Some Basic Techniques

1. Divide-and-Conquer
 - Recursive
 - Non-recursive
 - Contraction

2. Pointer Techniques
 - Pointer Jumping
 - Graph Contraction

3. Randomization
 - Sampling
 - Symmetry Breaking
Divide-and-Conquer

1. **Divide:** divide the original problem into smaller subproblems that are easier to solve

2. **Conquer:** solve the smaller subproblems
 (perhaps recursively)

3. **Merge:** combine the solutions to the smaller subproblems to obtain a solution for the original problem
Divide-and-Conquer

- The divide-and-conquer paradigm improves program modularity, and often leads to simple and efficient algorithms.
- Since the subproblems created in the divide step are often independent, they can be solved in parallel.
- If the subproblems are solved recursively, each recursive divide step generates even more independent subproblems to be solved in parallel.
- In order to obtain a highly parallel algorithm it is often necessary to parallelize the divide and merge steps, too.
Recursive D&C: Parallel Merge Sort

\[
\text{Merge-Sort} \ (A, p, r) \quad \{ \text{sort the elements in } A[p \ldots r] \} \\
1. \quad \text{if } p < r \text{ then} \\
2. \quad q \leftarrow \lfloor (p + r) / 2 \rfloor \\
3. \quad \text{Merge-Sort} \ (A, p, q) \\
4. \quad \text{Merge-Sort} \ (A, q + 1, r) \\
5. \quad \text{Merge} \ (A, p, q, r)
\]

\[
\text{Par-Merge-Sort} \ (A, p, r) \quad \{ \text{sort the elements in } A[p \ldots r] \} \\
1. \quad \text{if } p < r \text{ then} \\
2. \quad q \leftarrow \lfloor (p + r) / 2 \rfloor \\
3. \quad \text{spawn Merge-Sort} \ (A, p, q) \\
4. \quad \text{Merge-Sort} \ (A, q + 1, r) \\
5. \quad \text{sync} \\
6. \quad \text{Merge} \ (A, p, q, r)
\]
Recursive D&C: Parallel Merge Sort

Par-Merge-Sort (A, p, r) { sort the elements in A[p ... r] }

1. if p < r then
2. q ← ⌊(p + r) / 2⌋
3. spawn Merge-Sort (A, p, q)
4. Merge-Sort (A, q + 1, r)
5. sync
6. Merge (A, p, q, r)

Work: \(T_1(n) = \begin{cases} \Theta(1), & \text{if } n = 1, \\ 2T_1\left(\frac{n}{2}\right) + \Theta(n), & \text{otherwise.} \end{cases} \)

\[= \Theta(n \log n) \]

Span: \(T_\infty(n) = \begin{cases} \Theta(1), & \text{if } n = 1, \\ T_\infty\left(\frac{n}{2}\right) + \Theta(n), & \text{otherwise.} \end{cases} \)

\[= \Theta(n) \]

Parallelism: \(\frac{T_1(n)}{T_\infty(n)} = \Theta(\log n) \)

Too small! Must parallelize the Merge routine.
Non-Recursive D&C: Parallel Sample Sort

Task: Sort an array $A[1, \ldots, n]$ of n distinct keys using $p \leq n$ processors.

Steps (without oversampling):

1. **Pivot Selection:** Select (uniformly at random) and sort $m = p - 1$ pivot elements e_1, e_2, \ldots, e_m. These elements define $m + 1 = p$ buckets: $(-\infty, e_1), (e_1, e_2), \ldots, (e_{m-1}, e_m), (e_m, +\infty)$

2. **Local Sort:** Divide A into p segments of equal size, assign each segment to different processor, and sort locally.

3. **Local Bucketing:** If $m \leq \frac{n}{p}$, each processor inserts the pivot elements into its local sorted sequence using binary search, otherwise inserts its local elements into the sorted pivot elements. Thus the keys are divided among $m + 1 = p$ buckets.

4. **Merge Local Buckets:** Processor i ($1 \leq i \leq p$) merges the contents of bucket i from all processors through a local sort.

5. **Final Result:** Each processor copies its bucket to a global output array so that bucket i ($1 \leq i \leq p - 1$) precedes bucket $i + 1$ in the output.
Non-Recursive D&C: Parallel Sample Sort

Steps (without oversampling):

1. **Pivot Selection:** $O(m \log(m)) = O(p \log p)$ [worst case]

2. **Local Sort:** $O\left(\frac{n}{p} \log \frac{n}{p}\right)$ [worst case]

3. **Local Bucketing:**

 $$O\left(\min\left(m \log \frac{n}{p}, \frac{n}{p} \log m\right)\right) = O\left(\frac{n}{p} \log \frac{n}{p}\right)$$ [worst case]

4. **Merge Local Buckets:** $O\left(\frac{n}{m} \log \frac{n}{m}\right) = O\left(\frac{n}{p} \log \frac{n}{p}\right)$ [expected]

 (not quite correct as the largest bucket can have $\Theta\left(\frac{n}{m} \log m\right)$ keys with significant probability)

5. **Final Result:** $O\left(\frac{n}{m}\right) = O\left(\frac{n}{p}\right)$ [expected]

Overall: $O\left(\frac{n}{p} \log \frac{n}{p} + p \log p\right)$ [expected]
Contraction

1. **Reduce**: reduce the original problem to a smaller problem
2. **Conquer**: solve the smaller problem (often recursively)
3. **Expand**: use the solution to the smaller problem to obtain a solution for the original larger problem
Contraction: Prefix Sums

Input: A sequence of \(n \) elements \(\{x_1, x_2, \ldots, x_n\} \) drawn from a set \(S \) with a binary associative operation, denoted by \(\oplus \).

Output: A sequence of \(n \) partial sums \(\{s_1, s_2, \ldots, s_n\} \), where
\[
s_i = x_1 \oplus x_2 \oplus \ldots \oplus x_i \text{ for } 1 \leq i \leq n.
\]

<table>
<thead>
<tr>
<th></th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>(x_4)</th>
<th>(x_5)</th>
<th>(x_6)</th>
<th>(x_7)</th>
<th>(x_8)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>3</td>
<td>7</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

\(\oplus = \text{binary addition} \)

<table>
<thead>
<tr>
<th></th>
<th>(s_1)</th>
<th>(s_2)</th>
<th>(s_3)</th>
<th>(s_4)</th>
<th>(s_5)</th>
<th>(s_6)</th>
<th>(s_7)</th>
<th>(s_8)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>8</td>
<td>15</td>
<td>16</td>
<td>19</td>
<td>25</td>
<td>27</td>
<td>31</td>
</tr>
</tbody>
</table>
Contraction: Prefix Sums

Prefix-Sum (⟨x₁, x₂, ..., xₙ⟩, ⊕) { \(n = 2^k \) for some \(k \geq 0 \).
Return prefix sums \(\langle s₁, s₂, ..., sₙ \rangle \) }

1. if \(n = 1 \) then
2. \(s₁ \leftarrow x₁ \)
3. else
4. parallel for \(i \leftarrow 1 \) to \(n/2 \) do
5. \(yᵢ \leftarrow x₂i⁻¹ \oplus x₂i \)
6. \(\langle z₁, z₂, ..., zₙ/2 \rangle \leftarrow \text{Prefix-Sum}(\langle y₁, y₂, ..., yₙ/2 \rangle, \oplus) \)
7. parallel for \(i \leftarrow 1 \) to \(n \) do
8. if \(i = 1 \) then \(s₁ \leftarrow x₁ \)
9. else if \(i = \text{even} \) then \(sᵢ \leftarrow zᵢ/2 \)
10. else \(sᵢ \leftarrow z(ᵢ−1)/2 \oplus xᵢ \)
11. return \(\langle s₁, s₂, ..., sₙ \rangle \)
Contraction: Prefix Sums

\[s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow s_4 \rightarrow s_5 \rightarrow s_6 \rightarrow s_7 \rightarrow s_8 \]

\[x_1 \rightarrow x_2 \rightarrow x_3 \rightarrow x_4 \rightarrow x_5 \rightarrow x_6 \rightarrow x_7 \rightarrow x_8 \]

\[y_1 \rightarrow y_2 \rightarrow y_3 \rightarrow y_4 \]

\[z_1 \rightarrow z_2 \rightarrow z_3 \rightarrow z_4 \]

\[z'_1 \rightarrow z'_2 \rightarrow z''_1 \rightarrow z''_2 \]
Prefix-Sum (\(\langle x_1, x_2, \ldots, x_n\rangle, \oplus\)) \(\{ n = 2^k \) for some \(k \geq 0\).

Return prefix sums \(\langle s_1, s_2, \ldots, s_n\rangle\)

Work:

\[T_1(n) = \begin{cases} \Theta(1), & \text{if } n = 1, \\ T_1\left(\frac{n}{2}\right) + \Theta(n), & \text{otherwise.} \end{cases} \]

\[= \Theta(n) \]

Span:

\[T_\infty(n) = \begin{cases} \Theta(1), & \text{if } n = 1, \\ T_\infty\left(\frac{n}{2}\right) + \Theta(1), & \text{otherwise.} \end{cases} \]

\[= \Theta(\log n) \]

Parallelism: \[\frac{T_1(n)}{T_\infty(n)} = \Theta\left(\frac{n}{\log n}\right) \]

Observe that we have assumed here that a parallel for loop can be executed in \(\Theta(1)\) time. But recall that cilk_for is implemented using divide-and-conquer, and so in practice, it will take \(\Theta(\log n)\) time. In that case, we will have \(T_\infty(n) = \Theta(\log^2 n)\), and parallelism = \(\Theta\left(\frac{n}{\log^2 n}\right)\).
Pointer Techniques: Pointer Jumping

The *pointer jumping* (or *path doubling*) technique allows fast processing of data stored in the form of a set of rooted directed trees.

For every node v in the set pointer jumping involves replacing $v \rightarrow next$ with $v \rightarrow next \rightarrow next$ at every step.

Some Applications

- Finding the roots of a forest of directed trees
- Parallel prefix on rooted directed trees
- List ranking
Find-Roots \((n, P, S)\) { \textbf{Input:} A forest of rooted directed trees, each with a self-loop at its root, such that each edge is specified by \((v, P(v))\) for \(1 \leq v \leq n\). \textbf{Output:} For each \(v\), the root \(S(v)\) of the tree containing \(v\). }

1. \textbf{parallel for} \(v \leftarrow 1\) to \(n\) \textbf{do}
2. \(S(v) \leftarrow P(v)\)
3. \(\text{flag} \leftarrow \text{true}\)
4. \textbf{while} \(\text{flag} = \text{true}\) \textbf{do}
5. \(\text{flag} \leftarrow \text{false}\)
6. \textbf{parallel for} \(v \leftarrow 1\) to \(n\) \textbf{do}
7. \(S(v) \leftarrow S(S(v))\)
8. \textbf{if} \(S(v) \neq S(S(v))\) \textbf{then} \(\text{flag} \leftarrow \text{true}\)
Pointer Jumping: Roots of a Forest of Directed Trees

Let h be the maximum height of any tree in the forest.
Observe that the distance between v and $S(v)$ doubles after each iteration until $S(S(v))$ is the root of the tree containing v.

Hence, the number of iterations is $\log h$. Thus (assuming that each parallel for loop takes $\Theta(1)$ time to execute),

Work: $T_1(n) = O(n \log h)$ and **Span:** $T_\infty(n) = \Theta(\log h)$

Parallelism: $\frac{T_1(n)}{T_\infty(n)} = O(n)$

Find-Roots (n, P, S)

Input: A forest of rooted directed trees, each with a self-loop at its root, such that each edge is specified by $(v, P(v))$ for $1 \leq v \leq n$.
Output: For each v, the root $S(v)$ of the tree containing v.

1. parallel for $v \leftarrow 1$ to n do
2. $S(v) \leftarrow P(v)$
3. flag \leftarrow true
4. while flag = true do
5. flag \leftarrow false
6. parallel for $v \leftarrow 1$ to n do
7. $S(v) \leftarrow S(S(v))$
8. if $S(v) \neq S(S(v))$ then flag \leftarrow true
Pointer Techniques: Graph Contraction

1. **Contract:** the graph is reduced in size while maintaining some of its original properties (depending on the problem)

2. **Conquer:** solve the problem on the contracted graph (often recursively)

3. **Expand:** use the solution to the contracted graph to obtain a solution for the original graph

Some Applications

- Finding connected components of a graph
- Minimum spanning trees
Graph Contraction: Connected Components (CC)

1. Direct the edges to form a forest of rooted directed trees
2. Use pointer jumping to contract each such tree to a single vertex
3. Recursively find the CCs of the contracted graph
4. Expand those CCs to label the vertices of the original graph with CC numbers
Randomization: Symmetry Breaking

A technique to break symmetry in a structure, e.g., a graph which can locally look the same to all vertices.

Some Applications

- Prefix sums in a linked list (list ranking)
- Selecting a large independent set from a graph
- Graph contraction
1. Flip a coin for each list node
2. If a node \(u \) points to a node \(v \), and \(u \) got a head while \(v \) got a tail, combine \(u \) and \(v \)
3. Recursively solve the problem on the contracted list
4. Project this solution back to the original list
Symmetry Breaking: List Ranking

In every iteration a node gets removed with probability $\frac{1}{4}$ (as a node gets head with probability $\frac{1}{2}$ and the next node gets tail with probability $\frac{1}{2}$).

Hence, a quarter of the nodes get removed in each iteration (expected number).

Thus the expected number of iterations is $\Theta(\log n)$.

In fact, it can be shown that with high probability,

$$T_1(n) = O(n) \text{ and } T_\infty(n) = O(\log n)$$