 4n2-space C-GEP should be
used instead of the (n2 + n)-space variant, and I-GEP is
preferable to both variants of C-GEP whenever applicable.

– When the computation is in-core, I-GEP runs about 5–6
times faster than even some reasonably optimized versions
of GEP. It has been reported in [19] that I-GEP runs slightly
slower than GEP on Intel P4 Xeon for Floyd-Warshall’s
APSP when the prefetchers are turned on. We believe that
we get dramatically better results for I-GEP in part because
unlike [19] we arrange the entries of each base-case subma-
trix in a prefetecher-freindly layout, i.e., in row-major order
(see Section 4.2). Note that we include the cost of converting
to and from this layout in the time bounds we report.

– BLAS routines run about 1.5 times faster than I-GEP.
However, I-GEP is cache-oblivious and is implemented in a
high level language, while BLAS routines are cache-aware
and employ numerous low-level machine-specific optimiza-
tions in assembly language. The cache-miss results in Sec-
tion 4.2 indicate that the cache performance of I-GEP is
at least as good as that of native BLAS. Hence the perfor-
mance gain of native BLAS over I-GEP is most likely due
to optimizations other than cache-optimizations.

– Our I-GEP/C-GEP code for in-core computations can
be used for out-of-core computations without any changes,
while BLAS is optimized for in-core computations only.

– I-GEP/C-GEP can be parallelized very easily, and speeds
up reasonably well as the number of processors (i.e., concur-
rent threads) increases. However, current systems offer very
limited flexibility in scheduling tasks to processors, and we
believe that performance of multithreaded I-GEP can be
improved further if better scheduling policies are used.
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Out-of-Core Performance of GEP, I-GEP and C-GEP for Floyd-Warshall’s APSP on Intel P4 Xeon��� ����� �	
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(b) I/O Wait Time with n = 4096 and M = 2n2 bytes as M/B Varies
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Figure 7: Comparison of out-of-core performance of GEP, I-GEP and C-GEP on Intel Pentium 4 Xeon with
a fast hard disk (10K RPM, 4.5 ms avg. seek time, 64 to 107 MB/s transfer rate).
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(b) Rate of Execution on AMD Opteron 250
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Figure 8: Comparison of I-GEP and GEP on Intel Xeon and AMD Opteron for computing Floyd-Warshall’s
all-pairs shortest paths. Both machines have two processors, but only one was used.

In-Core Performance of C-GEP relative to I-GEP for Floyd-Warshall’s APSP on Intel P4 XeonÜÝÞßà áâãäå æ çèé ê ëìíîï ð ñò ó ñ ô
(a) Runtimes (w.r.t. I-GEP) on Intel Xeon
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(b) L2 Misses (w.r.t. I-GEP) on Intel Xeon
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Figure 9: Comparison of in-core performance of I-GEP and C-GEP on Intel Pentium 4 Xeon.

Comparison of I-GEP and GotoBLAS for Gaussian Elimination without PivotingBCD EFGHI JKLKMNOP
(a) Rate of Execution on Intel Pentium 4 Xeon
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Figure 10: Comparison of I-GEP and GotoBLAS on Intel Xeon and AMD Opteron for performing Gaussian
elimination without pivoting. Both machines have two processors, but only one was used.



Comparison of I-GEP and Native BLAS Square Matrix Multiplication Routines on AMD Opteron 250��� ����� � ¡¢£¤ ¥¦§¨
(a) Rate of Execution
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(c) L2 Misses
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(d) Instruction Cache References
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Figure 11: Comparison of I-GEP and native BLAS square matrix multiplication routines on a 2.4 GHz dual
processor AMD Opteron 250 (only one processor was used).

Performance of I-GEP on an 8-processor AMD Opteron 850 as the Number of Concurrent Threads (i.e., Processor Usage) Vary

(a) Square Matrix Multiplication
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Figure 12: Performance of I-GEP on an 8-processor AMD Opteron 850 for square matrix multiplication,
Gaussian elimination w/o pivoting and Floyd-Warshall’s all-pairs shortest paths on 5000 × 5000 matrices as
number of concurrent threads is varied.

APPENDIX

F P (F )

A i1 = k1 ∧ j1 = k1

B1 i1 = k1 ∧ j1 > k2

B2 i1 = k1 ∧ j2 < k1

C1 i1 > k2 ∧ j1 = k1

C2 i2 < k1 ∧ j1 = k1

D1 i1 > k2 ∧ j1 > k2

D2 i1 > k2 ∧ j2 < k1

D3 i2 < k1 ∧ j1 > k2

D4 i2 < k1 ∧ j2 < k1

Figure 13: Function specific pre-
condition P (F ) for F in Figure 4 assuming
X ≡ c[i1 . . . i2, j1 . . . j2] (from [6]).
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Figure 14: Relative positions of U ≡ c[i1 . . . i2, k1 . . . k2] and
V ≡ c[k1 . . . k2, j1 . . . j2] w.r.t. X ≡ c[i1 . . . i2, j1 . . . j2] assumed
by different instantiations of F.


