Independent Sets

Let $G = (V, E)$ be an undirected graph.

Independent Set: A subset $I \subseteq V$ is said to be *independent* provided for each $v \in I$ none of its neighbors in G belongs to I.

Maximal Independent Set: An independent set of G is *maximal* if it is not properly contained in any other independent set in G.

Maximum Independent Set: A maximal independent set of the largest size.

Finding a maximum independent set is NP-hard.

But finding a maximal independent set is trivial in the sequential setting.
Finding a Maximal Independent Set Sequentially

Input: V is the set of vertices, and E is the set of edges. For each $v \in V$, we denote by $\Gamma(v)$ the set of neighboring vertices of v.

Output: A maximal independent set MIS of the input graph.

```
Serial-Greedy-MIS (V, E)
1. MIS ← ∅
2. for $v$ ← 1 to $|V|$ do
3.   if $MIS \cap \Gamma(v) = ∅$ then $MIS ← MIS \cup \{v\}$
4. return $MIS$
```

This algorithm can be easily implemented to run in $\Theta(n + m)$ time, where n is the number of vertices and m is the number of edges in the input graph.

The output of this algorithm is called the Lexicographically First MIS (LFMIS).
Finding a Maximal Independent Set Sequentially

Input: V is the set of vertices, and E is the set of edges. For each $v \in V$, we denote by $\Gamma(v)$ the set of neighboring vertices of v.

Output: A maximal independent set MIS of the input graph.

```
Serial-Greedy-MIS-2 (V, E)
1. MIS ← φ
2. while |V| > 0 do
3.   pick an arbitrary vertex $v \in V$
4.   MIS ← MIS ∪ {v}
5.   R ← {v} ∪ $\Gamma(v)$
6.   V ← V \ R
7.   E ← E \ { (v₁, v₂) | v₁ ∈ R or v₂ ∈ R }
8. return MIS
```

Always choosing the vertex with the smallest id in the current graph will produce exactly the same MIS as in *Serial-Greedy-MIS*.
Finding a Maximal Independent Set Sequentially

Input: V is the set of vertices, and E is the set of edges. For each $S \subseteq V$, we denote by $\Gamma(S)$ the set of neighboring vertices of S.

Output: A maximal independent set MIS of the input graph.

```
Serial-Greedy-MIS-3 ( V, E )
1. MIS \leftarrow \emptyset
2. while |V| > 0 do
3.     find an independent set $S \subseteq V$
4.     MIS \leftarrow MIS \cup S
5.     R \leftarrow S \cup \Gamma(S)
6.     V \leftarrow V \setminus R
7.     E \leftarrow E \setminus \{ (v_1, v_2) \mid v_1 \in R \text{ or } v_2 \in R \}
8. return MIS
```
Parallelizing Serial-Greedy-MIS-3

— Number of iterations can be kept small by finding in each iteration an S with large $S \cup \Gamma(S)$. But this is difficult to do.

— Instead in each iteration we choose an S such that a large fraction of current edges are incident on $S \cup \Gamma(S)$.

— To select S we start with a random $S' \subseteq V$.

 • By choosing lower degree vertices with higher probability we are likely to have very few edges with both end-points in S'.
 • We check each edge with both end-points in S', and drop the end-point with lower degree from S'. Our intention is to keep $\Gamma(S')$ as large as we can.
 • After removing all edges as above we are left with an independent set. This is our S.
 • We will prove that if we remove $S \cup \Gamma(S)$ from the current graph a large fraction of current edges will also get removed.

Serial-Greedy-MIS-3 (V, E)
1. $MIS \leftarrow \emptyset$
2. while $|V| > 0$ do
3. find an independent set $S \subseteq V$
4. $MIS \leftarrow MIS \cup S$
5. $R \leftarrow S \cup \Gamma(S)$
6. $V \leftarrow V \setminus R$
7. $E \leftarrow E \setminus \{(v_1, v_2) \mid v_1 \in R \text{ or } v_2 \in R\}$
8. return MIS
Randomized Maximal Independent Set (MIS)

Input: n is the number of vertices, and for each vertex $u \in [1, n]$, $V[u]$ is set to u. E is the set of edges sorted in non-decreasing order of the first vertex. For every edge (u, v) both (u, v) and (v, u) are included in E.

Output: For all $u \in [1, n]$, $MIS[u]$ is set to 1 if vertex u is in the MIS.

$d[u]$ (i.e., degree of vertex u) can now be computed easily by subtracting $c[u-1]$ from $c[u]$.

If both end-points of an edge is marked, unmark the one with the lower degree.

Remove marked vertices along with their neighbors as well as the corresponding edges.

For each u find the edge with the largest index i such that $E[i].u \leq u$, and store that i in $c[u]$.

Mark lower-degree vertices with higher probability.

Add all marked vertices to MIS.

For each $(u, v) \in E$ do:

- If $M[u] = 1$ and $M[v] = 1$ then
- If $d[u] \leq d[v]$ then $M[u] \leftarrow 0$ else $M[v] \leftarrow 0$.

Parallel for $u \leftarrow 1$ to $|V|$ do:

- If $M[u] = 1$ then

$(V, E) \leftarrow Par-Compress(V, E, M)$
Removing Marked Vertices and Their Neighbors

Input: Arrays V and E, and bit array $M[1:|V|]$. Each entry of E is of the form (u, v), where $1 \leq u, v \leq |V|$. If for some u, $M[u] = 1$, then u and all v such that $(u, v) \in E$ must be removed from V along with all edges (u, v) from E.

Output: Updated V and E.

\[\text{Par-Compress}(V, E, M) \]

2. $\text{parallel for } u \leftarrow 1 \text{ to } |V|\ do$
3. $\text{if } M[u] = 1 \text{ then } S_V[u] \leftarrow 0$
4. $\text{parallel for } i \leftarrow 1 \text{ to } |E|\ do$
5. $u \leftarrow E[i].u, v \leftarrow E[i].v$
6. $\text{if } M[u] = 1 \text{ or } M[v] = 1 \text{ then } S_V[u] \leftarrow 0, S_V[v] \leftarrow 0, S_E[i] \leftarrow 0$
7. $S'_V \leftarrow \text{Par-Prefix-Sum}(S_V, +)$, $S'_E \leftarrow \text{Par-Prefix-Sum}(S_E, +)$
8. array $U[1:S'_V[|V|]], F[1:S'_E[|E|]]$
9. $\text{parallel for } u \leftarrow 1 \text{ to } |V|\ do$
10. $\text{if } S_V[u] = 1 \text{ then } U[S'_V[u]] \leftarrow V[u]$
11. $\text{parallel for } i \leftarrow 1 \text{ to } |E|\ do$
12. $\text{if } S_E[i] = 1 \text{ then } F[S'_E[i]] \leftarrow E[i]$
13. $\text{parallel for } i \leftarrow 1 \text{ to } |F|\ do$
14. $u \leftarrow F[i].u, v \leftarrow F[i].v$
15. $F[i].u \leftarrow S'_V[u], F[i].v \leftarrow S'_V[v]$
16. return (U, F)
Removing Marked Vertices and Their Neighbors

Par-Compress \((V, E, M) \)

1. \(\text{array } S_{V}[1 : |V|] = \{1\}, S_{V}^{'}[1 : |V|], \)
 \(S_{E}[1 : |E|] = \{1\}, S_{E}^{'}[1 : |E|] \)
2. \(\text{parallel for } u \leftarrow 1 \text{ to } |V| \) \text{ do} \)
3. \(\text{if } M[u] = 1 \text{ then } S_{V}[u] \leftarrow 0 \)
4. \(\text{parallel for } i \leftarrow 1 \text{ to } |E| \) \text{ do} \)
5. \(u \leftarrow E[i].u, v \leftarrow E[i].v \)
6. \(\text{if } M[u] = 1 \text{ or } M[v] = 1 \text{ then} \)
 \(S_{V}[u] \leftarrow 0, S_{V}[v] \leftarrow 0, S_{E}[i] \leftarrow 0 \)
7. \(S_{V}^{'} \leftarrow \text{Par-Prefix-Sum} \ (S_{V}, +) \),
 \(S_{E}^{'} \leftarrow \text{Par-Prefix-Sum} \ (S_{E}, +) \)
8. \(\text{array } U[1 : S_{V}^{'}[|V|]], F[1 : S_{E}^{'}[|E|]] \)
9. \(\text{parallel for } u \leftarrow 1 \text{ to } |V| \) \text{ do} \)
10. \(\text{if } S_{V}[u] = 1 \text{ then } U[S_{V}^{'}[u]] \leftarrow V[u] \)
11. \(\text{parallel for } i \leftarrow 1 \text{ to } |E| \) \text{ do} \)
12. \(\text{if } S_{E}[i] = 1 \text{ then } F[S_{E}^{'}[i]] \leftarrow E[i] \)
13. \(\text{parallel for } i \leftarrow 1 \text{ to } |F| \) \text{ do} \)
14. \(u \leftarrow F[i].u, v \leftarrow F[i].v \)
15. \(F[i].u \leftarrow S_{V}^{'}[u], F[i].v \leftarrow S_{V}^{'}[v] \)
16. \(\text{return } (U, F) \)

The prefix sums in line 7 perform \(\Theta(|V| + |E|) \) work and have \(\Theta(\log^2|V| + \log^2|E|) \) depth. The rest of the algorithm also perform \(\Theta(|V| + |E|) \) work but in \(\Theta(\log|V| + \log|E|) \) depth. Hence,

Work: \(\Theta(|V| + |E|) \)

Span: \(\Theta(\log^2|V| + \log^2|E|) \)
Randomized Maximal Independent Set (MIS)

Let $n = \#\text{vertices}$, and $m = \#\text{edges}$ initially.

Let us assume for the time being that at least a constant fraction of the edges are removed in each iteration of the while loop (we will prove this shortly). Let this fraction be f (< 1).

This implies that the while loop iterates $\Theta\left(\log_{1/(1-f)} m\right) = \Theta(\log m)$ times. (how?)

Each iteration performs $\Theta(|V| + |E|)$ work and has $\Theta(\log^2 |V| + \log^2 |E|)$ depth. Hence,

Work: $T_1(n,m) = \Theta\left((n + m) \sum_{i=0}^{k}(1 - f)^i\right)$

$= \Theta(n + m)$

Span: $T_\infty(n,m) = \Theta((\log^2 n + \log^2 m)\log m)$

$= \Theta(\log^3 n)$

Parallelism: $\frac{T_1(n,m)}{T_\infty(n,m)} = \Theta\left(\frac{n+m}{\log^3 n}\right)$
Analysis of Randomized MIS

Let, \(d(v) \) be the degree of vertex \(v \), and \(\Gamma(v) \) be its set of neighbors.

Good Vertex: A vertex \(v \) is *good* provided \(|L(v)| \geq \frac{d(v)}{3} \), where,
\[
L(v) = \{ u \mid (u \in \Gamma(v)) \land (d(u) \leq d(v)) \}.
\]

Bad Vertex: A vertex is *bad* if it is not good.

Good Edge: An edge \((u, v)\) is *good* if at least one of \(u \) and \(v \) is good.

Bad Edge: An edge \((u, v)\) is *bad* if both \(u \) and \(v \) are bad.
Analysis of Randomized MIS

Lemma 1: In some iteration of the \textit{while} loop, let v be a good vertex with $d(v) > 0$, and let M be the set of vertices that got marked (in lines 8-9). Then

$$\Pr\{ \Gamma(v) \cap M \neq \emptyset \} \geq 1 - e^{-1/6}.$$

Proof: We have,

$$\Pr\{ \Gamma(v) \cap M \neq \emptyset \} = 1 - \Pr\{ \Gamma(v) \cap M = \emptyset \}$$

$$= 1 - \prod_{u \in \Gamma(v)} \Pr\{ u \notin M \} \geq 1 - \prod_{u \in L(v)} \Pr\{ u \notin M \}$$

$$= 1 - \prod_{u \in L(v)} \left(1 - \frac{1}{2d(u)}\right) \geq 1 - \prod_{u \in L(v)} \left(1 - \frac{1}{2d(v)}\right)$$

$$= 1 - \left(1 - \frac{1}{2d(v)}\right)^{|L(v)|} \geq 1 - \left(1 - \frac{1}{2d(v)}\right)^{d(v)/3}$$

$$\geq 1 - e^{-d(v)/3 \over 2d(v)} = 1 - e^{-1/6}$$
Analysis of Randomized MIS

Lemma 2: In any iteration of the *while* loop, let M be the set of vertices that got marked (in lines 8-9), and let S be the set of vertices that got included in the MIS (in line 14). Then

$$\Pr\{ v \in S \mid v \in M \} \geq \frac{1}{2}.$$

Proof: We have, $\Pr\{ v \in S \mid v \in M \}$

$$\geq 1 - \Pr\{ \exists u \in \Gamma(v) \text{ s.t. } (d(u) \geq d(v)) \land (u \in M) \}$$

$$\geq 1 - \sum_{u \in \Gamma(v)} \frac{1}{2d(u)} \geq 1 - \sum_{u \in \Gamma(v)} \frac{1}{2d(v)}$$

$$\geq 1 - \sum_{u \in \Gamma(v)} \frac{1}{2d(v)} = 1 - d(v) \times \frac{1}{2d(v)} = \frac{1}{2}$$
Analysis of Randomized MIS

Lemma 3: In any iteration of the while loop, let V_G be the set of good vertices, and let S be the vertex set that got included in the MIS. Then

$$\Pr \{ v \in S \cup \Gamma(S) \mid v \in V_G \} \geq \frac{1}{2} \left(1 - e^{-1/6} \right).$$

Proof: We have,

$$\Pr \{ v \in S \cup \Gamma(S) \mid v \in V_G \} \geq \Pr \{ v \in \Gamma(S) \mid v \in V_G \} = \Pr \{ \Gamma(v) \cap S \neq \emptyset \mid v \in V_G \} = \Pr \{ \Gamma(v) \cap S \neq \emptyset \mid \Gamma(v) \cap M \neq \emptyset, v \in V_G \} \times \Pr \{ \Gamma(v) \cap M \neq \emptyset \mid v \in V_G \} \geq \Pr \{ u \in S \mid u \in \Gamma(v) \cap M, v \in V_G \} \times \Pr \{ \Gamma(v) \cap M \neq \emptyset \mid v \in V_G \} \geq \frac{1}{2} \left(1 - e^{-1/6} \right).$$
Analysis of Randomized MIS

Lemma 3: In any iteration of the *while* loop, let V_G be the set of good vertices, and let S be the vertex set that got included in the MIS. Then

$$\Pr\{ v \in S \cup \Gamma(S) \mid v \in V_G \} \geq \frac{1}{2} \left(1 - e^{-1/6} \right).$$

Corollary 1: In any iteration of the *while* loop, a good vertex gets removed (in line 15) with probability at least \(\frac{1}{2} \left(1 - e^{-1/6} \right) \).

Corollary 2: In any iteration of the *while* loop, a good edge gets removed (in line 15) with probability at least \(\frac{1}{2} \left(1 - e^{-1/6} \right) \).
Analysis of Randomized MIS

Lemma 4: In any iteration of the while loop, let E and E_G be the sets of all edges and good edges, respectively. Then $|E_G| \geq |E|/2$.

Proof: For each edge $(u, v) \in E$, direct (u, v) from u to v if $d(u) \leq d(v)$, and v to u otherwise.

For every vertex v in the resulting digraph let $d_i(v)$ and $d_o(v)$ denote its in-degree and out-degree, respectively.

Let V_G and V_B be the set of good and bad vertices, respectively.

Then for each $v \in V_B$, $d_o(v) - d_i(v) \geq \frac{d(v)}{3}$.

Let m_{BB}, m_{BG}, m_{GB} and m_{GG} be the #edges directed from V_B to V_B, from V_B to V_G, from V_G to V_B, and from V_G to V_G, respectively.
Lemma 4: In any iteration of the while loop, let E and E_G be the sets of all edges and good edges, respectively. Then $|E_G| \geq |E|/2$.

Proof (continued): We have,

$$2m_{BB} + m_{BG} + m_{GB}$$

$$= \sum_{v \in V_B} d(v) \leq 3 \sum_{v \in V_B} (d_o(v) - d_i(v)) = 3 \sum_{v \in V_G} (d_i(v) - d_o(v))$$

$$= 3((m_{BG} + m_{GG}) - (m_{GB} + m_{GG})) = 3(m_{BG} - m_{GB})$$

$$\leq 3(m_{BG} + m_{GB})$$

Thus $2m_{BB} + m_{BG} + m_{GB} \leq 3(m_{BG} + m_{GB})$

$\Rightarrow m_{BB} \leq m_{BG} + m_{GB} \Rightarrow m_{BB} \leq m_{BG} + m_{GB} + m_{GG}$

$\Rightarrow (m_{BG} + m_{GB} + m_{GG}) + m_{BB} \leq 2(m_{BG} + m_{GB} + m_{GG})$

$\Rightarrow |E| \leq 2|E_G|$
Analysis of Randomized MIS

Lemma 5: In any iteration of the *while* loop, let E be the set of all edges. Then the expected number of edges removed (in line 15) during this iteration is at least $\frac{1}{4} \left(1 - e^{-1/6} \right) |E|$.

Proof: Follows from Lemma 4 and Corollary 2.