
BIOINFORMATICS Vol. 00 no. 00 2005
Pages 1–8

A Dynamic Data Structure for Flexible Molecular
Maintenance and Informatics
Chandrajit Bajaj 1,∗, Rezaul Alam Chowdhury 1 and Muhibur Rasheed 1

1Department of Computer Science, University of Texas at Austin
Received on XXXXX; revised on XXXXX; accepted on XXXXX

Associate Editor: XXXXXXX

ABSTRACT
Motivation: We present the “Dynamic Packing Grid” (DPG), a
neighborhood data structure for maintaining and manipulating flexible
molecules and assemblies, for efficient computation of binding
affinities in drug design or in molecular dynamics calculations.
Results: DPG can efficiently maintain the molecular surface using
only linear space and supports quasi-constant time insertion, deletion
and movement (i.e., updates) of atoms or groups of atoms. DPG also
supports constant time neighborhood queries from arbitrary points.
Our results for maintenance of molecular surface and polarization
energy computations using DPG exhibit marked improvement in time
and space requirements.
Availability: http://www.cs.utexas.edu/∼bajaj/cvc/software/DPG.shtml
Contact:

1 INTRODUCTION
Many human functional processes are mediated through the
interactions amongst proteins, a major molecular constituent of
our anatomical makeup. A computational understanding of these
interactions provides important clues for developing therapeutic
interventions related to diseases such as cancer and metabolic
disorders. Computational methods such as automated docking
through shape and energetic complementarity scoring aim to
gain insight and predict such molecular interactions. Docking
(Bajaj et al. [preprint], Gilson and Zhou [2007]) involves
induced complementary fit between flexible protein interfaces. The
flexible docking solution space consisting of all relative positions,
orientations and conformations of the proteins is searched, and
each putative docking is evaluated using combinations of interface
complementarity scoring and atomic pair-wise charged Coulombic
interactions. Also, since proteins function in predominantly watery
(solvent) environment, the protein solvation energy also plays an
important role in determining inter-molecular binding affinities
“in-vivo” for drug screening, as well as in molecular dynamics
simulations and in the study of hydrophobicity and protein folding.
When computing the solvation energy for molecules, it is crucial to
correctly model and sample the molecular surface.

The most common model for molecules is a collection of atoms
represented by spherical balls, with radii equal to their van der Waals
radii (Mezey [1993], Duncan and Olson [1993]). The surface of
the union of these spheres is known as the van der Waals surface.

∗Corresponding Author

Accessibility to the solvent, namely the solvent accessible surface
(SAS), can be defined as the locus of the center of a ‘probe’ sphere
as it contacts the molecular surface. Usually, the ‘probe’ is a water
molecule modeled as a sphere with radius 1.4Å. Another definition
for molecular surface is as a set of contact and re-entrant patches
(Richards [1977]), commonly known as the Solvent Contact Surface
(SCS), or Solvent Excluded Surface (SES) or simply the molecular
surface.

While a number of techniques have been devised for the static
construction of molecular surfaces (see e.g. Bajaj et al. [2009b] for
a brief review), not much work has been done on neighborhood
data structures for the dynamic maintenance of molecular surfaces
under conformational changes and domain movements. Bajaj et
al. considered limited dynamic maintenance of molecular surfaces
based on Non Uniform Rational BSplines (NURBS) descriptions
for the patches (Bajaj et al. [2003]). Eyal and Halperin presented
an algorithm based on dynamic graph connectivity that updates the
union of balls molecular surface after a conformational change in
O

(
log2 n

)
amortized time per affected (by this change) atom (Eyal

and Halperin [2005a,b]). In this paper, we present theDynamic
Packing Grid (DPG), – a space and time efficient neighborhood
data structure that maintains a collection of balls (atoms)in 3-space
allowing a range of spherical range queries and updates for rapid
scoring of flexible protein-protein interactions (Bajaj etal. [2010,
2009a]).

The efficiency of the data structure results from the assumption
that the centers of two different balls in the collection cannot
come arbitrarily close to each other, which is a natural property of
molecules. A consequence of this assumption is that any ballin the
collection can intersect at most a constant number of other balls.
On a RAM withw-bit words, ourDPG data structure can report
all balls intersecting a given ball or withinO (rmax) distance from
a given point inO (log logw) time with high probability (w.h.p.),
wherermax is the radius of the largest ball in the collection. It can
also answer whether a given ball is exposed (i.e., lies on theunion
boundary) or buried within the same time bound. At any time the
entire union boundary can be extracted from the data structure in
O (m) time in the worst-case, wherem is the number of atoms
on the boundary. There are existing techniques like (Weiseret al.
[1999, 1998]), which can compute/approximate the exposed atoms
and the surface area in the same time bound, but do not allow
dynamic updates. On the other hand, DPG supports updates (i.e.,
insertion/deletion/movement of a ball) inO (logw) time w.h.p. The
data structure uses linear space. As we show here,DPGs can be

c© Oxford University Press 2005. 1

Bajaj et al

used to maintain both the van der Waals surface and the SCS of a
molecule within the performance bounds mentioned above.DPGs
can also be used to enable fast energetics calculation by rapidly
locating the atoms close to each sampled integration point of the
SCS.

Besides Protein docking and Molecular Dynamics, the neighborhood
query and surface maintenance ofDPG also has potential
applications in interactive computer aided design (CAD) tools
developed forde novo drug design, protein folding, n-body
simulations etc. All these applications often need to handle
extremely large number of atoms or points.

2 THE DYNAMIC PACKING GRID DATA
STRUCTURE

Let M = {B1, . . . , Bn} be a collection ofn balls in 3-space with
radii r1, . . . , rn and centers atc1, . . . , cn. Let rmax = maxi {ri}
and letdmin = mini,j {d(ci, cj)}, whered(ci, cj) is the Euclidean
distance betweenci andcj .

We describe thepacking grid data structurefor maintainingM
efficiently under the following set of queries and updates.

Queries

1. INTERSECT(c,r): Returns all balls intersectingB = (c, r).

2. RANGE(p, δ): Returns all balls with centers within distanceδ
of point p. We assume thatδ = O(rmax).

3. EXPOSED(c, r): Returnstrue if the ball B = (c, r) ∈ M
contributes to the boundary of the union of the balls inM .

4. SURFACE(): Returns the outer boundary of the union of the
balls in M . If there are multiple disjoint outer boundaries
defined byM , the routine returns one of them.

Updates

1. ADD(c, r): Adds a new ballB = (c, r) to the setM .

2. REMOVE(c, r): Removes the ballB = (c, r) from M .

3. MOVE(c1, c2, r): Moves the ball with centerc1 and radiusr
to a new centerc2.

We assume that the following holds at all times.

ASSUMPTION2.1. If dmin is the minimum Euclidean distance
between the centers of any two balls inM , thenrmax = O (dmin).

T IME COMPLEXITY (w.h.p.)

OPERATIONS

ASSUMING

tq = O (log logw)
tu = O (logw)

ASSUMING

tq = O (log logn)

tu = O
(

log n
log log n

)

RANGE, INTERSECT,
EXPOSED

O (log logw) O (log logn)

ADD, REMOVE,
MOVE

O (logw) O
(

log n
log log n

)

SURFACE O (#balls on surface) (worst-case)
ASSUMPTIONS: (i) RAM with w-bit Words,

(ii) Collection ofn Balls,(iii) δ = O (rmax) and,
(iv) rmax = O (min. dist. between two balls)

Table 1. Time complexities of the operations supported by the packing grid
data structure.

In general, a ball in a collection ofn balls in 3-space can intersect
Θ(n) other balls in the worst case, and it has been shown by
Clarkson et al. [1990] that the boundary defined by the union of
these balls has a worst-case combinatorial complexity ofΘ

(
n2

)
.

However, ifM is a “union of balls” representation of the atoms
in a molecule, then assumption 2.1 holds naturally (Halperin and
Overmars [1994], Varshney et al. [1994]), and as proved by Halperin
and Overmars [1994], both complexities improve by a factor of n.
The following theorem (see (Bajaj et al. [2010]) for a proof)states
the consequences of the assumption.

THEOREM 2.1. (Theorem 2.1 in (Halperin and Overmars
[1994]), slightly modified) Each ball inM intersects at most
216 · (rmax/dmin)

3 = O (1) other balls in M and the
combinatorial complexity of the boundary of the union of theballs
isO

(
(rmax/dmin)

3 · n
)
= O (n).

Therefore, as Theorem 2.1 suggests, one should be able to handleM
more efficiently if assumption 2.1 holds. The efficiency of our data
structure, listed in Table 1, also depends partly on this assumption.

2.1 Preliminaries
Before we describe our data structure we present some definitions
in order to simplify the exposition.

DEFINITION 2.1 (r-grid, grid-cell, grid-line and grid-plane).An
r-grid is an axis-parallel infinite grid structure in 3-space consisting
of cells of sizer × r × r (r ∈ R) with theroot (i.e., the corner with
the smallestx, y, z coordinates) of one of the cells coinciding with
the origin of the Cartesian coordinate axes. The grid cell that has
its root at Cartesian coordinates(ar, br, cr) (wherea, b, c ∈ Z) is
referred to as the(a, b, c, r)-cell or simply as the(a, b, c)-cell when
r is clear from the context. The(b, c, r)-line (whereb, c ∈ Z) in an
r-grid consists of all(x, y, z, r)-cells withy andz fixed tob andc,
respectively. The(c, r)-plane(wherec ∈ Z) in anr-grid consists of
all (x, y, z, r)-cells withz fixed toc.

The proof of the following lemma is straight-forward.

LEMMA 2.1. If M is stored in the2rmax-grid G and if
Assumption 2.1 holds, then

(i) Each grid-cell inG contains the centers of at mostO (1) balls.

(ii) Each ball inM intersects at most 8 grid-cells inG.

(iii) For a given ballB ∈ M with center in grid-cellC, the center
of each ball intersectingB lies either inC or in one of the 26
grid-cells adjacent toC.

(iv) The number ofnon-emptygrid-cells inG is at mostn, and the
same bound holds for grid-lines and grid-planes.

At the heart of our data structure is a fully dynamic one dimensional
integer range reporting data structure for word RAM described by
Mortensen et al. (Mortensen et al. [2005]). Their data structure
maintains a setS of integers under updates (i.e., insertions and
deletions), and answers queries of the form QUERY(l, h) which
reports any or all points inS in the interval[l, h]. The following
theorem (proved in Mortensen et al. [2005]) summarizes the
performance bounds of the data structure which are of interest to
us .

2

A Dynamic Data Structure for Flexible Molecular Maintenance and Informatics

THEOREM 2.2. On a RAM withw-bit words the fully dynamic
one dimensional integer range reporting problem can be solved in
linear space, and w.h.p. bounds ofO (tu) andO (tq + k) on update
time and query time, respectively, wherek is the number of items
reported, and

(i) tu = O (logw) and tq = O (log logw) using the data
structure in Mortensen et al. [2005]; and

(ii) tu = O (log n/log log n) and tq = O (log log n) using the
data structure in (Mortensen et al. [2005]) for smallw and a
fusion tree (Fredman and Willard [1993]) for largew.

2.2 Description (Layout) of the Packing Grid Data
Structure

We are now in a position to present theDPG data structure.DPG
represents the entire 3-space as a2rmax-grid, and maintain the
non-empty grid-planes, grid-lines and grid-cells. Note that a grid
component (i.e., cell, line or plane) is non-empty if it contains the
center of at least one ball inM . The data structure can be described
as a tree with 5 levels: 4 internal levels (levels 3, 2, 1 and 0)and an
external level of leaves (see Figure 1). The description of each level
follows (further details are available in (Bajaj et al. [2010])).

The Leaf Level “Ball” Data Structure (DPG−1). The data
structure stores the centerc = (cx, cy , cz) and the radiusr of
the given ballB. It also includes a Boolean flagexposed which
is set totrue if B contributes to the outer boundary of the union
of the balls inM , andfalseotherwise. The 3D arrangement of the
spheresB ∪ N (B), whereN (B) is the set of balls intersectingB,
divides the boundary ofB into spherical patches, some of which
are exposed, that is they contribute to the union boundary. We store
all exposed patches (if any) ofA in a setF of sizeO (1), and with
each patchf ∈ F we store pointers to the data structures ofO (1)
other balls that share edges withf and also the identifier of the
corresponding patch on each ball.

����������

� ������ �� ������ �

����
����

� ����� � �� ����� � �

�	����	���

� ����� � �� ����� � �

������������

� ����� �� ����� �

��	���	�

� ����� � �� ����� � �

Fig. 1. Hierarchical structure ofDPG.

The Level 0 “Grid-Cell” Data Structure (DPG0). The “grid-cell”
data structure stores the root (see Definition 2.1)(a, b, c) of the grid-
cell it corresponds to. A grid-cell maintains a list of pointers to data
structures of theO (1) balls whose centers lie inside the cell. Since
we create “grid-cell” data structures only for non-empty grid-cells,
there will be at mostn (and possibly≪ n) such data structures.

The Level 1 “Grid-Line” Data Structure (DPG1). We create a
“grid-line” data structure for a(b, c)-line provided it contains at
least one non-empty grid-cell. Each(a, b, c)-cell lying on this line
is identified with the unique integera, and the identifier of each

such non-empty grid-cell is stored in an integer range search data
structureRR as described in Section 2.1 (see Theorem 2.2). We
augmentRR to store the pointer to the corresponding “grid-cell”
data structure with each identifier it stores.

The Level 2 “Grid-Plane” Data Structure (DPG2). A “grid-
plane” data structure is created for ac-plane provided it contains
at least one non-empty grid-line. Similar to the “grid-line” data
structure it identifies each non-empty(b, c)-line lying on thec-
plane with the unique integerb, and stores the identifiers in a range
reporting data structureRR.

The Level 3 “Grid” Data Structure (DPG3). This data structure
maintains the non-empty grid-planes in an integer range reporting
data structureRR in a similar way where eachc-plane is identified
by the unique integerc. The “grid” data structure also stores a
surface-rootpointer which points to the “ball” data structure of an
arbitrary exposed ball inM .

We have the following lemma (proved in (Bajaj et al. [2010]))on
the space usage of the data structure.

LEMMA 2.2. Let Assumption 2.1 hold. Then the packing grid
data structure storingM usesO (n) space.

2.3 Queries and Updates
The queries and updates supported by the data structure are
implemented as follows.

2.3.1 Queries
(1) RANGE(p, δ): Let p = (px, py, pz). First we invoke the
function QUERY(l, h) of the range reporting data structureRR
under the level 3 grid data structure withl = ⌊(pz − δ)/(2rmax)⌋
andh = ⌊(pz + δ)/(2rmax)⌋. This query returns a setS2 of non-
empty c-planes represented as pointersPc to level 2 grid-plane
data structure. Then, for eachc-plane, we perform similar queries
under the corresponding level 2 data structure to obtain theset
S1 of non-empty grid-lines. Again, querying under each grid-line
data structure produces the setS0 containing non-empty grid-cells.
Finally, for each cell inS0, we collect and return each ball whose
center lies within distanceδ from p.

The correctness of the function follows trivially since it queries a
region in 3-space which includes the region covered by a ballof
radiusδ centered atp. Also, assumingrmax = O (dmin) (i.e.,
Assumption 2.1) andδ = O (rmax), the complexity reduces to
O (tq). Details can be found in (Bajaj et al. [2010]).

(2) INTERSECT(c, r): LetB = (c, r) be the given ball. First, we
call RANGE(c, r + rmax) and collect the output in setS. FromS
we remove the data structure of each ball that does not intersectB,
and return the resulting (possibly reduced) set.

The correctness follows from basic geometry and the correctness
of RANGE. Under Assumption 2.1 this function runs inO (tq) time.

(3) EXPOSED(c, r): Let B = (c, r) be the given ball.
We locateB’s data structure by calling RANGE(c, 0), and return
the value stored in itsexposedfield. Clearly, the function takes
O

(
tq + (rmax/dmin)

3
)

time (w.h.p.) which reduces toO (tq)
under Assumption 2.1.

3

Bajaj et al

(4) SURFACE(): Thesurface-rootpointer under the level 3 “grid”
data structure points to the “ball” data structure of a ballB on the
union boundary ofM . We scan the setF of exposed faces ofB, and
using the pointers to other exposed balls stored inF we perform a
depth-first traversal of all exposed balls inM and return the exposed
faces on each such ball. Letm be the number of balls contributing
to the union boundary ofM . Then according to Theorem 2.1 the
depth-first search takesO

(
(rmax/dmin)

3 ·m
)

time in the worst
case which reduces toO (m) under Assumption 2.1.

2.3.2 Updates

(1) ADD(c, r): Let c = (cx, cy , cz) and letc′u =
⌊

cu
2rmax

⌋
, where

u ∈ {x, y, z}. LetG be the grid data structure. IfG does not exist,
then create and initializeG. Then, first we create and initialize a
data structureB and add toM . Then, we query the range reporting
data structureG.RR to locate the data structureP for thec′z-plane.
If P does not exist, create and initializeP , and insertc′z along with
a pointer toP into G.RR. Similar steps are taken for the grid-line
and then the grid-cell data structures to identify the(c′x, c

′
y, c

′
z)-cell

C and addB to the setC.S. We then use the INTERSECTquery
to identify N (B), the set of balls intersectingB. And finally we
update the arrangement of each ball inB ∪ N (B), list exposed
faces on each ball and update thesurface-rootpointer if necessary.

Observe that the introduction of a new ball may affect the surface
exposure of only the balls it intersects (by burying some/all of
them partly or completely), and no other balls. Hence, updating
the arrangements of the balls inB ∪ N (B) (in addition to those in
earlier steps) are sufficient to maintain the correctness ofthe entire
data structure. The ADD function terminates inO (tu) assuming
rmax = O (dmin). Detailed analysis is in (Bajaj et al. [2010]).

(2) REMOVE (c, r): This function is symmetric to the ADD

function, and has exactly the same asymptotic time complexity.
Hence, we do not describe it here.

(3) MOVE(c1, c2, r): This function is implemented in the obvious
way by callingREMOVE (c1, r) followed byADD(c2, r). It has
the same asymptotic complexity as the two functions above.

Therefore, we have the following theorem.

THEOREM 2.3. Let M be a collection ofn balls in 3-space as
defined in Theorem 2.1, and let Assumption 2.1 hold. Lettq and tu
be as defined in Theorem 2.2. Then the packing grid data structure
storingM on a word RAM:

(i) usesO (n) space;

(ii) supports updates (i.e., insertion/deletion/movement of aball)
in O (tu) time w.h.p.;

(iii) reports all balls intersecting a given ball or withinO (rmax)
distance from a given point inO (tq) time w.h.p., wherermax

is the radius of the largest ball inM ; and

(iv) reports whether a given ball is exposed or buried inO (tq)
time w.h.p., and returns the entire outer union boundary ofM
in O (m) worst-case time, wherem is the number of balls on
the boundary.

2.4 Molecular Surface Maintenance Using DPG
In this section, we briefly describe applications of the packing grid
data structure for efficient maintenance of molecular surfaces.

2.4.1 Maintaining van der Waals Surface of Molecules
Each atom is simply treated as a ball with a radius equal to thevan
der Waals radius of the atom (see (Batsanov [September 2001]) for
a list of van der Waals radius of different atoms).

2.4.2 Maintaining Lee-Richards (SCS/SES) Surface
For the efficient maintenance of the Lee-Richards surface ofa
molecule within the performance bounds given in Table 1, we
maintain two packing grid data structures:DPG and DPG’. The
DPG data structure keeps track of the patches on the Lee-Richards
surface, andDPG’ is used for detecting intersections among
concave patches.

Before adding an atom toDPG, we increase its radius byrs,
where rs is the radius of the rolling solvent atom. TheDPG
data structure keeps track of all solvent exposed atoms, i.e., all
atoms that contribute to the outer boundary of the union of these
enlarged atoms. Theorem 2.1 implies that each atom inDPG
contributesO (1) patches to the Lee-Richards surface, and the
insertion/deletion/movement of an atom results in local changes of
only O (1) patches. We can modifyDPG to always keep track of
where two or three of the solvent exposed atoms intersect, and once
we know the atoms contributing to a patch we can easily compute
the patch inO (1) time (Bajaj et al. [2003]).

The Lee-Richards surface can self-intersect in two ways:(i) a
toroidal patch can intersect itself, and(ii) two different concave
patches may intersect (Bajaj et al. [2003]). The self-intersections of
toroidal patches can be easily detected fromDPG. In order to detect
the intersections among concave patches, we maintain the centers of
all current concave patches inDPG’, and use the INTERSECTquery
to find the concave patch (if any) that intersects a given concave
patch.

2.5 Energetics Computation using DPG
Generally, the solvation energyGsol of a molecule is decomposed
into three components, namely,Gcav - the energy to form cavity
in the solvent,Gvdw - the solute-solvent van der Waals interaction
energy, andGpol - the polarization energy or the electrostatic
potential energy change due to the solvation. The first two terms
Gcav andGvdw are linearly related to the solvent accessible surface
areaΩSAS. The last term,Gpol, can be approximated using the
Generalized Born(GB) theory as introduced by Still et al. [1990].

Gpol = −
τ

2

∑

i,j

qiqj√
r2ij +RiRje

−r2
ij

/4RiRj

, (2.1)

whereτ = 1− 1
ǫ
, andRi is the effective Born radius of atomi (see

Figure 2(a)). Either of Equations 2.2 and 2.3 can be used as discrete
approximation ofR−1

i (Bajaj and Zhao [2010]).

R−1
i =

1

4π

N∑

k=1

wk
(rk − xi) · n(rk)

|rk − xi|4
, (2.2)

R−3
i =

1

4π

N∑

k=1

wk
(rk − xi) · n(rk)

|rk − xi|6
, (2.3)

4

A Dynamic Data Structure for Flexible Molecular Maintenance and Informatics

where therk ’s are N carefully chosen integration points on the
boundary of the molecule, andwk is a weight assigned tork to
ensure higher order of accuracy for smallN (see Figure 2(b)). Other
methods have used volume integrals (Tjong and Zhou [2007]) or
integrals over bonded and non-bonded atom-pairs (Qiu et al.[1997])
to approximate Born radii.

(a) (b)

Fig. 2. (a)Gpol is computed based on Born radii and charges of each atom
pair, (b) Born radii of an atom can be approximated based on integration
points, shown as red dots, sampled on the surface.

The non-polar termsGcav andGvdw can be computed directly
from the solvent accessible surface (SAS) areaΩSAS of the
molecule. The SAS of the molecule can be extracted inO (m̃ logw)
time andO (m̃) space using aDPG data structure, wherẽm is the
number of atoms in the molecule. TheDPG data structure outputs
the SAS as a set of spherical and toroidal patches, and we add up
the area of each patch in order to calculateΩSAS.

2.5.1 Discrete Approximation of Born Radii-In order to
approximate the polar termGpol first we need to approximate
the Born radiusRi of each atomi. We compute the SES as A-
spline patches, produce a quality improved meshing of the surface
and sample integration points and their weights following (Bajaj
and Zhao [2010]) (see Figure 3), and then use Equation 2.2
to approximateRi. But observe that the direct computation of
Ri requiresO(n2) time, wheren is the number of atoms and
assuming that the number of sampled integration points is also
O(n). However, since the terms in the summation diminish very
fast with the increase of distance, distance cutoffs can be used to
approximate it.

(a) (b) (c)

Fig. 3. Gaussian integration points (c) on the surface of nuclear transport
factor 2 (1A2K) computed after generating a smooth surface (b) from the
collection of balls model (a).

Given the set of atomsA, the set of integration pointsQ sampled
on the surface, and two user defined parametersα, δ > 0, for every
integration pointq ∈ Q, we place each atoma ∈ A in one of the
following three categories based on the distanced betweenq and
the center ofa: (1) near (d ≤ δ), (2) mid-way(δ < d ≤ αδ),
and(3) far (αδ < d). Figure 4 shows an example in 2D. For the
near categories., the computation is performed exactly. For the mid-
way category, clusters of atoms and integration points are viewed
as pseudo-atoms and pseudo-integration points and hence a coarse
computation is performed. For the far category a single average
distance and a single average weighted normal is used for allpairs
of clusters.

(a) (b)

Fig. 4. (a) A simple 2D example depicting definition of near, medium and
far atoms (centers shown as green dots) from a particular integration point
xi. In the example, 2 atoms are near, 7 are medium and 3 are far. (b) After
clustering using hierarchicalDPG, each cell contains a pseudoatom (centers
shown as blue circles). Now 2 atoms are near, 3 clusters are medium and 2
clusters are far.

SeparateDPG data structures are used to store the atoms,
integration points, pseudo-atoms, and pseudo-integration points.
DPG is used both for identifying the near, mid-way, and far
atoms/pseudoatoms as well as for clustering (see (Bajaj et al.
[2010]) for details).

Assuming thatm̃δ̃ is an upper bound on the number of atoms

within distanceδ̃ from any given point in space, the time spent
for computing allRi’s is O

(
N log logw +Nm̃δ̃

)
which reduces

to O (N log logw) sincem̃δ̃ is a constant (though could be quite

large) for constant̃δ. Once allRi’s are computedGpol can be
computed using equation 2.1 inO

(
m̃2

)
time in the worst case. The

space usage isO
(
m̃+Nm̃δ̃

)
which isO (m̃+N) for constant̃δ.

2.6 Maintenance of Flexible Molecules
Suppose we are given a flexible molecule decomposed into several
(mostly) rigid domains which interact either through connected
chain segments or large interfaces. We refer to these chain segments
and interfaces as connectors. Domains may move with respect
to each other through motions applied to the connectors. Two
domains connected by at least one connector may undergo bending
motion applied to some hinge point around some hinge axis. Ifthey
are connected by only one connector, a twisting motion can also
be applied to the connector by updating torsion angles alongits
backbone. If two domains share a large interface area they may
undergo a shearing motion with respect to each other. However,
though domains are mostly rigid they may have flexible loops and
side-chains on their surfaces.

We maintain a separate packing grid data structurePi for each
domainDi. If two domainsDi andDj are connected andi < j, the
setSij of all connectors between these two domains are included in
Pi, and a transformation matrixMij is kept withPi that describes
the exact location and orientation of the grid structure ofPj with
respect to that ofPi. Whenever some motion is applied to the
connectors inSij , we updatePi in order to reflect the changes in the
locations of the atoms in these connectors, and also updateMij in
order to reflect the new relative position and orientation ofPj with
respect toPi. The complexities of these operations are presented in
the following lemma proved in (Bajaj et al. [2010]).

LEMMA 2.3. The surface of a flexible molecule decomposed into
(mostly) rigid domains can be maintained using packing griddata
structures so that

(i) updating for a bending/shearing/twisting motion applied
between two domains takesO (1 +m logw) time (w.h.p.),

5

Bajaj et al

wherem is the number of atoms in the connectors between the
two domains;

(ii) updating the conformation of a flexible loop or a side-chain on
the surface of a domain takesO (m̃ logw) time (w.h.p.), where
m̃ is the number of atoms affected by this change; and

(iii) generating the surface of the entire molecule requires
O (m̂ logw) time (w.h.p.), wherêm is the sum of the number
of atoms on the surface of each domain.

3 RESULTS AND DISCUSSIONS
The performance of the basic functions ofDPG are reported
in Section 3.2. Sections 3.3 and 3.4 respectively analyzes
performance ofDPG in molecular surface maintenance and
energetics calculation.

3.1 Implementation Details
In our current implementation, instead of the 1D integer range-
reporting data structure presented in (Mortensen et al. [2005]),
we have implemented a much simpler data structure that supports
both updates and distance queries in expectedO (logw) time and
uses linear space. Sincew is usually not more than 64, for most
practical purposes aO (logw) query time should be almost as good
asO (log logw) time. This data structure builds on binary search
trees, dynamic perfect hashing, and y-fast trees. However,instead
of dynamic perfect hashing we used “cuckoo hashing” (Rasmus
and Flemming [2004]) since it is much simpler, and still supports
lookups inO (1) worst-case time, and updates in expectedO (1)
time.

3.2 Performance Analysis of Updates and Queries
To measures the performance of the update and query functions
of DPG, we use more than 180k quadrature points, generated for
energetics computations by sampling uniformly at random onthe
surface of PSTI (a variant of human pancreatic trypsin inhibitor:
1HPT.pdb) after protonation using PDB2PQR (Dolinsky et al.
[2004]). Experiments are performed on a 3 GHz2×dual-core (only
one core was used) AMD Opteron 2222 processor with 4 GB RAM.
Please refer to (Bajaj et al. [2010]) for details of the experiment.
Table 2 shows the results of this experiment. The time required is
O (logw +K) whereK is the size of the output or in this case, the
number of points returned. The last column of the table showsthat
as the point set becomes denser, the efficiency of the data structure
remains almost the same.

QUADR.
POINTS

QUERY

DISTANCE

(Å)

AVG. TIME

(MS) / QUERY

AVG. # POINTS

RETURNED (K /MS)

45, 654 2 | 4 | 8 0.31 | 0.57 | 1.42 0.38 | 1.37 | 3.14

91, 309 2 | 4 | 8 0.59 | 1.14 | 2.80 0.38 | 1.43 | 3.31

136, 963 2 | 4 | 8 0.97 | 1.85 | 4.44 0.34 | 1.32 | 3.27

182, 618 2 | 4 | 8 1.30 | 3, 22 | 5.86 0.38 | 1.31 | 3.30

Table 2. Performance of the QUERY function of packing grid. We randomly
assign each of the 182,618 points to one of four groups and thus obtain
four approximately equal-sized groups. We then run queriesfrom the atom
centers (100 queries per atom) on group 1, merge groups 1 and 2and run
queries on this merged group, and so on.

Table 3 reports the performance of update functions ofDPG’s
range reporting data structure. Four different macromolecules were
used, and for each of them all atoms were first randomly inserted
into the data structure followed by the random deletion of all atoms.
The reported insertion and deletion times are averages of four such
independent runs. The average time for a single insertion/deletion
was never more than 5µs.

MOLECULE

(PDB FILE)
NUMBER

OF ATOMS

AVG. INSERT

T IME (µS)
AVG. DELETE

T IME (µS)
GroEL (1GRL) 29,274 3.3 4.0

RDV P8 (1UF2: P) 193,620 3.9 4.4
RDV P3 (1UF2: A) 459,180 3.9 4.6

Dengue (1K4R) 545,040 4.0 4.5

Table 3. Insertion and deletion times of our current packing grid
implementation. The results are averages of 4 runs. In each run, all atom
centers are randomly inserted into the data structure followed by random
deletion of all atom centers.

3.3 Performance of Molecular Surface Maintenance
We compared the performance ofDPG with the 3D hashing used
by Eyal and Halperin [2005a,b] in producing and maintaining
molecular surfaces. We used the same implementation of 3D
arrangement and surface generation (Eyal and Halperin [2005b]),
but switched between the two different range query data structures.
We measured the space and time requirements for generating the
surface of various macromolecules. To verify scalability,multiple
chains of the same protein were inserted. For virus capsids,as
multiple chains are inserted, not only the number of atoms increases
but also the overall structure becomes sparser. The resultsof this
experiment are reported in Table 4. It is clear that the space
requirement of theDPG is linear in the number of atoms. The
difference in space requirement becomes more pronounced for
larger and sparser structures. Also, its running times are comparable
with that of 3D hash. Though 3D hash performs insertions and
queries in optimal constant time, using too much memory can
adversely affect the running time as well. For example, in the case
of RDV P3 with 4 chains, 3D hash operations run slower thanDPG
range reporting operations. We believe that this slowdown is due to
page faults caused by excessive space requirement of 3D hash.

3.4 Performance of Born Radii and Polarization
Energy Calculation

A parallelized implementation of the approximation scheme
described in Section 2.5.1 was applied to compute the Born Radii
which were used to compute the polarization energyGPol. The
experiments were performed on the RANGER cluster, on a single
node with 16 cores.

First, three different approximations were performed by varying
the δ parameter for the molecules in ZDock Benchmark 2.0
(Mintseris et al. [2005]). We shall refer to these asDPG GB g x,
whereδ = xD, x ∈ 0.5, 0.75, 1.0 andD is the dimension of a
cell in DPG, and it means that agXgXg grid was used to generate
the surface and integration points on the surface. BothD andα
are automatically selected based on the size of the molecules. For
each atomi of a molecule, the approximation error is defined

6

A Dynamic Data Structure for Flexible Molecular Maintenance and Informatics

MOLECULE # OF # OF # OF CELLS (K) T IME (SEC)
(PDB FILE) CH. ATOMS DPG 3D hash DPG 3D hash

1I3Q 1 11,114 4.68 45.18 17.36 16.23

2GLS
1 3,636 1.44 9.18 5.43 5.06
5 18,180 7.28 41.40 37.10 34.80

2BG9
1 2,991 1.20 10.75 4.44 4.29
5 14,955 6.03 31.20 24.31 22.95

1UF2:
Chain P

(RDV P8)

1 3,227 1.35 9.26 4.47 4.23
2 6,454 2.74 1,124.04 9.23 8.56
4 12,908 5.47 4,426.11 19.36 18.14
8 25,816 10.98 6,332.16 45.22 44.44

1UF2:
Chain A

(RDV P3)

1 7,653 3.23 38.76 10.99 10.23
2 15,306 6.46 927.44 22.73 21.44
3 22,959 9.74 1,992.75 40.48 39.62
4 30,612 12.99 2,591.70 119.28 128.37

1K4R:
Chains A & B

2 6,056 2.62 20.70 8.46 7.71
4 12,112 5.24 138.60 17.56 16.52
6 18,168 7.85 333.06 33.73 32.62

Table 4. Comparison of the performance of the 3D range reporting data
structure used byDPG and the 3D hash table used in (Eyal and Halperin
[2005b]).

as εi =
|(Rexact

i −R
dpg
i

)|∗100

Rexact
i

, whereRdpg
i and Rexact

i are the

Born radii of atomi approximated using DPG based scheme and
by exact (full pairwise) evaluation of Equation 2.2 respectively.
The approximation error for a molecule is the average of theεi’s.
Figure 5(a) reports the approximation errors for each molecule. It
is clear that a larger ‘near’ band results in lower error. On the other
hand, Figure 5(b) shows the speedup for each approximation,where
speedup is defined as (time taken by exact computation)/(time taken
by DPG based computation). Though there is a clear speed/accuracy
tradeoff, it only underscores the efficacy and flexibility ofthe
scheme. For example,DPG GB 128 1.0 is almost 50 times faster
than the naive pairwise computation with only2.41 percent error.

In Figure 6, we report the error ofGpol computation where, for

each molecule, the error is defined as|(Gexact−Gdpg)|∗100
Gexact , where

Gexact andGdpg are respectively theGpol computed usingRexact
i

andRdpg
i for each atomi of the molecule.Gpol errors are much

lower than the Born radii errors because the integral of theGpol

formulation also falls off with distance and hence accuracyof Gpol

is more dependent on the accuracy of the Born radii of atoms near
the surface. In Figure 7, the Born radii of all atoms of all molecules
are grouped into 5 bins based onRexact

i . It is easy to verify that Born
radii computation errors for the atoms near the surface (having lower
values of Born radii), are indeed much lower. Another notable aspect
from the results in Figure 6 is that some of the molecules, specially
1PPE l b, theGpol error is considerably higher. We found that this
tend to happen for molecules which are very small (for example,
1PPE l b has only 436 atoms) or very flat, in other words does not
have much in the ’far’ band. Our scheme for computing partialsums
for ’far’ bands seem to over-estimate in such cases.

We also computed the Born radii andGpol for the same set
of molecules using Amber (Case et al. [2005]) andGBr6 (Tjong
and Zhou [2007]) on the same computing cluster using the same
number of nodes and cores. The results in Figure 8(a) show that
DPG based implementations, are much faster thanGBr6 and
are comparable to Amber. In Figure 8(b) we report the ratio of
the Born radii computation time of DPG and Amber, sorted in
increasing size of molecules. It is clear that DPG gets better as

(a)

(b)

Fig. 5. (a) Comparison of the approximation errors for Born Radii
computation at various levels of approximation. Average percentage error
across all molecules for the schemes are11.42, 4.44, 2.16, 4.84 and4.41
(in the order shown in legend). (b) Comparison of the speedup(with respect
to the exact implementation) for Born Radii computation at various levels
of approximation. Average speedup across all molecules forthe schemes are
47.96, 37.71, 30.63, 59.97 and47.51 (in the order shown in legend).

Fig. 6. Approximation errors forGpol computation. The averageGpol error
across all molecules are0.09 and0.1 respectively.

Range of # of Atoms Avg. % Error
Born Radii in range

[0,2] 17,580 0.83
(2,4] 63,101 1.85
(4,7] 61,640 3.82
(7,10] 38,796 6.74
(10,...] 112765 10.16

Fig. 7. Distribution of errors for different ranges of Born radii. Clearly, error
is lower for atoms near the surface (smaller Born radii)

the size increases and outperforms Amber in a few cases. So,
we experimented with Amber,GBr6 and DPG for a very large
molecule, the Cucumber Mosaic Virus (CMV) capsid, consisting

7

Bajaj et al

509K atoms. DPG completed in only22 seconds, while Amber
needed172 seconds andGBr6 needed about3.6 hours.

As Gpol obtained using different formulations often vary a lot,
we decided to compare the consistency instead of the exact values.
Figure 8(c) displays that DPG consistently producesGpol values
similar to Amber’s. In fact, the average deviation ofGpol computed
by DPG based scheme from Amber’s is less than 5%.

(a)

(b)

(c)

Fig. 8. (a) Comparison of Born Radii computation speeds of Amber,GBr6

and DPG (some values for theGBr6 are higher than the range displayed
here). (b) Ratio of Born radii computation times of DPG and Amber, sorted
by increasing size of molecules.

REFERENCES
C. Bajaj and W. Zhao. Fast molecular solvation energetics and force computation.SIAM

Journal on Scientific Computing, 31(6):4524–4552, 2010.
C. Bajaj, V. Pascucci, A. Shamir, R. Holt, and A. Netravali. Dynamic maintenance and

visualization of molecular surfaces.Discrete Applied Mathematics, 127(1):23–51,
2003.

C. Bajaj, R. Chowdhury, and M. Rasheed. A dynamic data structure for flexible
molecular maintenance and informatics. InSPM ’09: 2009 SIAM/ACM Joint
Conference on Geometric and Physical Modeling, pages 259–270, 2009a.

C. Bajaj, G. Xu, and Q. Zhang. A fast variational method for the construction of
resolution adaptivec2-smooth molecular surfaces.Computer Methods in Applied
Mechanics and Engineering, 198(21-26):1684–1690, 2009b.

C. Bajaj, R. Chowdhury, and M. Rasheed. A dynamic data structure for flexible
molecular maintenance and informatics. Technical Report TR-10-31, ICES, UT
Austin, July 2010.

C. Bajaj, R. Chowdhury, and V. Siddahanavalli. F2Dock: FastFourier protein-protein
docking. IEEE/ACM Transactions on Computational Biology and Bioinformatics,
preprint.

S.S. Batsanov. Van der Waals radii of elements.Inorganic Materials, 37:871–885(15),
September 2001.

D. A. Case, T. E. Cheatham, T. Darden, H. Gohlke, R. Luo, K. M. Merz, A. Onufriev,
C. Simmerling, B. Wang, and R. J. Woods. The Amber biomolecular simulation
programs.Journal of Computational Chemistry, 26(16):1668–1688, 2005.

K. L. Clarkson, H. Edelsbrunner, L. J. Guibas, M. Sharir, andM. Welzl. Combinatorial
complexity bounds for arrangements of curves and spheres.Discrete Computational
Geometry, 5(2):99–160, 1990.

T. J. Dolinsky, J. E. Nielsen, J. A. McCammon, and N. A. Baker.Pdb2pqr: an automated
pipeline for the setup, execution, and analysis of poisson-boltzmann electrostatics
calculations.Nucleic Acids Research, 32:665–667, 2004.

B. Duncan and A. Olson. Approximation and characterizationof molecular surfaces.
Biopolymers, 33(2):219–229, 1993.

E. Eyal and D. Halperin. Dynamic maintenance of molecular surfaces under
conformational changes. InSCG ’05: Proceedings of the 21st Annual Symposium
on Computational Geometry, pages 45–54, 2005a.

E. Eyal and D. Halperin. Improved maintenance of molecular surfaces using dynamic
graph connectivity.Algorithms in Bioinformatics, pages 401–413, 2005b.

M. L. Fredman and D. E. Willard. Surpassing the information theoretic bound with
fusion trees.Journal of Computer and System Sciences, 47(3):424–436, 1993.

M. K. Gilson and H. X. Zhou. Calculation of protein-ligand binding affinities.Annual
Review of Biophysics and Biomolecular Structure, 36(1):21–42, 2007.

D. Halperin and M. H. Overmars. Spheres, molecules, and hidden surface removal. In
SCG ’94: Proceedings of the 10th Annual Symposium on Computational Geometry,
pages 113–122, 1994.

P. G. Mezey.Shape in Chemistry; An introduction to molecular shape and topology.
VCH Inc, 1993.

J. Mintseris, K. Wiehe, B. Pierce, R. Anderson, R. Chen, J. Janin, and Z. Weng. Protein-
protein docking benchmark 2.0: an update.Proteins, 60(2):214–216, 2005.

C. W. Mortensen, R. Pagh, and M. Pǎtraçcu. On dynamic rangereporting in one
dimension. InSTOC ’05: Proceedings of the 37th Annual ACM Symposium on
Theory of Computing, pages 104–111, 2005.

D. Qiu, P. S. Shenkin, F. P. Hollinger, and W. C. Still. The GB/SA continuum model
for solvation. a fast analytical method for the calculationof approximate Born radii.
The Journal of Physical Chemistry A, 101(16):3005–3014, 1997.

P. Rasmus and R. Flemming. Cuckoo hashing.Journal of Algorithms, 51(2), 2004.
F. Richards. Areas, volumes, packing, and protein structure. Ann. Rev. of Biophysics

and Bioengineering, 6:151–176, 1977.
W. C. Still, A. Tempczyk, R. C. Hawley, and T. Hendrickson. Semianalytical treatment

of solvation for molecular mechanics and dynamics.Journal of Americal Chemical
Society, 112:6127–6129, 1990.

H. Tjong and H. X. Zhou. GBr6: A parameterization-free, accurate, analytical
generalized born method.Journal of Physical Chemistry B, 111(11):3055–3061,
2007.

A. Varshney, F. P. Brooks Jr., and W. V. Wright. Computing smooth molecular surfaces.
IEEE Computer Graphics Applications, 14(5):19–25, 1994.

J. Weiser, A. A. Weiser, P. S. Shenkin, and W. C. Still. Neighbor-list reduction:
Optimization for computation of molecular van der Waals andsolvent-accessible
surface areas.Journal of Computational Chemistry, 19(7):797–808, 1998.

J. Weiser, P. S. Shenkin, and W. C. Still. Fast, approximate algorithm for detection of
solvent-inaccessible atoms.Journal of Computational Chemistry, 20(6):588–596,
1999.

8

