
External-Memory Exact and Approximate All-Pairs Shortest-Paths in

Undirected Graphs ∗

Rezaul Alam Chowdhury Vijaya Ramachandran

Abstract

We present several new external-memory algorithms
for finding all-pairs shortest paths in a V -node, E-
edge undirected graph. For all-pairs shortest paths and
diameter in unweighted undirected graphs we present
cache-oblivious algorithms with O(V · E

B log M

B

E
B) I/Os,

where B is the block-size and M is the size of internal
memory. For weighted undirected graphs we present
a cache-aware APSP algorithm that performs O(V ·
(
√

V E
B + E

B log E
B)) I/Os. We also present efficient cache-

aware algorithms that find paths between all pairs of
vertices in an unweighted graph with lengths within a
small additive constant of the shortest path length.

All of our results improve earlier results known for
these problems. For approximate APSP we provide
the first nontrivial results. Our diameter result uses
O(V + E) extra space, and all of our other algorithms
use O(V 2) space.

1 Introduction

1.1 The APSP Problem. The all-pairs shortest
paths (APSP) problem is one of the most fundamen-
tal and important combinatorial optimization problems
from both a theoretical and a practical point of view.
Given a (directed or undirected) graph G with vertex
set V [G], edge set E[G], and a non-negative real-valued
weight function w over E[G], the APSP problem seeks
to find a path of minimum total edge-weight between
every pair of vertices in V [G]. For any pair of vertices
u, v ∈ V , the path from u to v having the minimum
total edge-weight is called the shortest path from u to v,
and the sum of all edge-weights along that path is the
shortest distance from u to v. The diameter of G is the
longest shortest distance between any pair of vertices in
G. For unweighted graphs the APSP problem is also
called the all-pairs breadth-first-search (AP-BFS) prob-
lem. By V and E we denote the size of V [G] and E[G],
respectively.

Considerable research has been devoted to devel-

∗Dept of Comp Sci, University of Texas, Austin, TX 78712.
Email: {shaikat,vlr}@cs.utexas.edu. This work was supported
in part by NSF CCR-9988160.

oping efficient internal-memory approximate and exact
APSP algorithms [17]. All of these algorithms, however,
perform poorly on large data sets when data needs to
be swapped between the faster internal memory and the
slower external memory. Since most real world applica-
tions work with huge data sets, the large number of I/O
operations performed by these algorithms becomes a
bottleneck which necessitates the design of I/O-efficient
APSP algorithms.

1.2 Cache-Aware Algorithms. The two-level I/O
model (or cache-aware model) was introduced in [1].
This model consists of a memory hierarchy with an
internal memory of size M , and an arbitrarily large
external memory partitioned into blocks of size B.
The I/O complexity of an algorithm in this model is
measured in terms of the number of blocks transferred
between these two levels. Two basic I/O bounds are
known for this model: to read N contiguous data items
from the disk one needs scan(N) = Θ(N

B) I/Os and to

sort N items, sort(N) = Θ(N
B log M

B

N
B) I/Os [1].

A straight-forward method of computing AP-BFS
(or APSP) is to simply run a BFS (or single source
shortest path (SSSP) algorithm, respectively) from each
of the V vertices of the graph. External BFS on
an unweighted undirected graph can be solved using
either (V +sort(E)) I/Os [15] or O(

√
V E/B+sort(E))

I/Os [13]. External SSSP on an undirected graph
with general non-negative edge-weights is computed in
O(V + E

B log E
M) I/Os using the cache-aware Buffer Heap

in [8]. There are also some results known for external
SSSP on undirected graphs with restricted edge-weights
[14]. The I/O complexity of external AP-BFS (or
APSP) is obtained by multiplying the I/O complexity
of external BFS (or SSSP) by V .

Recently Arge et al. [6] proposed an O(V ·sort(E))
I/O cache-aware algorithm for AP-BFS on undirected
graphs. Their algorithm works by clustering nearby
vertices in the graph, and running concurrent BFS from
all vertices of the same cluster. This same algorithm can
be used to compute unweighted diameter of the graph in
the same I/O bound and O(

√
V EB) additional space.

They also present another algorithm for computing the

Results Unweighted APSP
Approximate unweighted APSP

with additive error 2(k − 1)
(for integer k ∈ [2, log V])

Weighted APSP

Known
O(V · sort(E)) I/Os,

O(
√

V EB) extra space [6]

O(1

B
1

2

V 2 log
1

2 V

+ k
B

V 2− 1

k E
1

k log1− 1

k V log log V B
E

)

(trivial using [10, 14])

O(V · (
q

V E
B

log V + sort(E)))

for E ≤ V B
log V

[6]

New
(this paper)

cache-oblivious,
O(V · sort(E)) I/Os,
O(V) extra space

O(1

B
2

3

V 2− 2

3k E
2

3k log
2

3
(1− 1

k
) V

+ k
B

V 2− 1

k E
1

k log1− 1

k V)

O(V · (
q

V E
B

+ sort(E))) for E ≤ V B

log2 V E

B

O(V · (
q

V E
B

+ E
B

log E
B

)) always

Table 1: I/O bounds for APSP problems on undirected graphs. (V = |V [G]|, E = |E[G]|, and all algorithms are
cache-aware unless explicitly specified)

unweighted diameter of sparse graphs (E = O(V)) in

O(sort(kV 2B
1

k)) I/Os and O(kV) space for any integer
k, 3 ≤ k ≤ log B.

For undirected graphs with general non-negative
edge-weights Arge et al. [6] proposed an APSP algo-
rithm requiring O(V · (

√
(V E/B) · log V + sort(E)))

I/Os, whenever E ≤ V B/log V . They use a prior-
ity queue structure called the Multi-Tournament-Tree
which is created by bundling together a number of I/O-
efficient Tournament Trees [12]. This reduces unstruc-
tured accesses to adjacency lists at the expense of in-
creasing the cost of each priority queue operation.

1.3 The Cache-Oblivious Model. The main dis-
advantage of the two-level I/O model is that algorithms
often crucially depend on the knowledge of the param-
eters of two particular levels of the memory hierarchy
and thus do not adapt well when the parameters change.
In order to remove this inflexibility Frigo et al. intro-
duced the cache-oblivious model [11]. As before, this
model consists of a two-level memory hierarchy, but al-
gorithms are designed and analyzed without using the
parameters M and B in the algorithm description, and
it is assumed that an optimal cache-replacement strat-
egy is used.

No non-trivial algorithm is known for the AP-BFS
and the APSP problems in the cache-oblivious model
except for the method of running single BFS and SSSP,
respectively, from each of the V vertices. In this model,
BFS on an undirected graph can be performed using
O(

√
V E/B + (E/B) · log V + MST (E)) I/Os [7], and

SSSP on an undirected graph with non-negative real-
valued edge-weights can be solved in O(V + E

B log E
M)

I/Os using the cache-oblivious Buffer Heap [8] or Bucket
Heap [7].

1.4 Our Results. In section 2 we present a simple
cache-oblivious algorithm for computing AP-BFS on
unweighted undirected graphs in O(V · sort(E)) I/Os,
matching the I/O complexity of its cache-aware coun-
terpart [6]. We use this algorithm to compute the di-

ameter of an unweighted undirected graph in the same
I/O bound and O(V + E) space. Our cache-oblivious
algorithm is arguably simpler than the cache-aware al-
gorithm in [6] and it has a better space bound for com-
puting the diameter.

In section 3 we present the first nontrivial external-
memory algorithm to compute approximate APSP
on unweighted undirected graphs with small addi-
tive error. The algorithm is cache-aware, it uses

O(1

B
2

3

V 2− 2

3k E
2

3k log
2

3
(1− 1

k
) V + k

B V 2− 1

k E
1

k log1− 1

k V)

I/Os, and produces estimated distances with an addi-
tive error of at most 2(k − 1), where 2 ≤ k ≤ log V is
an integer, and E > V log V . Our algorithm is based on
an internal-memory algorithm in [10], and the number
of I/Os performed by our algorithm is close to being a
factor of B smaller than the running time of that algo-
rithm. Our approximate algorithm performs fewer I/O
operations than the O(V · sort(E)) I/O exact AP-BFS

algorithm when E > max {k k

k−1 , (B
log V)

k

3k−2 } · V log V .
For k = 2, we present an alternate algorithm that per-
forms better for large values of B; this algorithm builds
on the internal-memory algorithm in [2].

In section 4 we introduce the notion of a Slim Data
Structure for external-memory computation. This no-
tion captures the scenario where only a limited portion
of the internal memory is available to store data from
the data structure; it is assumed, however, that while
executing an individual operation of the data structure,
the entire internal memory of size M is available for
the computation. We describe and analyze the Slim
Buffer Heap which is a slim data structure based on the
Buffer Heap [8]. We use Slim Buffer Heaps in a Multi-
Buffer Heap to solve the cache-aware exact APSP prob-
lem for undirected graphs with general non-negative
edge-weights in O(V · (

√
V E/B + sort(E))) I/Os and

O(V 2) space, whenever E ≤ V B/log2 (V E/B) (or
E = O(V B/log2 V)). This improves on the result in
[6] for weighted undirected APSP. We also believe that
the notion of a slim data structure is of independent
interest.

2 Cache-Oblivious APSP and Diameter for
Unweighted Undirected Graphs

In this section we present a cache-oblivious algorithm
for computing all-pairs shortest paths and diameter in
an unweighted undirected graph.

2.1 The Cache-Oblivious BFS Algorithm of
Munagala and Ranade. Given a source node s, the
algorithm of Munagala & Ranade [15] computes the
BFS level of each node with respect to s. Let L(i) de-
note the set of nodes in BFS level i. For i < 0, L(i) is
defined to be empty. Let N(v) denote the set of ver-
tices adjacent to vertex v, and for a set of vertices S,
let N(S) denote the multiset formed by concatenating
N(v) for all v ∈ S.

Algorithm 2.1. MR-BFS(G)
The algorithm starts by setting L(0) = {s}. Then starting from
i = 1, for each i < V , the algorithm computes L(i) assuming that
L(i − 1) and L(i − 2) have already been computed. Each L(i) is
computed in the following three steps:

1. Construct N(L(i − 1)) by |L(i− 1)| accesses to the adjacency
lists, once for each v ∈ L(i− 1). This step requires O(|L(i− 1)|+
1
B
|N(L(i − 1))|) I/Os.

2. Remove duplicates from N(L(i − 1)) by sorting the nodes in
N(L(i−1)) by node indices, followed by a scan and a compaction
phase. Let us denote the resulting set by L′(i). This step requires
O(sort(|N(L(i − 1))|)) I/Os.

3. Remove from L′(i) the nodes occurring in L(i − 1) ∪ L(i − 2)
by parallel scanning of L′(i), L(i−1) and L(i−2). Since all these
three sets are sorted by node indices the I/O complexity of this

step is O(1
B

(|N(L(i−1))|+ |L(i−1)|+ |L(i−2)|)). The resulting

set is the required set L(i).

Since
∑

i |L(i)| = O(V) and
∑

i |N(L(i))| = O(E),
this algorithm performs O(

∑
i(|L(i)|+sort(|N(L(i))|)+

1
B (|N(L(i))| + L(i)))) = O(V + sort(E)) I/Os.

2.2 Cache-Oblivious APSP for Unweighted
Undirected Graphs. In this section we describe a
O(V · sort(E)) I/O cache-oblivious APSP algorithm for
unweighted undirected graphs. Let G = (V [G], E[G])
be an unweighted undirected graph. By d(u, v) we de-
note the shortest distance between u, v ∈ V [G].

Our algorithm is based on the following observation
which follows from triangle inequality and the fact that
d(u, v) = d(v, u) in an undirected graph:

Observation 2.1. For any three vertices u, v and w
in G, d(u, w) − d(u, v) ≤ d(v, w) ≤ d(u, w) + d(u, v).

Suppose for some u ∈ V [G] we have already computed
d(u, w) for all w ∈ V [G]. We sort the adjacency lists in
non-decreasing order by d(u, ·), and by A(j) we denote
the portion of this sorted list containing adjacency lists
of vertices w with d(u, w) = j. Now if v is another vertex
in V [G] then observation 2.1 implies that the adjacency

list of any vertex w with d(v, w) = i, must reside in some
A(j) where i − d(u, v) ≤ j ≤ i + d(u, v). Therefore,
we can use observation 2.1 to compute d(v, w) for all
w ∈ V [G] as follows:

Algorithm 2.2. Incremental-BFS(G, u, v, d(u, ·))
(Given an unweighted undirected graph G, two vertices u, v ∈
V [G], and d(u, w) for all w ∈ V [G], this algorithm computes
d(v, w) for all w ∈ V [G]. It is assumed that E[G] is given as
a set of adjacency lists.)

1. Sort the adjacency lists of G so that adjacency list of a vertex x
is placed before that of another vertex y provided d(u, x) < d(u, y)
or d(u, x) = d(u, y) ∧ x < y. Let A(i), 0 ≤ i < |V |, denote the
portion of this sorted list that contains adjacency lists of vertices
lying exactly at distance i from u.

2. To compute d(v, w) for all w ∈ V [G], run Munagala and
Ranade’s BFS algorithm with source vertex v. But step (1) of
that algorithm is modified so that instead of finding the adjacency
lists of the vertices in L(i− 1) by |L(i− 1)| independent accesses,
they are found as follows:
For j ← max{0, i−1−d(u, v)} to min{|V |−1, i−1+d(u, v)} do:

Extract the adjacency list of each w ∈ V [G] that appears in
L(i − 1) and whose adjacency list appears in A(j) by scanning
L(i− 1) and A(j) simultaneously.

Step 1 of Incremental-BFS requires O(sort(E))
I/Os. In step 2 each A(j) is scanned O(d(u, v))
times. Since

∑
j |A(j)| = O(E), this step requires

O(E
B d(u, v) + sort(E)) I/Os. Thus the I/O complex-

ity of Incremental-BFS is O(E
B d(u, v) + sort(E)).

Since Incremental-BFS is actually an implemen-
tation of Munagala and Ranade’s algorithm, its correct-
ness follows from the correctness of that algorithm, and
from observation 2.1 which guarantees that the adja-
cency lists of all w ∈ L(i−1) in step 2 of Incremental-
BFS are found in the set of A(j)’s scanned.

We can use Incremental-BFS to perform BFS
I/O-efficiently from all v ∈ V [G]. The following
observation each part of which follows trivially from the
properties of spanning trees, Euler Tours and shortest
paths, is central to this extension:

Observation 2.2. If ET is an Euler Tour of a span-
ning tree of an unweighted undirected graph G, then (a)
the number of edges between any two vertices x and y
on ET is an upper bound on d(x, y) in G, (b) ET has
O(V) edges, and (c) each vertex of V [G] appears at least
once in ET .

This extension is outlined in algorithm 2.3 (AP-BFS).

Correctness. Correctness of AP-BFS follows from
the correctness of MR-BFS and Incremental-BFS.
Moreover, observation 2.2(c) ensures that BFS will be
performed from each v ∈ V [G].

Space Complexity. Since the algorithm outputs all
Θ(V 2) pairwise distances it requires Θ(V 2) space.

Algorithm 2.3. AP-BFS(G)

1. (a) Find a spanning tree T of G.

(b) Construct an Euler Tour ET for T .

(c) Mark the first occurrence of each vertex on ET , and
let v1, v2, . . . , v|V | be the marked vertices in the order they
appear on ET .

2. Run Munagala and Ranade’s original BFS algorithm with v1
as the source vertex, and compute d(v1, w) for all w ∈ V [G].

3. For i← 2 to |V | do:

Compute d(vi, w) for all w ∈ V [G] by calling
Incremental-BFS (G, vi−1, vi, d(vi−1, ·)).

I/O Complexity. Step 1(a) can be performed cache-
obliviously in O(min{V +sort(E), sort(E)·log2 log2 V })
I/Os [4]. In step 1(b) ET can also be constructed cache-
obliviously using O(sort(V)) I/Os [4]. Step 1(c) re-
quires O(sort(E)) I/Os. Step 2 requires O(V +sort(E))
I/Os. Iteration i of step 3 requires O(E

B d(vi−1, vi) +
sort(E)) I/Os. Total number of I/O operations required

by the entire algorithm is thus O(E
B

∑|V |
i=2 d(vi−1, vi) +

V · sort(E)). Since by observation 2.2(a) and 2.2(b) we

have
∑|V |

i=2 d(vi−1, vi) = O(V), the I/O complexity of
AP-BFS reduces to O(V · sort(E)).

2.3 Cache-Oblivious Unweighted Diameter for
Undirected Graphs. The AP-BFS algorithm can be
used to find the unweighted diameter of an undirected
graph cache-obliviously in O(V · sort(E)) I/Os. We no
longer need to output all Θ(V 2) pairwise distances, and
each iteration of step 3 of AP-BFS only requires the
Θ(V) distances computed in the previous iteration or
in step 2. Thus the space requirement is only Θ(V)
in addition to the O(E) space required to handle the
adjacency lists.

3 Cache-Aware Approximate APSP for
Unweighted Undirected Graphs

In this section we present a family of cache-aware
external-memory algorithms Approx-AP-BFSk for
approximating all distances in an unweighted undi-
rected graph with an additive error of at most 2(k− 1),
where 2 ≤ k ≤ log V is an integer. The error is one
sided. If δ(u, v) denotes the shortest distance between

any two vertices u and v in the graph, and δ̂(u, v) de-
notes the estimated distance between u and v produced
by the algorithm, then δ(u, v) ≤ δ̂(u, v) ≤ δ(u, v) +
2(k − 1). Provided E > V log V , Approx-AP-BFSk

runs in O(kV 2− 1

k E
1

k log1−1/k V) time, and triggers

O(1

B
2

3

V 2− 2

3k E
2

3k log
2

3
(1− 1

k
) V + k

B V 2− 1

k E
1

k log1− 1

k V)

I/Os. This family of algorithms is the external-memory

version of the family of O(kV 2− 1

k E
1

k log1−1/k V) time
internal-memory approximate shortest paths algorithms

by Dor et al. [10] which is the most efficient algorithm
available for solving the problem in internal memory.

The second term in the I/O complexity of Approx-
AP-BFSk is exactly (1/B) times the running time
of the Dor et al. algorithm [10]. Though the first

term has a smaller denominator (B
2

3), its numerator
is smaller than the numerator of the second term when
E > V log V , thus reducing the impact of the first term
in the overall I/O complexity.

3.1 The Internal-Memory Approximate AP-
BFS Algorithm by Dor et al.. The internal-memory
approximate APSP algorithm (apaspk) in [10] receives
an unweighted undirected graph G = (V [G], E[G]) as

input, and outputs an approximate distance δ̂(u, v)
between every pair of vertices u, v ∈ V [G] with a
positive additive error of at most 2(k − 1). Recall that
a set of vertices D is said to dominate a set U if every
vertex in U has a neighbor in D.

A high level overview of the algorithm follows:

Algorithm 3.1. DHZ-Approx-AP-BFSk(G)

1. For i← 1 to k − 1 do: set si ← E
V

(V log V

E
)

i

k

2. Decompose G to produce the following sets:
(a) A sequence of vertex sets D1, D2, . . . , Dk of increasing sizes
with Dk = V [G]. For 1 ≤ i ≤ k − 1, Di dominates all vertices of
degree at least si in G.
(b) A decreasing sequence of edge sets E1 ⊇ E2 ⊇ . . . ⊇ Ek,
where E1 = E[G] and for 1 < i ≤ k the set Ei contains edges that
touch vertices of degree at most si−1.
(c) A set E∗ ⊆ E[G] which bears witness that each Di dominates
the vertices of degree at least si in G.

3. For i← 1 to k do:
(a) For each u ∈ Di do:

(a1) Run SSSP from u on Gi(u) = (V [G], Ei ∪ E∗ ∪
({u} × V [G]))

In each Gi(u) the edges Ei∪E∗ are unweighted edges of the input
graph, but the edges {u} × V [G] are weighted, and to each such
edge (u, v) an weight is attached which is equal to the current
known best upper bound on the shortest distance from u to v.

4. Return the smallest distance computed between every pair of
vertices in step 2.

The algorithm maintains the invariant that after the
ith iteration in step 3, the distance computed from each
u ∈ Di to each v ∈ V [G] has an additive error of at most
2(i− 1). Thus after the kth iteration a surplus 2(k − 1)
distance is computed between every u, v ∈ V [G].

3.2 Our Algorithm. Our algorithm adapts the Dor
et al. algorithm (DHZ-Approx-AP-BFSk) to obtain
a cache-efficient implementation. In our adaptation we
do not modify step 1 of DHZ-Approx-AP-BFSk , and
use the same sequence of values for 〈s1, s2, . . . , sk−1〉. In
section 3.3 we describe an external-memory implemen-
tation of step 2 of DHZ-Approx-AP-BFSk.

It turns out that the I/O-complexity of DHZ-
Approx-AP-BFSk depends on the I/O-efficiency of

the SSSP algorithm used in step 3(a1). Therefore,
we replace each SSSP algorithm with a more I/O-
efficient BFS algorithm by transforming each Gi(u) to
an unweighted graph G′

i(u) of comparable size. But in
order to preserve the shortest distances from u to other
vertices in Gi(u), the weighted edges of Gi(u) need to be
replaced with a set of directed unweighted edges. This
makes the graph G′

i(u) partially directed, and we need
to modify existing external undirected BFS algorithms
to handle the partial directedness in G′

i(u) efficiently.
This is described in section 3.4.

There are two ways to apply the BFS: either we
can run an independent BFS from each u ∈ Di as in
step 3 of DHZ-Approx-AP-BFSk, or we can run BFS
incrementally from the vertices of Di as in section 2.2.
Running independent BFS is more I/O-efficient when
|Di| is smaller (i.e., i is smaller), and incremental BFS
is more I/O-efficient when G′

i(u) is sparser (i.e., i is
larger). Therefore, we choose a value of i at which
switching from independent BFS to incremental BFS
minimizes the I/O-complexity of the entire algorithm.
The overall algorithm is described in section 3.5.

3.3 External-Memory Implementation of Step
2. It has been shown by Aingworth et al. [2] that there
is always a set of size O(V log V

s) that dominates all
vertices of degree at least s in an undirected graph, and
in [10] it has been shown that this set can be found
deterministically in O(V + E) time. We describe an
external-memory version of this construction, which we

call Dominate, that requires O(V + V 2

B + sort(E))
I/Os and O(V 2 + E log V) time, which is sufficient for
our purposes. The internal-memory algorithm uses a
priority queue that supports Delete-Max and Decrease-
Key. But due to the lack of any such I/O-efficient
priority queue we use linear scans to simulate those two

operations leading to the V 2

B term in the I/O-complexity
of Dominate. Details of this construction are in the full
paper [9].

We need another function, called Decompose,
which is an external-memory version of an internal-
memory function with the same name described in [10],
and uses Dominate as a subroutine. The function
receives an undirected graph G = (V [G], E[G]), and
a decreasing sequence s1 > s2 > . . . > sk−1 of degree
thresholds as inputs. It produces edge sets E1 ⊇ E2 ⊇
. . . ⊇ Ek, where E1 = E[G] and for 1 < i ≤ k the set
Ei contains edges that touch vertices of degree at most
si−1. Clearly, |Ei| ≤ V si−1 for 1 < i ≤ k. This function
also produces dominating sets D1, D2, . . . , Dk, and an
edge set E∗. For 1 ≤ i < k, Di dominates all vertices
of degree greater than si, while Dk is simply V [G]. The
set E∗ ⊆ E is a set of edges such that if the degree of

v2
' v3

' vt
' vt+1'u

x y
δδδδ (u, x) = 1 δδδδ (u, y) = t

v|V|-1'

Figure 1: The directed unweighted edges that replace
the undirected weighted edges of Gi(u).

a vertex u is greater than si then there exists an edge
(u, v) ∈ E∗ with v ∈ Di. Clearly |E∗| ≤ kV . Details of
Decompose and the analysis of its I/O complexity of

is O(k(V + V 2

B) + sort(E)) are in [9].

3.4 Replacing SSSP with BFS in Step 3(a1).
For i = 1, 2, . . . , k, in step 3(a1) DHZ-Approx-AP-
BFSk runs an SSSP algorithm from each u ∈ Di on
a graph Gi(u) = (V, Ei(u)), where Ei(u) = Ei ∪ E∗ ∪
({u}×V). The edges Ei∪E∗ are the original edges of the
graph. But the edges {u}×V are not necessarily so, and

to such an edge (u, v) an weight of δ̂(u, v) is attached,

where δ̂(u, v) is the current best known upper bound on

δ(u, v) in G. Initially, δ̂(u, v) = 1 if (u, v) ∈ E[G] and

δ̂(u, v) = ∞ otherwise.
Since external-memory BFS is more I/O-efficient

than external-memory SSSP, we replace the SSSP in
step 3(a1) with a BFS algorithm. But this requires us to
transform the weighted graph Gi(u) into an unweighted
graph of comparable size.

Transforming Gi(u) into an Unweighted Graph.
Since the distances we compute are non-negative inte-
gers smaller than |V |, we can, in fact, transform Gi(u)
into an unweighted graph G′

i(u) by introducing |V | − 2
new vertices along with at most 2|V |−3 new unweighted
directed edges instead of the weighted undirected edges
of {u}×V while preserving the shortest distances from u
to all other vertices in V . We introduce |V |−2 new ver-
tices v′2, v

′
3, . . . , v

′
|V |−1, and introduce the directed edges

(u, v′2), (v
′
2, v

′
3), (v

′
3, v

′
4), . . . , (v

′
|V |−2, v

′
|V |−1). For each

v ∈ V [G] with δ̂(u, v) = 1, we add a directed edge (u, v),

and for each v ∈ V [G] with 2 ≤ δ̂(u, v) = t ≤ |V |−1, we
add a directed edge (v′t, v) (see Figure 1). The resulting
graph G′

i(u) is partially directed. The following lemma
has been proved in the full paper [9] for G′

i(u):

Lemma 3.1. The unweighted partially directed graph
G′

i(u) obtained from the weighted undirected graph
Gi(u) = (V, Ei(u)) preserves the shortest distances from
u to all other vertices in V .

Handling the Partial Directedness in G′
i(u). We

can modify the MR-BFS algorithm in section 2.1 to
correctly handle the partial directedness in G′

i(u) with

only O(scan(E) + sort(V)) I/O overhead, and thus
without changing its I/O complexity. The algorithm
will receive G′

i(u) as an undirected graph, and will
implicitly handle the edges that are intended to be
directed. It must ensure the following:

(a) L(i) must not contain any v′j except v′i+1, and

(b) for a vertex v with BFS level less than i, any
edge (v′i+1, v) must not force v to be included in L(i).

Ensuring (a) is straight-forward, but in order to ensure
(b) we use an optimal external-memory priority queue
supporting Insert and Delete-Min [3] that keeps track
of the visited vertices connected to the v′j ’s. The
modifications are detailed in Modified-MR-BFS. It
performs at most one Insert and one Delete-Min for each
edge of the form (v′j , v), and thus causing O(sort(V))
extra I/Os [3]. An additional O(scan(E)) I/O overhead
results from scanning the adjacency lists. Correctness
of this algorithm appears in the full paper [9].

Algorithm 3.2. Modified-MR-BFS(G′
i(u), u)

(The input graph G′
i(u) is given as an undirected graph but with

implicit directed edges as discussed in section 3.5. This algorithm
is a version of Munagala & Ranade’s BFS algorithm modified to
perform BFS on this implicitly partially directed graph from the
source vertex u.)

1. Perform the following initializations:
(a) Set L(0)← {u}
(b) Set Q ← ∅, where Q is an optimal external-memory priority
queue supporting Insert and Delete-Min

2. For i← 1 to V − 1 do:
(a) Scan the adjacency lists of vertices in L(i − 1), and for each
edge (v, v′j+1) with j ≥ i, set Q← Q ∪ {(v, j)} (Insert)

(b) Set P ← {v | (v, i) ∈ Q} (Delete-Min)
(c) Construct N(L(i− 1))
(d) Remove duplicates and all v′j ’s from N(L(i− 1))

(e) Set L(i)← {N(L(i− 1)) \ {L(i− 1)∪L(i− 2)∪P}}∪ {v′i+1}

3.5 External-Memory Approximate AP-BFS.
As pointed out in section 3.2, there are two ways to
apply the BFS in step 3(a1) of DHZ-Approx-AP-
BFSk: either we can run BFS independently from each
vertex in Di as in DHZ-Approx-AP-BFSk, or we can
run BFS incrementally from the vertices of Di using the
strategy used in AP-BFS (see section 2.2).

We present the algorithm Independent-BFS
which when called with Di as a parameter constructs
the partially directed unweighted graph G′

i(u) for each
u ∈ Di and runs Mehlhorn & Meyer’s BFS algo-
rithm [13] on G′

i(u) from u. The I/O-complexity
of Mehlhorn & Meyer’s algorithm is O(

√
V E/B +

(E/B) log V), and thus it performs better than Muna-
gala & Ranade’s algorithm (MR-BFS in section 2.1)
on sparse graphs. Mehlhorn & Meyer’s algorithm is
based on MR-BFS, and can be modified in exactly
the same way to handle the partial directedness in

G′
i(u). The I/O-complexity of Independent-BFS is

thus O(Di(
√

V Ei/B + (Ei/B) log V)).
The algorithm Interdependent-BFS when called

with parameter Di, constructs G′
i(u) for each u ∈

Di, and then runs Modified-MR-BFS (section 3.4)
incrementally on G′

i(u) from each u using the tech-
nique used in AP-BFS (section 2.2). The main dif-
ferences between Interdependent-BFS and AP-BFS
are: Interdependent-BFS uses a different range for
locating the adjacency lists, works on a slightly differ-
ent graph in each iteration, each graph it works on is
partially directed, and runs BFS only from the vertices
in Di. The I/O-complexity of Interdependent-BFS
is O((Ei/B)(V + iDi) + Disort(Ei)).

We observe that running Independent-BFS in
step 3(a) of DHZ-Approx-AP-BFSk is more I/O-
efficient when |Di| is smaller and G′

i(u) is denser
(i.e., i is smaller), and Interdependent-BFS is
more I/O-efficient when |Di| is larger and G′

i(u) is
sparser (i.e., i is larger). If we use Independent-
BFS for all values of i, it will cause a total of

O(V 2/
√

B + (k/B)V 2− 1

k E
1

k log1− 1

k V) I/Os, and run-
ning Interdependent-BFS for all values of i requires

a total of O(V E/B + (k/B)V 2− 1

k E
1

k log1− 1

k V) I/Os.
Therefore, we can do better if we take a hybrid ap-
proach: starting from i = 1 we run Independent-
BFS up to some value l of i, and then we switch
to Interdependent-BFS. We call this parameter l a
switching parameter, and choose its value in order to
minimizes the I/O-complexity of the entire algorithm.
The overall algorithm is given in Approx-AP-BFSk,
and its proof of correctness is in [9].

Algorithm 3.3. Independent-BFS(V, E, Di, Ei, E∗, L)
(Perform BFS independently from each vertex u ∈ Di on a graph
constructed from V, Ei, E

∗ and the information in the list L of
current best upper bounds on all-pairs shortest distances in the
original graph (V, E). It updates L with the computed distances.
Invoked by Approx-AP-BFS. See Approx-AP-BFS for the
definition of the parameters.)

1. Set L′ ← ∅
2. Sort the vertices in Di by vertex indices.

3. For each u ∈ Di do:
(a) Set V ′ ← V , and E′ ← Ei ∪ E∗

(b) Retrieve from L the current best upper bound bδ(u, v) on the
shortest distance from u to each v ∈ V . Collect only finite bounds.
(c) Add |V | − 2 new vertices v′2, v′3, . . . , v′

|V |−1
to V ′.

(d) Add the following undirected edges to E′: (i) (u, v′2), (ii)

(u, v) for each v ∈ V with bδ(u, v) = 1, (iii) (v′t, v
′
t+1) for

2 ≤ t < |V | − 1, and (iv) (v′t, v) for each v ∈ V with bδ(u, v) = t

(e) Sort the edges in E′ to convert it into adjacency list format.
(f) Run Mehlhorn & Meyer’s BFS [13] on (V ′, E′), and append
the computed distances to L′. The algorithm must be modified
to handle the implicit partial directedness in (V ′, E′).

4. Update the entries in L by sorting L′ appropriately and
scanning the two lists in parallel.

Algorithm 3.4. Interdependent-BFS(V, E, Di, Ei, E∗,
〈v1, v2, . . . , v|V |〉, L)

(Perform BFS from each u ∈ Di on a graph constructed from
V, Ei, E

∗ and the information in the list L of current best upper
bounds on all-pairs shortest distances in the graph (V, E). BFS
is performed on the vertices of Di in the order they appear
in 〈v1, v2, . . . , v|V |〉, and distance information obtained from

the last (most recent) BFS is used to reduce I/O overhead.
List L is updated with the computed distances. Invoked by
Approx-AP-BFS. See Approx-AP-BFS for the definition of
the parameters.)

1. Set L′ ← ∅
2. Arrange the vertices in Di in the order they appear in
〈v1, v2, . . . , v|V |〉. Let 〈u1, u2, . . . , ut〉 be the sequence of vertices
in Di after the ordering.

3. (a)-(e) Same as steps 3(a)-(e) in Independent-BFS, but
performed with u1 instead of u. Let (V ′

1 , E′
1) be the graph

constructed.
(f) Run Munagala and Ranade’s algorithm (Modified-
MR-BFS) with u1 as the source to compute d(u1, w) for
all w ∈ V . Append the computed distances to L′.

4. For j ← 2 to t do:
(a)-(e) Same as the steps 3(a) to 3(e) in Independent-BFS,
but performed with uj instead of u. Let (V ′

j , E′
j) be the graph

constructed.
(f) Sort the adjacency lists of the vertices v′2, v′3, . . . , v′

|V |−1
so

that for 2 ≤ p < |V | − 1, adjacency list of v′p is placed ahead of

that of v′p+1. Let A′ be this sorted list of adjacency lists.

(g) Sort the remaining adjacency lists so that adjacency list
of a vertex x is placed before that of y provided d(uj−1, x) <

d(uj−1, y) or d(uj−1, x) = d(uj−1, y) ∧ x < y. Let A(p),
0 ≤ i < |V |, denote the portion of this sorted list that contains
adjacency lists of vertices lying exactly at distance p from uj−1.
(h) To compute d(uj , w) for all w ∈ V ′, run Munagala and
Ranade’s BFS algorithm (Modified-MR-BFS) with source ver-
tex uj . But step (2) of that algorithm is modified so that instead
of finding the adjacency lists of the vertices in L(q−1) by |L(q−1)|
independent accesses, they are found by scanning L(q − 1) and
A(p) in parallel for max{0, q − 1 − d(uj−1, uj) − 2(i− 1)} ≤ p ≤
min{|V | − 1, q− 1 + d(uj−1, uj) + 2(i− 1)}. If v′q ∈ L(q− 1) load

its adjacency list from A′. Append the computed distances to L′.

5. Update the entries in L by sorting L′ appropriately and
scanning the two lists in parallel.

Algorithm 3.5. Approx-AP-BFSk(G, l)
(Given an undirected graph G = (V [G], E[G]) and a switching
parameter l, computes the shortest distance between every pair
of vertices in G with additive error of at most 2(k − 1).)

1. Perform the following initializations:

(a) For i← 1 to k − 1 do: set si ← E
V

(V log V

E
)

i

k

(b) Set (〈E1, E2, . . . , Ek, E∗〉, 〈D1, D2, . . . , Dk〉) ←
Decompose(G, 〈s1, s2, . . . , sk−1〉)
(c) Sort the edges in E[G] so that edge (u1, v1) is placed ahead
edge (u2, v2) provided (u1 < u2) ∨ ((u1 = u2) ∧ (v1 < v2)). Scan
E[G] to produce a sorted (in the same order that is used for sorting

E[G]) list L of approximate distances bδ(u, v), where u, v ∈ V [G],

and bδ(u, v)← 1 provided (u, v) ∈ E[G], bδ(u, v)←∞ otherwise.

2.
(a) For i← 1 to l do: Independent-BFS(V, E, Di, Ei, E

∗, L)
(b) Find a spanning tree T of G, and an Euler Tour ET of T .
Mark the first occurrence of each vertex on ET ; let v1, v2, . . . , v|V |

be the marked vertices in the order they appear on ET .
(c) For i ← l + 1 to k do: Interdependent-
BFS(V, E,Di, Ei, E

∗, 〈v1, v2, . . . , v|V |〉, L)

3. Return the output of step 2(c).

I/O Complexity of Approx-AP-BFSk. I/O
cost of step 1 is dominated by that of Decompose
which is O(k(V + V 2/B) + sort(E)). Step 2(a)

requires O(
∑l

i=1 Di(
√

V Ei/B + (Ei/B) log V)) =

O(V 2
√

V/(BEαl+1) log V + (l/B)V 2− 1

k E
1

k log1− 1

k V)

I/Os, where α = (V log V /E)
1

k . Step
2(b) incurs O(sort(E) · log2 log2

V B
E) I/Os

[5]. The I/O-complexity of step 2(c) is

O(
∑k

i=l+1 {(Ei/B)(V + iDi) + Di · sort(Ei)}) =

O(V Eαl−1/B + ((k − l)/B)V 2− 1

k E
1

k log1− 1

k V).
Therefore the total I/O cost of Approx-AP-

BFSk is O(V 2
√

V/(BEαl+1) log V + V Eαl−1/B +

(k/B)V 2− 1

k E
1

k log1− 1

k V). This expression is minimized
for l = (log (V 3B log2 V) − log (E3α))/(3 logα) + 1,
and thus the I/O complexity reduces to

O(1

B
2

3

V 2− 2

3k E
2

3k log
2

3
(1− 1

k
) V + k

B V 2− 1

k E
1

k log1− 1

k V).

3.6 An Alternate Algorithm for k = 2. We can
externalize the internal-memory approximation algo-
rithm by Aingworth et al. [2] to compute all pair-
wise distances in an unweighted undirected graph with
an additive one-sided error of at most 2 incurring

O(1

B
3

4

V
7

4 E
1

4 log V + 1
B V

3

2 E
1

2 log
3

2 V + 1
B V

5

2 log V) I/Os.

The resulting algorithm is described in detail in [9]
and outperforms Approx-AP-BFS2 whenever B >
V

5

2 log2 V
E assuming V ≥ log4 V and E ≤ V 2

log V .

4 Cache-Aware APSP for Weighted
Undirected Graphs

In [6], Arge et al. introduce the Multi-Tournament-Tree
to obtain an O(V · (

√
(V E/B) log V + sort(E))) I/O

cache-aware algorithm for computing APSP on general
weighted undirected graphs with E ≤ V B/logV . In
this section we introduce the Multi-Buffer-Heap, and use
it to obtain an O(V · (

√
V E/B + sort(E))) I/O cache-

aware algorithm for solving the same problem assuming
E ≤ V B/log2 (V E/B) or E = O(V B/log2 V). This
leads to an O(V · (

√
V E/B + (E/B) log E/B)) I/O

algorithm for any edge density using O(V 2) space.

4.1 Slim Data Structures. We introduce here the
notion of a slim data structure which is an external-
memory data structure in which a fixed-sized portion
is kept in internal memory. The area in the internal
memory that holds that specific portion is called the
slim cache. By DS(λ) we denote an external-memory
data structure DS, in which a portion of size λ is
kept in the slim cache. We continue to assume the
behavior of the two-level I/O model, namely (a) the
size of the internal memory is M and (b) the portion of
the data structure that is not stored in the slim cache

is stored in an external memory divided into blocks of
size B, and thus accessing anything outside the slim
cache causes I/Os. While executing a data structural
operation the operation can use all free internal memory
for temporary computation, but after the operation
completes only the data in the slim cache is preserved
for reuse by the next operation on the data structure.

In the next section we present a slim data structure
based on the Buffer Heap [8], which we call a Slim
Buffer Heap, SBH(λ), which supports Decrease-Key,
Delete and Delete-Min with the amortized cost of O(1

λ +
1
B log N

λ) I/Os each. In section 4.3 we use a collection
of Slim Buffer Heaps in a Multi-Buffer-Heap.

we believe that the need for slim data structures
could arise in other applications. A typical application
would be one in which a number of data structures need
to be kept in internal memory simultaneously, and thus
only a limited portion of the internal memory can be
dedicated to each structure.

4.2 The Slim Buffer Heap. In this section we
extend the cache-oblivious Buffer Heap [8] to a slim
data structure with an arbitrary parameter λ. We
call this data structure a Slim Buffer Heap (SBH),
and for an SBH with parameter λ (1 ≤ λ ≤ M),
denoted by SBH(λ), it is assumed that an initial
segment of Θ(λ) elements in the data structure resides
in internal memory. A Delete(x) operation deletes
element x from the queue if it exists and a Delete-
Min() operation retrieves and deletes the element with
minimum key from the queue. A Decrease-Key(x, kx)
operation inserts the element x with key kx into the
queue if x does not already exist in the queue, otherwise
it replaces the key k′

x of x in the queue with kx provided
kx < k′

x. A Buffer Heap supports Delete, Delete-Min
and Decrease-Key operations in O(1

B log N
B) I/Os each.

We show in this section that an SBH(λ) supports each
of these operations in O(1

λ + 1
B log N

λ) amortized I/Os,
where N is the number of elements.

4.2.1 Structure. The structure is the same as that
of a ‘Buffer Heap without a tall cache’ which was
described briefly in [8]. It consists of r = 1 + ⌈log2 N⌉
levels. For 0 ≤ i ≤ r − 1, level i consists of an element
buffer Bi and an update buffer Ui. Each element in Bi

is of the form (x, kx), where x is the element id and kx

is its key. Each update in Ui is augmented with a time
stamp indicating the time of its insertion into the queue.
At any time, the following invariants are maintained:

Invariant 4.1. (a) Each Bi contains at most 2i ele-
ments. (b) Each Ui contains at most 2i updates.

Invariant 4.2. (a) For 0 ≤ i < r − 1, key of every
element in Bi is no larger than the key of any element

in Bi+1. (b) For 0 ≤ i < r − 1, for each element x in
Bi, all updates applicable to x that are not yet applied,
reside in U0, U1, . . . , Ui.

Invariant 4.3. (a) Elements in each Bi are kept
sorted in ascending order by element id. (b) Updates
in each Ui are divided into (a constant number of) seg-
ments with updates in each segment sorted in ascending
order by element id and time stamp.

All buffers are initially empty.

4.2.2 Layout. As in [8] we use a stack SB to store
the element buffers, and another stack SU to store
the update buffers. An array As of size r to stores
information on the buffers. For 0 ≤ i ≤ r − 1, As[i]
contains the number of elements in Bi, and the number
of segments in Ui along with the number of updates
in each segment. We assume the existence of a slim
cache of size Θ(λ), large enough to store B0, B1, . . . , Bt,
U0, U1, . . . , Ut+1, and the first λ entries of As, where
t = log (λ + 1) − 1. The remaining portions of SB, SU

and As are kept in external memory.

4.2.3 Operations. In this section we describe how
Delete, Delete-Min and Decrease-Key operations are im-
plemented. A Delete or Decrease-Key operation inserts
itself into U0 (by pushing itself into SU) augmented with
the current time stamp. Further processing is deferred
to the next Delete-Min operation except that the Fix-
U function may be called to restore invariant 4.1(b)
for the structure. If needed, the Delete-Min/Delete/
Decrease-Key operation collects enough elements from
higher level element buffers to fill the slim cache.

After each operation the Reconstruct function is
called which reconstructs the entire data structure
periodically. The objective of the function is to ensure
that the number of levels r in the structure is always
within ±1 of log2 N , where N is the current number of
elements in the structure.

Function 4.1. Decrease-Key(x, kx)/Delete(x)
(Inserts a Decrease-Key/Delete operation into the structure.)

1. Push the operation into U0 augmented with current time stamp

2.
• Set B′ ← ∅, i← 0 {List B′ stores elems returned by Fix-U}
• Fix-U(i, B′)
3. Move the contents of B′ to the shallowest possible element
buffers maintaining invariants 4.1(a), 4.2(a) and 4.3(a)

4. Reconstruct()

Function 4.2. Fix-U(i, B′)
(Fixes all overflowing update buffers in levels i and up. An update
buffer Ui overflows if |U i| > 2i. For each overflowing Ui collects
the contents of Bi in B′ after applying Ui on Bi.)

1. While i < r AND (|Ui| > 2i OR (i = t + 1 AND |B′| = 0) OR
(i > t + 1 AND |B′| < λ)) do:

• Apply-Updates(i)
• Append the elements of Bi to B′

• Set i← i + 1

2. If i < r then merge the segments of Ui

Function 4.3. Apply-Updates(i)
(Apply the updates in Ui on the elements in Bi, move remaining
updates from Ui to Ui+1 if i < r − 1, and after applying the
updates move overflowing elements from Bi to Ui+1 as Sinks.)

1. If |Bi| = 0 and i < r − 1 then:
• Merge the segments of Ui

• Empty Ui by moving contents of Ui as a new segment of Ui+1

2. Else (|Bi| > 0 or i = r − 1) do:
• Merge the segments of Ui

• If i = r − 1 then set k ← +∞ else set k ← largest key in Bi

• Scan Bi and Ui simultaneously, and for each operation in Ui if
the operation is:

− Delete(x) then remove any element (x, kx) from Bi if exists
− Decrease-Key(x, kx)/Sink(x, kx) then if any element

(x, k′
x) exists in Bi replace it with (x, min(kx, k′

x)), otherwise copy
(x, kx) to Bi if kx ≤ k
• If i < r − 1 then do the following:

− copy each Decrease-Key(x, kx) / Sink(x, kx) in Ui with
kx > k to Ui+1

− for each Delete(x) and Decrease-Key(x, kx) with kx ≤ k
in Ui copy a Delete(x) to Ui+1

• If |Bi| > 2i+1 then do:
− if i = r − 1 then set r ← r + 1
− keep the 2i+1 elements with the smallest 2i+1 keys in Bi

and insert each remaining element (x, kx) into Ui+1 as Sink(x, kx)
• Set Ui ← ∅

Function 4.4. Delete-Min()
(Extracts the element with the smallest key from the structure.)

1. Set i← 0
Repeat

− Apply-Updates(i)
− Set i← i + 1

Until Bi is non-empty or i = r

2.
• Set B′ ← Bi, i← i + 1
• Fix-U(i, B′)
3.
• Extract the minimum-key element from B′

• Move rest of B′ to the shallowest possible element buffers
maintaining invariants 4.1(a), 4.2(a) and 4.3(a)
4. Reconstruct()

Function 4.5. Reconstruct()

(Reconstructs the data structure when No = ⌊Ne

2
⌋ + 1, where

Ne is the number of elements in SBH immediately after the
last reconstruction (Ne = 0 initially), and No is the number of
operations since the last reconstruction/initialization of SBH.)

1. If No = ⌊Ne

2
⌋ + 1 then:

• For i← 0 to r − 1 do Apply-Updates(i)
• Distribute remaining elements to shallowest element buffers

4.2.4 Analysis. Correctness of the operations is
straight-forward, and the proof is in the full paper [9].

The proof of the following lemma is also in [9].

Lemma 4.1. For 1 ≤ i ≤ r−1, every empty Ui receives
batches of updates a constant number of times before Ui

is applied on Bi and emptied again.

This lemma has the following implications:
• Each entry of As has constant size and thus

sequential access of As will incur O(1
B) amortized cache-

misses per access per entry.
• Merging the segments of Ui (in Apply-Updates)

incurs only O(1
B) amortized I/Os per update in Ui.

We now state the main lemma of this section.

Lemma 4.2. A Slim Buffer Heap supports Delete,
Delete-Min and Decrease-Key operations in O(1

λ +
1
B log2

N
λ) amortized I/Os each using O(N) space, where

N is the current number of elements in the structure.

Proof. (Sketch - see [9] for details) As in [8], we assume
that a Decrease-Key operation is inserted into U0 as
an ordered pair 〈Decrease-Key, Dummy〉. After the
successful application of that Decrease-Key operation on
some Bi, the Decrease-Key operation in the ordered pair
moves to Ui+1 as a Delete operation, and the Dummy
operation either turns into an element in Bi, or moves
to Ui+1 as a Sink operation. Thus a Decrease-Key
operation will be counted as two operations until it is
applied on some element buffer.

For 0 ≤ i ≤ r−1, let ui be the number of operations
in Ui and bi the number in Bi. Let ∆ denote the number
of new Decrease-Key, Delete and Delete-Min operations
since the last time any part of the data structure outside
the slim cache was accessed, and let ∆o be the number of
operations since the last construction/reconstruction of
the data structure. If H is the current state of SBH(λ),
we define the potential of H as follows:

Φ(H) = 2
B

∑r−1
i=0 {(2r − i) · ui + (i + 1) · bi}

+ r
B · ∆o + 2

λ · (∆ + ∆o)

As in the analysis of the I/O-complexities of the Buffer
Heap operations in [8], the key observation is that
operations always move downward in the U buffer
and elements generally move upward in the B buffer.
Further, any time a U buffer is examined, it is emptied
and its contents moved down to the next lower buffer,
and between two successive emptyings it never receives
more than a constant number of batches of updates.
Similarly, any time a B buffer is examined, each element
in it is either moved up to a higher B buffer or is
moved to a lower U buffer as a Sink operation. The one
exception is when a B buffer is examined during Fix-U,
and the cost of this is paid by the drop in potential due
to the upward movement of Ω(λ) elements in element
buffers (this is the reason for the factor 2 that appears
before the summation part in the potential function).
Ignoring the Sink operation for the moment, all other
costs are paid for by the corresponding drop in potential.
One unit of 1

λ on Θ(λ) entries in the top t levels pays

for the cost of bringing in a new block when an access
is made to an entry in level t + 1. Finally the cost of
the Sink operations is handled in the same manner as
in [8], namely by the drop in potential incurred by the
removal of the Decrease-Key operation that triggered
the Sink. The ∆o terms appearing in the potential
function ensures enough potential drop to pay for the
cost of periodic reconstruction of the data structure. ⊓⊔

4.3 Multi-Buffer-Heap and External-Memory
APSP. A Multi-Buffer-Heap is constructed as follows.
Let λ < B and let L = B

λ . We pack the slim caches of
Θ(L) SBH(λ) into a single memory block. We call this
block the multi-slim-cache and the resulting structure a
Multi-Buffer-Heap. By the analysis in section 4.2.4 this
structure supports Delete, Delete-Min and Decrease-
Key operations on each of its component Slim Buffer
Heaps in O(L

B + 1
B log2

NL
B) amortized I/Os each.

For computing APSP we take the approach in [6].
We work on all V underlying SSSP problems simulta-
neously, and solve each individual SSSP problem using
Kumar & Schwabe’s algorithm for weighted undirected
graphs [12]. For 1 ≤ i ≤ V , we require a priority
queue pair (Qi, Q

′
i), where the ith pair belong to the

ith SSSP problem. These V priority queue pairs are
implemented using Θ(V

L) Multi-Buffer-Heaps. The al-
gorithm proceeds in V rounds. In each round we load
the multi-slim-cache of each MBH, and for each MBH
extract a settled vertex with minimum distance from
each of the Θ(L) priority queue pairs it stores. We sort
the extracted vertices by vertex indices, and scan this
sorted vertex list and the sorted sequences of adjacency
lists in parallel to retrieve the adjacency lists of the set-
tled vertices of this round. Another sorting phase moves
all adjacency lists to be applied to the same MBH to-
gether. Then all necessary Decrease-Key operations are
performed by cycling through the Multi-Buffer-Heaps
once again. At the end of the algorithm the extracted
vertices along with their computed distance values are
sorted to produce the final distance matrix.

I/O Complexity. In each round O(V
L) I/Os are

required to load the multi-slim-caches of all Multi-
Buffer-Heaps. Accessing all required adjacency lists
over O(V) rounds requires O(V · sort(E)) I/Os. A
total of O(V E · (1

λ + 1
B log2

E
λ)) I/Os are required by

all O(V E) priority queue operations performed by this
algorithm. Sorting the final distance matrix requires
O(V · sort(V)) I/Os. Thus the I/O complexity of this
algorithm is O(V ·(V

L + E
λ + E

B log2
E
λ +sort(E))). Using

L =
√

V B/E ≥ 1, we obtain the following:

Theorem 4.1. Using Multi-Buffer-Heaps, APSP on
undirected graphs with non-negative real edge weights

can be solved using O(V · (
√

V E/B + sort(E))) I/Os
and O(V 2) space whenever E ≤ V B

log2 V E/B
(or E =

O(V B
log2 V

)).

In conjunction with the I/O efficient APSP algo-
rithm for sufficiently dense graphs implied by the SSSP
results in [12, 8] we obtain the following corollary.

Corollary 4.1. APSP on an undirected graph with
non-negative real edge weights can be solved using O(V ·
(
√

V E/B + (E/B) log E/B)) I/Os and O(V 2) space.

References
[1] A. Aggarwal and J. S. Vitter. The input/output complexity

of sorting and related problems. CACM, 31:1116–1127,
1988.

[2] D. Aingworth, C. Chekuri, P. Indyk, and R. Motwani. Fast
estimation of diameter and shortest paths (without matrix
multiplication). SIAM J. Comput., 28:1167–1181, 1999.

[3] L. Arge. The buffer tree: A new technique for optimal I/O-
algorithms. In Proc. 4th WADS, pp. 334–345, 1995.

[4] L. Arge, M. A. Bender, E. D. Demaine, B. Holland-Minkley,

and J. I. Munro. Cache-oblivious priority queue and graph
algorithm applications. In Proc. STOC, pp. 268–276, 2002.

[5] L. Arge, G. S. Brodal, and L. Toma. On external-memory
MST, SSSP, and multi-way planar graph separation. In
Proc. 7th SWAT, pp. 433–447, 2000.

[6] L. Arge, U. Meyer, and L. Toma. External memory
algorithms for diameter and all-pairs shortest-paths on
sparse graphs. In Proc. 31st ICALP, pp. 146–157, 2004.

[7] G. S. Brodal, R. Fagerberg, U. Meyer, and N. Zeh. Cache-
oblivious data structures and algorithms for undirected
breadth-first search and shortest paths. In Proc. 9th SWAT,
pp. 480–492, 2004.

[8] R. A. Chowdhury and V. Ramachandran. Cache-oblivious
shortest paths in graphs using buffer heap. In Proc. 16th
SPAA, pp. 245–254, 2004.

[9] R. A. Chowdhury and V. Ramachandran. External-
Memory Exact and Approximate All-Pairs Shortest-Paths
in Undirected Graphs. Tech. Rep. TR-04-38, UT Austin,
2004.

[10] D. Dor, S. Halperin, and U. Zwick. All-pairs almost shortest
paths. SIAM J. Comput., 29(5):1740–1759, 2000.

[11] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran.
Cache-oblivious algorithms. In Proc. 40th FOCS, pp. 285–
297, 1999.

[12] V. Kumar and E. Schwabe. Improved algorithms and data
structures for solving graph problems in external memory.
In Proc. 8th SPDP, pp. 169–177, 1996.

[13] K. Mehlhorn and U. Meyer. External-memory breadth-first
search with sublinear I/O. In Proc. 10th ESA, LNCS 2461,
pp. 723–735, 2002.

[14] U. Meyer and N. Zeh. I/O-efficient undirected shortest
paths. In Proc. 11th ESA, LNCS 2832, pp. 434–445, 2003.

[15] K. Munagala and A. Ranade. I/O-complexity of graph
algorithms. In Proc. 10th SODA, pp. 687–694, 1999.

[16] H. Prokop. Cache-oblivious algorithms. Master’s thesis,
Dept. of EECS, MIT, June 1999.

[17] U. Zwick. Exact and approximate distances in graphs – a
survey. In Proc. 9th ESA, LNCS 2161, pp. 33–48, 2001.
Updated version at http://www.cs.tau.ac.il/˜zwick.

