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Abstract

We present efficient cache-oblivious algorithms for sev-
eral fundamental dynamic programs. These include
new algorithms with improved cache performance for
longest common subsequence (LCS), edit distance, gap
(i.e., edit distance with gaps), and least weight subse-
quence. We present a new cache-oblivious framework
called the Gaussian Elimination Paradigm (GEP) for
Gaussian elimination without pivoting that also gives
cache-oblivious algorithms for Floyd-Warshall all-pairs
shortest paths in graphs and ‘simple DP’, among other
problems.

1 Introduction

Memory in modern computers is typically organized in
a hierarchy with registers in the lowest level followed by
L1 cache, L2 cache, L3 cache, main memory, and disk,
with the access time of each memory level increasing
with its level. The two-level I/O model [1] is a simple
abstraction of this hierarchy that consists of an inter-
nal memory of size M , and an arbitrarily large external
memory partitioned into blocks of size B. The I/O com-
plexity of an algorithm is the number of blocks trans-
ferred between these two levels. The cache-oblivious
model [9] is an extension of this model with the addi-
tional feature that algorithms do not use knowledge of
M and B. A cache-oblivious algorithm is flexible and
portable, and simultaneously adapts to all levels of a
multi-level memory hierarchy. A well-designed cache-
oblivious algorithm typically has the feature that when-
ever a block is brought into internal memory it contains
as much useful data as possible (‘spatial locality’), and
also that as much useful work as possible is performed
on this data before it is written back to external memory
(‘temporal locality’).

Dynamic programming is a widely-used algorithmic
technique [3, 21, 7]. However, standard implementa-
tions of these algorithms often fail to exploit the tempo-
ral locality of data which leads to poor I/O performance.
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In this paper we present several results that significantly
improve the I/O complexity of dynamic programming
algorithms through techniques that take full advantage
of both spatial and temporal locality.

The problem of finding the longest common sub-
sequence (LCS) of two sequences has a classic dynamic
programming solution [7] that runs in Θ(mn) time, uses
Θ(mn) space and performs Θ

(

mn
B

)

I/Os when working
on two sequences of lengths m and n. Linear space
implementations of this algorithm [13, 18, 2] also have
I/O complexity Ω

(

mn
B

)

. The LCS problem arises in a
wide range of applications, and is especially prominent
in computational biology in sequence alignment.

We present a cache-oblivious implementation of the
classic dynamic programming LCS algorithm. Our al-
gorithm continues to run in O(mn) time, but uses
O (m + n) space and performs only O

(

mn
BM

)

block
transfers. Experimental results show that this algo-
rithm runs two to six times faster than the widely used
linear-space LCS algorithm by Hirschberg [13]. We show
that our algorithm is I/O-optimal in that it performs
the minimum number of block transfers (to within a
constant factor) of any implementation of the dynamic
programming algorithm for LCS. This algorithm can
be adapted to solve the edit distance problem [17, 7]
within the same bounds; this latter problem asks for
the minimum cost of an edit sequence that transforms a
given sequence into another one with the allowable edit
operations being insertion, deletion and substitution of
symbols each having a cost based on the symbol(s) on
which it is to be applied.

We also consider the gap problem [11, 12, 26] which
is a natural generalization of the edit distance prob-
lem, and which arises in molecular biology, geology,
and speech recognition. Unlike the edit distance prob-
lem, however, in this problem a sequence of inserts (or
deletes) is treated as a single event and is assigned a
cost that is not necessarily equal to the sum of the costs
of the individual inserts (or deletes) in the sequence.
For m = n, the standard dynamic programming so-
lution runs in O(n3) time, uses O(n2) space and in-

curs O
(

n3

B

)

I/Os. We present a cache-oblivious algo-

rithm that incurs only O
(

n3

B
√

M

)

I/Os without chang-

ing the time and space complexities. The least weight



subsequence problem [15, 12] can be viewed as a 1-
dimensional version of the gap problem, and we present
a cache-oblivious algorithm that runs in O(n2) time and

O
(

n2

BM

)

I/Os under some natural assumptions.

Finally we introduce a general cache-oblivious
framework, which we call GEP or the Gaussian Elimi-
nation Paradigm, for problems that can be solved using
a construct similar to the computation in Gaussian elim-
ination without pivoting. Standard implementations of
these algorithms run inO(n3) time, useO(n2) space and

incur O
(

n3

B

)

I/Os. We give a general cache-oblivious

implementation for GEP that incurs only O
(

n3

B
√

M

)

I/Os without changing its running time and space com-
plexity. We use GEP to obtain a cache-oblivious algo-
rithm for Gaussian elimination without pivoting. Our
algorithm is in-place, and is arguably simpler than the
known cache-oblivious algorithms for solving this prob-
lem [27, 4], since it is not based on LU decomposi-
tion and does not perform matrix multiplication. We
also show that GEP not only gives the cache-oblivious
Gaussian elimination algorithm, but it also gives cache-
oblivious algorithms for LU decomposition without piv-
oting, Floyd-Warshall’s APSP [8, 25], matrix multipli-
cation, and sequence alignment with gaps; with some
modification, it also gives a cache-oblivious algorithm
for a class of dynamic programs termed as ‘simple-DP’
[6] which includes dynamic programming algorithms for
RNA secondary structure prediction [19], matrix chain
multiplication and optimal binary search trees. The
I/O-complexity of each of these algorithms matches the
best I/O bound known for the corresponding problem.

Related Work. The linear-space LCS algorithm of
Hirschberg [13], when analyzed as a cache-oblivious

algorithm, performs O
(

n2

B

)

block transfers. While this

is considerably better than the näıve bound of O(n2) it

is considerably larger than O
(

n2

BM

)

, which is the bound

we achieve. If only the length of the LCS is needed, the
technique for stencil computation [10] can achieve the
same bound as our algorithm. However, that technique
does not extend to computing an actual sequence.

Known cache-oblivious algorithms for Gaussian
elimination for solving systems of linear equations are
based on LU decomposition. In [27, 4] cache-oblivious

algorithms performing O
(

n3

B
√

M

)

I/O operations are

given for LU decomposition without pivoting, while the
algorithm in [23] performs LU decomposition with par-
tial pivoting within the same I/O bound. These algo-
rithms use matrix multiplication and solution of trian-
gular linear systems as subroutines.

In [6], an O(n3) time and O
(

n3

B
√

M

)

I/O cache-

oblivious algorithm based on Valiant’s context-free lan-
guage recognition algorithm [24], is given for simple-DP.

A cache-oblivious algorithm for Floyd-Warshall’s
APSP algorithm is given in [20]. The algorithm runs

in O(n3) time and incurs O
(

n3

B
√

M

)

cache misses.

The rest of the paper is organized as follows. In
section 2 we describe and analyze our cache-oblivious
algorithm for the LCS problem and present some exper-
imental results. We consider the gap problem in section
3. Finally in section 4 we introduce GEP and show its
use in designing cache-oblivious algorithms for various
problems.

2 Longest Common Subsequence

A sequence Z = 〈z1, z2, . . . zk〉 is called a subsequence
of another sequence X = 〈x1, x2, . . . xm〉 if there ex-
ists a strictly increasing function f : [1, 2, . . . , k] →
[1, 2, . . . , m] such that for all i ∈ [1, k], zi = xf(i). A
sequence Z is a common subsequence of sequences X

and Y if Z is a subsequence of both X and Y . In the
Longest Common Subsequence (LCS) problem we are
given two sequences X and Y , and we need to find a
maximum-length common subsequence of X and Y .

Given two sequences X = 〈x1, x2, . . . xm〉 and Y =
〈y1, y2, . . . yn〉, we define c[i, j] (0 ≤ i ≤ m, 0 ≤ j ≤
n) to be the length of an LCS of 〈x1, x2, . . . xi〉 and
〈y1, y2, . . . yj〉. Then c[m, n] is the length of an LCS
of X and Y , and can be computed using the following
recurrence relation (see, e.g., [7]):

(equation 2.1)

c[i, j] =















0 if i = 0 or j = 0,
c[i− 1, j − 1] + 1 if i, j > 0 ∧ xi = yj,

max

{

c[i, j − 1]
c[i− 1, j]

if i, j > 0 ∧ xi 6= yj.

The classic dynamic programming solution to the
LCS problem is based on this recurrence relation,
and computes the entries of c[0 . . .m, 0 . . . n] in row-
major order in Θ(mn) time and incurs O

(

mn
B

)

cache
misses. Further, since each c[i, j] depends on only
c[i− 1, j − 1], c[i, j − 1] and c[i − 1, j], after all entries
of c[0 . . .m, 0 . . . n] are computed, we can trace back the
sequence of decisions that led to the value computed
for c[m, n], and thus recover an LCS of X and Y in
O(m + n) additional time, while incurring Θ(m + n)
I/Os. The forward pass of this algorithm can be im-
plemented in O(min(m, n)) space, and thus the length
of an LCS can be computed in linear space, but the al-
gorithm needs Θ(mn) space to compute an actual LCS
sequence. Hirschberg [13] gives an O(min (m, n)) space
algorithm, which finds an LCS in O

(

mn
B

)

I/Os.



LCS-Output-Boundary(X′, Y ′, T, L)

Input. The top and the left input boundaries of Q[1 . . . r, 1 . . . r] are stored in T and
L, respectively, where r = |X′| = |Y ′| = 2q for some nonnegative integer q ≤ p,
and Q[1 . . . r, 1 . . . r] = c[k . . . k + r − 1, l . . . l + r − 1], X′ = X[k . . . k + r − 1] and
Y ′ = Y [l . . . l + r − 1] for some k and l (1 ≤ k, l ≤ n− r + 1).

Output. The output is (B, R) where B (R) is the bottom (resp. right) output boundary
of Q[1 . . . r, 1 . . . r].

1. if r = 1 then compute the output boundary directly using equation 2.1

2. else

3. (B11, R11)← LCS-Output-Boundary(X′

1, Y ′

1 , T1, L1) {process Q11}

4. (B12, R12)← LCS-Output-Boundary(X′

2, Y ′

1 , T2, R11) {process Q12}

5. (B21, R21)← LCS-Output-Boundary(X′

1, Y ′

2 , B11, L2) {process Q21}

6. (B22, R22)← LCS-Output-Boundary(X′

2, Y ′

2 , B12, R21) {process Q22}

7. return (B21#B22, R12#R22)

Figure 1: Computing output boundary of an LCS matrix cache-obliviously.
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Figure 2: Dividing a square LCS
matrix Q into quadrants (Q11,
Q12, Q21 and Q22).

Recursive-LCS(X′, Y ′, T, L, i, j)

Input. The top and the left input boundaries of Q[1 . . . r, 1 . . . r] are stored in T and L, respectively, where r = |X′| = |Y ′| = 2q for
some nonnegative integer q ≤ p, and Q[1 . . . r, 1 . . . r] = c[k . . . k+r−1, l . . . l+r−1], X′ = X[k . . . k+r−1] and Y ′ = Y [l . . . l+r−1]
for some k and l (1 ≤ k, l ≤ n− r + 1). The entry c[i, j] lies on the output boundary of Q.

Output. Let i′ and j′ be the values supplied in i and j in the input. Returns an LCS Z of X[k . . . i′] and Y [l . . . j′], updates i

and j to return the point at which the LCS Path starting at c[i′, j′] intersects the input boundary of Q.

1. Z ← ∅

2. if r = 1 then set Z ← X′[1] if X′[1] = Y ′[1] and return the appropriate values for i and j

3. else

4. (B11, R11)← LCS-Output-Boundary(X′

1, Y ′

1 , T1, L1) {generate output boundary of Q11}

5. if (i, j) ∈ output-boundary(Q22) then {if the LCS intersects Q22}

6. (B12, R12)← LCS-Output-Boundary(X′

2, Y ′

1 , T2, R11) {generate output boundary of Q12}

7. (B21, R21)← LCS-Output-Boundary(X′

1, Y ′

2 , B11, L2) {generate output boundary of Q21}

8. Z ← Recursive-LCS(X′

2, Y ′

2 , B12, R21, i, j) # Z {find LCS fragment in Q22}

9. if (i, j) ∈ output-boundary(Q12) then Z ← Recursive-LCS(X′

2, Y ′

1 , T2, R11, i, j) # Z {find LCS fragment in Q12}

10. if (i, j) ∈ output-boundary(Q21) then Z ← Recursive-LCS(X′

1, Y ′

2 , B11, L2, i, j) # Z {find LCS fragment in Q21}

11. if (i, j) ∈ output-boundary(Q11) then Z ← Recursive-LCS(X′

2, Y ′

2 , T1, L1, i, j) # Z {find LCS fragment in Q11}

12. return Z

Figure 3: Cache-Oblivious computation of an LCS.

In this section we present an optimal cache-
oblivious implementation of the LCS dynamic pro-
gram. Our algorithm uses a procedure LCS-Output-

Boundary that computes LCS-lengths at the ‘bound-
ary’ of the subproblem being considered. This proce-
dure is used in an algorithm Recursive-LCS that com-
putes an actual LCS. The algorithm performs O

(

mn
BM

)

I/Os, and we also show that this is optimal for any im-
plementation of the dynamic programming algorithm
for LCS. In the following, for convenience we assume
that n = m = 2p where p is a nonnegative integer; the
two input sequences are X and Y .

Cache-oblivious LCS Output Boundary. We can

compute all entries of a submatrix c[i1 . . . i2, j1 . . . j2] of
c provided we know the entries of c[i1 − 1, j1 . . . j2] and
c[i1 . . . i2, j1 − 1], where i2 ≥ i1 > 0 and j2 ≥ j1 > 0.
We refer to c[i1−1, j1 . . . j2] and c[i1 . . . i2, j1−1] as the
input boundary of the submatrix, and c[i2, j1 . . . j2] and
c[i1 . . . i2, j2] as the output boundary.

The function LCS-Output-Boundary (given
in Figure 1) when called with sub-sequences X ′ and
Y ′ where |X ′| = |Y ′| = r = 2q for some nonnegative
integer q ≤ p, together with costs for the top and the
left input boundaries (T and L, respectively) of the
corresponding LCS submatrix, computes the output
boundary of that submatrix. If r = 1, the function
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Figure 4: (I/O lower bound for LCS) (a) Computational DAG of Recursive-LCS, (b) Vertex-disjoint paths
(lines) from inputs to outputs, (c) Computational subDAG (shaded) defined by two nodes at distance d = 3 (the
two endpoints u and v of the left to right diagonal of the subDAG).

computes the output boundary directly using equation
2.1, otherwise it divides the input submatrix into
four quadrants, and recursively computes the output
boundary of each quadrant in the following order:
top-left, top-right/bottom-left, bottom-right. This
sequence ensures that the input boundary of each
quadrant has already been computed before processing
that quadrant. It then computes the output boundary
of the input submatrix by appropriately combining the
output boundaries of the quadrants. The initial call is
LCS-Output-Boundary(X, Y, T, L), with T [0 . . . n]
and L[0 . . . n] initialized to all zeros.

Analysis. Let I1(n) be the I/O complexity of LCS-

Output-Boundary on an input of size n. Then

I1(n) =

{

O
(

1 + n
B

)

if n ≤ αM ,
4I1

(

n
2

)

+O(1) otherwise;

where α is the largest constant sufficiently small that
an input of size αM fits completely in the cache. Hence

I1(n) = O
(

1 + n
B

+ n2

BM

)

. The algorithm runs in

O(n2) time while using O(n) space.

Computing the Elements of an LCS. Recall that
if all entries of c[1 . . . n, 1 . . . n] are available, one can
trace back the sequence of decisions that led to the value
computed for c[n, n], and thus retrieve the elements on
an LCS of X and Y . We can view this sequence of
decisions as a path through c that starts at c[n, n] and
ends at the input boundary of c[1 . . . n, 1 . . . n]. We call
this path an LCS Path.

Our algorithm traces an LCS path without storing
all entries of c; instead it only stores the boundaries
of certain subproblems. It uses a recursive function
Recursive-LCS (given in Figure 3) to construct the
LCS. This function is called with parameters X ′, Y ′, T ,
L, i and j where the first four parameters are the same
as those of LCS-Output-Boundary, and the last two
are indices such that an LCS path intersects the output
boundary of c[k . . . k+r−1, l . . . l+r−1] at c[i, j]. This

function traces the fragment of that path through this
submatrix, and returns the LCS Z of X and Y along
this subpath. It also finds the entry at which this path
intersects the input boundary of the given submatrix,
and updates i and j to point to that entry, respectively.
If r = 1, it computes Z by comparing X ′[1] and Y ′[1],
otherwise it solves the problem recursively by dividing
the input submatrix into four quadrants. It first calls
LCS-Output-Boundary at most three times (at most
once for each quadrant except the bottom-right one) in
order to generate the input boundaries of the top-right
and the bottom-left quadrants, and if required for the
bottom-right quadrant. Observe that the LCS path can
pass through at most three quadrants of the current
submatrix. This function locates those quadrants one
after another based on the current values of i and j

(i.e., based on which quadrant c[i, j] belongs to), and
calls itself recursively in order to trace the fragment of
the LCS path that passes through that quadrant. (note
that the recursive calls modify i and j). The output
of Recursive-LCS is the concatenation of these LCS
fragments in the correct order.

The initial call is Recursive-LCS(X, Y, T, L, n, n),
with T [0 . . . n] and L[0 . . . n] initialized to all zeros.

Analysis. Recall that I1 represents the number of I/Os
performed by LCS-Output-Boundary. Let I2(n) be
the I/O complexity of Recursive-LCS on an input of
size n. Since an LCS path can intersect at most three
quadrants of the input submatrix, we have:

I2(n) ≤

{

O
(

1 + n
B

)

if n ≤ αM ,
3

(

I1

(

n
2

)

+ I2

(

n
2

))

+O
(

1 + n
B

)

otherwise;

where α is the largest constant sufficiently small that
an input of size αM fits completely in the cache. Hence

I2(n) = O
(

1 + n
B

+ n2

BM

)

. The running time and space

remain O(n2) and O(n), respectively.
For input strings of unequal lengths m and n, and

of lengths that are not powers of 2, this algorithm can



n

8,192

16,384

32,768

65,536

131,072

262,144

524,288

1,048,576

Intel Xeon

CO Hi ratio

(c1) (c2)
�

c2
c1

�
0.2 32.6 163

0.5 136.8 274

1.4 559.0 399

3.9 2,262 580

12.5 9,084 727

42.9 36,426.9 849

156.7 146,095.1 932

- - -

Sun Blade 2000/1000

CO Hi ratio

(c1) (c2)
�

c2
c1

�
9 20 2

19 469 25

39 3,037 78

79 14,736 187

159 64,250 404

369 267,741 725

825 1,091,071 1,323

2,033 7,803,878 3,839

Table 1: L1 misses (in millions) on Intel Xeon and Sun
Blade. The figures are averages of 5 runs on two equal-
length random sequences from an alphabet of size 26.

Sequence pairs
with lengths

(106)

cat/dog (1.16/1.05)

rat/mouse (1.50/1.49)

baboon/chimp (1.51/1.32)

human/fugu (1.80/0.27)

human/chicken (1.80/0.42)

human/chimp (1.80/1.32)

human/cow (1.80/1.46)

human/baboon (1.80/1.51)

Running time

CO Hi ratio

(t1) (t2)
�

t2
t1

�
5h 51m 8h 39m 1.48

8h 0m 15h 54m 1.99

7h 22m 14h 46m 2.00

1h 54m 3h 8m 1.65

2h 47m 4h 59m 1.79

7h 37m 17h 34m 2.31

9h 27m 18h 55m 2.00

8h 52m 19h 18m 2.18

Table 2: Running time on AMD Opteron. The
figures give the time for a single run on pairs of
CFTR DNA sequences.

be extended to perform O
(

mn
BM

)

I/Os while running in
O(mn) time using O(m + n) space.

Lower Bound. We prove that any algorithm that ex-
ecutes mn operations in order to implement the type
of computation defined by equation 2.1 (i.e., compute
c[m, n]), must perform Ω

(

1 + m+n
B

+ mn
BM

)

I/Os. We
use the red-blue pebble game technique [16] in order to
obtain this lower bound. First we construct a compu-
tation DAG G given by the computation of the algo-
rithm. Figure 4(a) shows an example of the computa-
tion DAG given by equation 2.1. Nodes in G represents
operations, and edges represent the data-flow of the al-
gorithm. Nodes with no incoming edges are inputs and
those with no outgoing edges are outputs. In Figure
4(a) the nodes in the top row and the far left column
represent inputs, and those in the bottom row and the
far right column represent outputs. In this Figure the
output nodes form an extra lair, and the edges to the
output nodes represents simple copy operations. Figure
4(b) shows a decomposition of G into vertex-disjoint
paths from inputs to outputs. These paths are called
lines. Now for any two nodes u and v in G that lie
at least a distance d apart on the same line, the infor-
mation speed function FG(d) is defined as the number
of nodes in G no two of which lie on the same line and
each of which belongs to a path connecting u and v. The
following theorem gives a lower bound on the number
of I/O operations Q required to execute G.

Theorem [16]. For any graph G where all inputs
can reach all outputs through vertex-disjoint paths,
if the information speed function is Ω(F (d)), where
F is monotonically increasing and F−1 exists, then
Q · F−1(M) = Ω(L), where L is the total number of
vertices on the vertex-disjoint paths or lines.

This theorem assumes that data is transferred to
the cache in blocks of size 1. Therefore, for block size

B, we will have, Q = Ω
(

L
BF−1(M)

)

. In Figure 4(b) we

decomposed G into Θ(m+n) lines, and L = Θ(mn). We
have F (d) = Ω(d) (see Figure 4(c)). The inverse of F (d)
exists, and F−1(d) = O(d). Therefore, Q = Ω

(

mn
BM

)

.
Since the algorithm must also read all Θ(m + n)

inputs, the I/O lower bound is Ω
(

1 + m+n
B

+ mn
BM

)

.

2.1 Experimental Results. We implemented three
variants of our algorithm: (i) 4-way partitioning as de-
scribed above, (ii) 2-way partitioning along the longer
dimension, and (iii) triangular partitioning. All three
methods have the same asymptotic bounds, but the tri-
angular partitioning gave the best performance exper-
imentally. For comparison we coded the widely used
linear-space algorithm of Hirschberg [14]. Both algo-
rithms were tested on both random and real-world se-
quences consisting upto 2 million symbols each, and
timing and caching data were obtained on three state-
of-the-art architectures: Intel Xeon, AMD Opteron and
SUN UltraSPARC-III+. Detailed results of our experi-
ments can be found in [5]. Below we summarize our re-
sults, where CO and Hi denote the new cache-oblivious
algorithm and Hirschberg’s algorithm, respectively:

• CO incurred considerably fewer cache misses com-
pared to Hi. In Table 1 we tabulate the L1 cache
misses incurred by the algorithms on the Intel Xeon
and the Sun UltraSPARC-III+.

• CO ran a factor of 2 to 6 times faster than Hi
on random sequences. In Table 2 we tabulate
running times on the AMD Opteron for CFTR
DNA sequences [22], where again, CO performs
approximately twice as fast as Hi.

• CO executed 40%-50% fewer instructions than Hi.

• Unlike Hi, CO was able to conceal the effects
of caches on its running time; its actual running
time could be predicted quite accurately from its
theoretical time complexity.



Recursive-Gap(C)

(We assume that C is a square submatrix of D, and the top-left cell of C corresponds to D[i, j] for some 0 ≤ j ≤ n. We also
assume that the dimension of C is a power of 2. This function recursively computes the entries of C according to equation 3.2.)

1. if C is a 1× 1 matrix then D[i, j]← min (D[i, j],D[i− 1, j − 1]) else

2. Recursive-Gap(C11) {compute top-left quadrant}

3. Apply-E(C12, C11), Recursive-Gap(C12) {compute top-right quadrant}

4. Apply-F(C21, C11), Recursive-Gap(C21) {compute bottom-left quadrant}

5. Apply-E(C22, C12), Apply-F(C22, C21), Recursive-Gap(C22) {compute bottom-right quadrant}

Apply-E(A, B)

(A and B are two non-overlapping 2t × 2t submatrices of D,
where t is a nonnegative integer. A[1, 1] corresponds to D[i, j],
and B[1, 1] corresponds to D[i, q] for some 0 ≤ i ≤ n and
0 ≤ q < j ≤ n. This function updates the entries of A using
the entries of B according to the equation defining E[i, j].)

1. if t = 0 then D[i, j]← min (D[i, j],D[i, q] + w(q, j))

2. else {update in the order: A11, A12, A21, A22}

3. Apply-E(A11, B11), Apply-E(A11, B12)

4. Apply-E(A12, B11), Apply-E(A12, B12)

5. Apply-E(A21, B21), Apply-E(A21, B22)

6. Apply-E(A22, B21), Apply-E(A22, B22)

Apply-F(A, B)

(A and B are two non-overlapping 2t × 2t submatrices of D,
where t is a nonnegative integer. A[1, 1] corresponds to D[i, j],
and B[1, 1] corresponds to D[p, j] for some 0 ≤ p < i ≤ n and
0 ≤ j ≤ n. This function updates the entries of A using the
entries of B according to the equation defining F [i, j].)

1. if t = 0 then D[i, j]← min (D[i, j],D[p, j] + w′(p, i))

2. else {update in the order: A11, A12, A21, A22}

3. Apply-F(A11, B11), Apply-F(A11, B21)

4. Apply-F(A12, B12), Apply-F(A12, B22)

5. Apply-F(A21, B11), Apply-F(A21, B21)

6. Apply-F(A22, B12), Apply-F(A22, B22)

Figure 5: Cache-oblivious algorithm for the gap problem.

2.2 The Edit Distance Problem. Given two
strings X = x1x2 . . . xm and Y = y1y2 . . . yn over a fi-
nite alphabet Σ, the edit distance of X and Y is the
minimum cost of an edit sequence that transforms X

into Y [17]. The edit operations are: delete(xi) of cost
D(xi) that deletes xi from X , insert(yj) of cost I(yj)
that inserts yj into X , and substitute(xi, yj) of cost
S(xi, yj) that replaces xi with yj in X .

Our LCS algorithm can be adopted directly to
solve this problem cache-obliviously in O(mn) time and
O

(

mn
BM

)

I/Os provided that Σ is small enough so that
S can be stored in internal memory, or S(xi, yj) can
be computed on the fly in constant time and without
incurring any additional cache misses.

3 The Gap Problem

The gap problem [11, 12, 26] is a generalization of
the edit distance problem that arises in molecular bi-
ology, geology, and speech recognition. When trans-
forming a string X = x1x2 . . . xm into another string
Y = y1y2 . . . yn, a sequence of consecutive deletes cor-
responds to a gap in X , and a sequence of consecutive
inserts corresponds to a gap in Y . In many applications
the cost of such a gap is not necessarily equal to the sum
of the costs of each individual deletion (or insertion)
in that gap. In order to handle this general case two
new cost functions w and w′ are defined, where w(p, q)
(0 ≤ p < q ≤ m) is the cost of deleting xp+1 . . . xq from

X , and w′(p, q) (0 ≤ p < q ≤ n) is the cost of inserting
yp+1 . . . yq into X . The substitution function S(xi, yj) is
the same as that of the standard edit distance problem.

Let D[i, j] denote the minimum cost of transforming
Xi = x1x2 . . . xi into Yj = y1y2 . . . yj (where 0 ≤ i ≤ m

and 0 ≤ j ≤ n) under this general setting. Then

(equation 3.2)

D[i, j] =















0 if i = j = 0,
w(0, j) if i = 0, 1 ≤ j ≤ n,
w′(0, i) if j = 0, 1 ≤ i ≤ m,
G[i, j] if i, j > 0;

where G[i, j] = min (D[i− 1, j] + S(xi, yj), E[i, j], F [i, j]),
E[i, j] = min0≤q<j {D[i, q] + w(q, j)} and F [i, j] =
min0≤p<i {D[p, j] + w′(p, i)}.

Assuming m = n, this problem can be solved in
internal memory [11] in O(n3) time using O(n2) space;

this algorithm incurs Θ
(

n3

B

)

I/Os.

Cache-Oblivious Algorithm. The Recursive-Gap

function given in Figure 5 is a cache-oblivious algorithm
for the gap problem. When called with matrix D it
computes the entries of D recursively assuming that
m = n = 2p for some integer p ≥ 0. It splits the input
matrix C into four quadrants, and solves each quadrant
recursively in the following order: top-left (C11), top-
right (C12), bottom-left (C21) and bottom-right (C22).
This order of processing ensures that no entry D[i, j] is



1. for k ← κ1 to κ2 do {n ≥ κ2 ≥ κ1 ≥ 1}

2. for i← ι1(k) to ι2(k) do {n ≥ ι2(k) ≥ ι1(k) ≥ 1}

3. for j ← ζ1(k, i) to ζ2(k, i) do {n ≥ ζ2(k, i) ≥ ζ1(k, i) ≥ 1}

4. c[i, j]← f(c[i, j], c[i, k], c[k, j], c[k, k]) {a problem specific function}

Figure 6: General dynamic program in GEP.

F(X, k1, k2) {F can be any of the nine functions (A, B1, B2, C1, C2, D1, D2, D3, D4) in column 1 of Figure 9.}

(X is a square submatrix of c such that X[1, 1] = c[i1, j1] and X[2q, 2q] = c[i2, j2] where i2− i1 = j2− j1 = k2− k1 =
2q − 1 for some integer q ≥ 0. The top-left, top-right, bottom-left and bottom-right quadrants of X are denoted by
X11, X12, X21 and X22, respectively. The function calls in lines 4 and 5 are determined from Figure 9.)

1. if k1 = k2 then c[i1, j1]← f(c[i1, j1], c[i1, k1], c[k1, j1], c[k1, k1])

2. else

3. km ← ⌊
k1+k2

2
⌋

4. F11(X11, k1, km), F12(X12, k1, km), F21(X21, k1, km), F22(X22, k1, km) {forward pass}

5. F ′

22(X22, km + 1, k2), F ′

21(X21, km + 1, k2), F ′

12(X12, km + 1, k2), F ′

11(X11, km + 1, k2) {backward pass}

Figure 7: Cache-oblivious implementation of the dynamic program in Figure 6.

(b)
m k<_ <_ k2+ 1

F 21( )
21

F 22( )
X 22

F( )
X 11

F 12( )
X 12

X

X

11́ ´

´ ´F 21( )
21

F 22( )
X 22

F( )
X 11

F 12( )
X 12

X

X

11

kk1
<_ <_ km

(a)
k

Figure 8: Processing order of quadrants of X

by F (processing function in parentheses): (a)
forward pass, (b) backward pass.

F F11 F12 F21 F22 F ′

22 F ′

21 F ′

12 F ′

11

A A B1 C1 D1 A B2 C2 D4

Bi

(i = 1, 2)
Bi Bi Di Di Bi Bi Di+2 Di+2

Ci

(i = 1, 2)
Ci D2i−1 Ci D2i−1 Ci D2i Ci D2i

Di

(i ∈ [1, 4])
Di Di Di Di Di Di Di Di

Figure 9: Function specific recursive calls.

F A B1 B2 C1 C2 D1 D2 D3 D4

P (F )
i1 = k1

∧ j1 = k1

i1 = k1

∧ j1 > k2

i1 = k1

∧ j2 < k1

i1 > k2

∧ j1 = k1

i2 < k1

∧ j1 = k1

i1 > k2

∧ j1 > k2

i1 > k2

∧ j2 < k1

i2 < k1

∧ j1 > k2

i2 < k1

∧ j2 < k1

Figure 10: Function specific pre-condition P (F ).

used to update some other entry before completing the
computation of D[i, j] itself. The function Apply-E

(Apply-F) is used to update the entries of a quadrant
using the entries of another one based on the equation
defining E[i, j] (resp. F [i, j]).

I/O Complexity. Let I(n) and I ′(n) be the I/O com-
plexities of Recursive-Gap and Apply-E/Apply-F,
respectively, on an input of size n× n. Then

I ′(n) =

{

O(n + n2

B
) if n2 ≤ α′M ,

8I ′
(

n
2

)

otherwise;

and I(n) =

{

O(n + n2

B
) if n2 ≤ αM ,

4I
(

n
2

)

+ 4I ′
(

n
2

)

otherwise;

where α′ and α are suitable constants. Solving the

recurrences we obtain I(n) = O
(

n3

M
+ n3

B
√

M

)

=

O
(

n3

B
√

M

)

, assuming a tall cache, i.e., M = Ω(B2).

The Least Weight Subsequence Problem. The
least weight subsequence problem [15, 12] which arises
in optimum paragraph formation and in finding mini-
mum height B-trees, can be solved cache-obliviously in

O(n2) time, O(n) space and O( n2

BM
) I/Os using a 1-

dimensional version of Recursive-Gap, where n is the
length of the input sequence.

4 The Gaussian Elimination Paradigm (GEP)

In this section we present a general cache-oblivious
framework for problems that can be solved using a
triply-nested for loop as shown in Figure 6. In view
of the structural similarity between this construct and
the computation in Gaussian elimination without piv-



c =















a1,1 a1,2 . . . a1,n−1 b1

a2,1 a2,2 . . . a2,n−1 b2

...
...

. . .
...

...
an−1,1 an−1,2 . . . an−1,n−1 bn−1

0 0 . . . 0 0















(a)

1. for k ← 1 to n− 2 do

2. for i← k + 1 to n− 1 do

3. for j ← k + 1 to n do

4. c[i, j]← c[i, j]−
c[i,k]
c[k,k]

× c[k, j]

(b)

Figure 11: (a) System of equations as a matrix, (b) First phase of Gaussian elimination.

oting, we will refer to this paradigm as the Gaussian
Elimination Paradigm or GEP. Many practical prob-
lems fall in this category, for example: all-pairs short-
est paths, LU decomposition, and Gaussian elimination
without pivoting. Other problems can be solved using
GEP through structural transformation, for example:
the gap problem, simple dynamic program [6], and ma-
trix multiplication.

In the triply-nested loop of Figure 6 the range of
i in step 2 is a function of k, and that of j in step 3
is a function of k and i. We assume w.l.o.g. that the
smallest value taken by any of i, j or k is 1, and the
largest value taken is n = 2p for some integer p ≥ 0.
Therefore, the running time of the dynamic program is
O(n3) provided f can be computed in constant time.

A General Cache-Oblivious Implementation. In
Figure 7, we give a template for a recursive function F

which can be instantiated to any of the nine functions
(A, B1, B2, C1, C2, D1, D2, D3, and D4) given in
Figure 9. The inputs to F are a square submatrix X of
c[1 . . . n, 1 . . . n], and two indices k1 and k2. The top-left
cell of X corresponds to c[i1, j1], and the bottom-right
cell corresponds to c[i2, j2]. These indices satisfy the
following constraints:

(a) i2 − i1 = j2 − j1 = k2 − k1 = 2q − 1 for some
integer q ≥ 0

(b) [i1, i2] 6= [k1, k2] ⇒ [i1, i2] ∩ [k1, k2] = ∅ and
[j1, j2] 6= [k1, k2] ⇒ [j1, j2] ∩ [k1, k2] = ∅

(c) P (F ) (see Figure 10)

The base case occurs when k1 = k2, and the
function updates c[i1, j1] to f(c[i1, j1], c[i1, k1], c[k1, j1],
c[k1, k1]). Otherwise it splits X into four quadrants
(X11, X12, X21 and X22), and recursively updates the
entries in each quadrant in two passes: forward (line
4) and backward (line 5). The processing order of the
quadrants and the processing function for each quadrant
in each pass are shown in Figures 8 and 9, respectively.
A given computation need not necessarily make all
recursive calls in lines 4 and 5. Whether a specific
recursive call to a function F ′ (say) will be made or not
depends on P (F ′) and the dynamic program at hand.
For example, if the for loop in line 2 of Figure 6 starts

with i ← k, then we do not make any recursive call to
function C2 since the indices of the dynamic program
cannot satisfy P (C2).

The function call A(c, 1, n) (F instantiated to A)
solves the dynamic program in Figure 6.

I/O Complexity. Let I(n) be an upper bound on the
number of I/O operations performed by any of the nine
functions on an input of size n× n. Since all functions
have the same base case, we have,

I(n) ≤

{

O(n + n2

B
) if n2 ≤ αM ,

8I
(

n
2

)

otherwise;

where α is the largest constant sufficiently
small that four αM × αM submatrices fit in
the cache. The solution to the recurrence is
I(n) = O

(

n3

M
+ n3

B
√

M

)

= O
(

n3

B
√

M

)

(assuming a

tall cache).

I/O Lower Bound. Later in this section we show
that the problem of multiplying two n × n matrices
(i.e., computing C = A × B, where A, B and C are
n × n matrices) can be cast as a problem in GEP.
Since any algorithm that executes Θ(n3) operations
given by the definition of matrix multiplication (Cij =
∑n

k=1 Aik ×Bkj) must perform Ω
(

n3

B
√

M

)

I/Os [16],

the same lower bound holds for GEP, too.

Gaussian Elimination without Pivoting. Gaussian
elimination without pivoting is used in the solution
of systems of linear equations and LU decomposition
of symmetric positive-definite or diagonally dominant
real matrices [7]. We represent a system of n − 1
equations in n − 1 unknowns (x1, x2, . . . , xn−1) using
an n × n matrix c as shown in Figure 11(a), where
the i’th (1 ≤ i < n) row represents the equation
ai,1x1 + ai,2x2 + . . . + ai,n−1xn−1 = bi. The method
proceeds in two phases. In the first phase, as shown in
Figure 11(b), an upper triangular matrix is constructed
from c by successive elimination of variables from the
equations. This phase requires O(n3) time. The loop in
step 3 starts with j = k +1 instead of j = k which does
not affect the correctness of the algorithm, but is crucial
for a recursive implementation. In the second phase,
the values of the unknowns are determined from this



1. for k ← 1 to n do

2. for i← 1 to n do

3. for j ← 1 to n do

4. c[i, j]← min (c[i, j], c[i, k] + c[k, j])

1. for k ← 1 to n do

2. for i← 1 to n do

3. for j ← 1 to n do

4. c[i, j]← c[i, j] + a[i, k]× b[k, j]

(a) (b)

Figure 12: (a) Floyd-Warshall’s APSP algorithm, (b) Modified matrix multiplication algorithm.

1. for k ← 0 to n− 1 do

2. for i← 1 to n do

3. for j ← 1 to n do

4. if (i ≤ k ∧ j ≥ k + 1) ∨ (i ≥ k + 1 ∧ j ≤ k) then

D[i, j]← min(D[i, j], D[i− 1, j− 1]+S(xi, yj))

if i ≤ k and j ≥ k + 1 then

D[i, j]← min(D[i, j], D[i, k] + w(k, j))

else D[i, j]← min(D[i, j], D[k, j] + w′(k, i))

1. for i← 1 to n do D[i, i]← xi

2. for d← 2 to n do

3. for i← 1 to n− d + 1 do

4. j ← d + i− 1

5. for k ← i to j − 1 do

6. D[i, j]← D[i, j] + D[i, k] ·D[k + 1, j]

(a) (b)
Figure 13: (a) Alternate DP for the gap problem, (b) The O(n3) Simple DP algorithm.

matrix by back substitution. It is straight-forward to

implement this phase in O(n2) time and O
(

n2

B

)

I/Os.

The first phase is an instantiation of the GEP
dynamic program in Figure 6. Observe that we always
have i > k and j > k when we reach line 4 in Figure
11(b). Therefore, comparing these indices with the pre-
conditions in Figure 10, we can eliminate all recursive
function calls except those to the following four: A,
B1, C1 and D1. Thus this phase can be executed in

O(n3) time incurring O
(

n3

B
√

M

)

cache misses by calling

A(c, 1, n) with the reduced set of function calls.
A similar method solves LU decomposition without

pivoting within the same bounds. Both algorithms
are in-place. Our algorithm for Gaussian elimination
is arguably simpler than existing algorithms since it
does not use LU decomposition as an intermediate step,
and thus does not invoke subroutines for multiplying
matrices or solving triangular linear systems, as is
the case with other cache-oblivious algorithms for this
problem [27, 4, 23].

All-pairs Shortest Paths. The Floyd-Warshall algo-
rithm [8, 25] for computing all-pairs shortest paths (see
Figure 12(a)) is another instance of a dynamic program
in GEP. In this case, however, we cannot eliminate any
recursive function calls, and a little inspection reveals
that all 9 functions are actually the same. Therefore,
we can take only one function, say A, and substitute A

for each recursive call it makes. The resulting algorithm
is exactly the same as that in [20].

Matrix Multiplication. We consider the problem of
computing C = A × B, where A, B and C are n × n

matrices. Though standard matrix multiplication does
not fall into GEP, it does after the small structural
modification shown in Figure 12(b) (index k is in the
outermost loop in the modified algorithm, while in the
standard algorithm it is in the innermost loop). The
cache-oblivious algorithm we obtain for this modified
algorithm by applying the transformations in this sec-
tion is similar to that obtained for Floyd-Warshall’s al-
gorithm except that we need to pass all three matrices
(A, B and C) to the recursive functions instead of one.

The Gap Problem. We presented a cache-oblivious
algorithm for the gap problem (section 3). Here we
show that we can obtain an alternate cache-oblivious
algorithm for this problem by casting it as a dynamic
program in GEP. In Figure 13(a) we give an alternate
implementation of equation 3.2 assuming that row 0
and column 0 of D[i, j] have already been initialized.
Though the dynamic program in Figure 13(a) does
not exactly match the pattern given in Figure 6 (for
example: some of the indices are off by a constant,
and additional functions w, w′ and S are used), the
GEP method continues to apply, and we obtain an

O
(

n3

B
√

M

)

I/O cache-oblivious algorithm.

Simple Dynamic Programs. In [6], the term Simple
dynamic program was used to denote a class of dynamic
programming problems over a nonassociative semi-ring
(S, +, ·, 0) which can be solved in O(n3) time using the
dynamic program shown in Figure 13(b). Its applica-
tions include RNA secondary structure prediction, op-
timal matrix chain multiplication, construction of op-
timal binary search trees, and optimal polygon trian-

gulation. An O
(

n3

B
√

M

)

I/O cache-oblivious algorithm



based on Valiant’s context-free language recognition al-
gorithm [24] was given in [6] for this class of problems.

We can transform a simple dynamic program into
a dynamic program in GEP using the decomposition
technique given in [12]. The upper triangular matrix
D is decomposed into (forward) diagonal strips of

horizontal width n
1

4 , and the entries in D are computed
one strip at a time starting from the largest strip. The
computation for each strip involves min-plus matrix
multiplication and dynamic programs that can be solved
with GEP. The resulting algorithm runs in O

(

n3
)

time

and O
(

n3

B
√

M

)

I/Os.
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