Connectivity of Undirected Graphs
Maximum Matching in Bipartite Graphs
Connectivity of Undirected Graphs

Let $G(V, E)$ be a connected graph.

- A cut vertex of G is a vertex whose removal disconnects G.
- A bridge (or a cut edge) of G is an edge whose removal disconnects G.
- The vertex–connectivity of a graph is the minimum number k of vertices that must be removed to disconnect the graph.
- The edge–connectivity of a graph is the minimum number k of edges that must be removed to disconnect the graph.

The vertex–connectivity and the edge–connectivity of a graph show connectivity of a graph.
Connected component & Biconnected component

- A connected component of a graph G is a connected subgraph of G that is not a proper subgraph of another connected subgraph of G.
- In an unconnected graph, connected components without a cut vertex are called biconnected components. A connected subgraph without a cut vertex is also called a block.
Function low is used to get cut vertices and bridges of a connected graph, and biconnected components of a graph.

Suppose $pre[v]$ is the sequence number of vertex v in DFS traversal. That is, $pre[v]$ is the time that vertex v is visited. Function $low[u]$ is the $pre[v]$ of vertex v which is the earliest visited ancestor of u and u's descendants.

$$low[u] = \min_{(u,s),(u,w)\in E} \{pre[u], low[s], pre[w]\}$$

where s is a child of u, and (u, w) is a back edge.
In DFS, edges can be classified into four types:

- **Branch edge** T: Edge (u, v) is a branch edge, if it is the first time that v is visited in DFS.

- **Back edge** B: Edge (u, v) is a back edge, if u is a descendant of v, and v has been visited, but all descendants of v haven’t been visited.

- **Forward edge** F: Edge (u, v) is a forward edge, if v is a descendant of u, all descendants of v have been visited and $\text{pre}[u] < \text{pre}[v]$.

- **Cross edge** C: all other edges (u, v). That is, u and v has no ancestor–descendant relationship in a DFS tree, or u and v are in different DFS trees. All descendants of v have been visited and $\text{pre}[u] > \text{pre}[v]$.
Function low is used to get cut vertices in a connected graph.
Property 1: If vertex u isn’t a root, u is a cut vertex if and only if there exists a child s of u, $\text{low}[s] \geq \text{pre}[u]$. That is to say, there is no back edge from s and its descendants to u’s ancestors.

In Figure (a), although in the subtree whose root is s_1 there is a back edge to u’s ancestor, there is no back edge to u’s ancestor from s_2 or s_2’s descendants. If u is removed, the graph is not connected.
In an undirected graph, there are only branch edges and back edges. We can calculate \textit{low} and \textit{pre} through DFS, and find whether Property 1 holds or not. The process is as follow.

- If \((v, w)\) is a branch edge \(T(pre[w]=-1)\), and if there is no back edge from \(w\) or \(w\)'s descendants to \(v\)'s ancestors (\(low[w] \geq pre[v]\)), then vertex \(v\) is a cut vertex, and \(low[v] = \min\{low[v], low[w]\}\).

- If \((v, w)\) is a back edge \(B(pre[w]!=-1)\), then \(low[v] = \min\{low[v], pre[w]\}\).
Property 2: If u is selected as the root, then u is a cut vertex if and only if it has more than one child (Figure (b)).

In Figure (b), root u has two subtrees whose roots are s_1 and s_2 respectively, and there is no cross edge C between the two trees (in an undirected graph, there is no cross edge C). Therefore the graph isn’t connected after vertex u is deleted, and vertex u is a cut vertex.
Based on above two properties, the algorithm calculating cut vertices is as follow.

for(i = 0; i < n; i++) //Initialization
 pre[i] = -1;
low[s]=pre[s]=d=0; // vertex s: start vertex
p=0; // the number of children for vertex s
for (each w∈adj[s]) p++;
if (p>1)
 s is a cut vertex and exit; //Property 2
fund_cut_point(s); // Property 1
In an undirected graph, edge \((u, v)\) is a bridge if and only if \((u, v)\) is not in any simple circuit.

The method determining whether an edge is a bridge or not is as follow. Edge \((u, v)\) is a branch edge discovered by DFS. If there is no back edge connecting \(v\) and its descendants to \(u\)'s ancestors; that is, \(\text{low}[v] > \text{pre}[u]\) or \(\text{low}[v] = \text{pre}[v]\); then deleting \((u, v)\) leads \(u\) and \(v\) aren’t connected. Therefore edge \((u, v)\) is a bridge.
In Figure (a), DFS is used, a DFS tree is gotten as Figure (b), and \(\text{pre} \) and \(\text{low} \) for all vertices are showed in Figure (c). Obviously for \(v_5, v_7, \) and \(v_{12}, \) \(\text{low}[v] = \text{pre}[v], \) and \((v_0, v_5), (v_6, v_7), \) and \((v_{11}, v_{12}) \) satisfy \(\text{low}[v] > \text{pre}[u] \) for edge \((u, v) \). These edges are bridges in (a).
undirected graph (a)

DFS tree (b)

The nodes of the pre value and low value (c)

<table>
<thead>
<tr>
<th>node number</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre[v]</td>
<td>0</td>
<td>7</td>
<td>8</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>9</td>
<td>10</td>
<td>12</td>
<td>4</td>
<td>11</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Low[v]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>10</td>
<td>10</td>
<td>2</td>
<td>10</td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>
In an undirected graph there are only branch edges and back edges. DFS can be used to calculate low and pre for vertices (initial values for pre[] are −1), and calculate bridges in the undirected graph. The method is as follow.

- If (v, w) is a branch edge (pre[w] == −1), and if there is no back edge from w or w’s descendants to u’s ancestors,
 \((\text{low}[w] == \text{pre}[w]) || (\text{low}[w] > \text{pre}[v])\), then (v, w) is a bridge, and \text{low}[v] = \min\{\text{low}[v], \text{low}[w]\}.

- If (v, w) is a back edge (pre[w] != −1), then \text{low}[v] = \min\{\text{low}[v], \text{pre}[w]\}.
void fund_bridge (v); // DFS to find bridges from vertex v
{ int w,
 low[v] = pre[v] = ++d;
for (each w ∈ the set of adjacent vertices for v) & (w! = v) // Search edge(v, w)
 { if (pre[w] == -1) // if (v, w) is a branch edge
 { fund_bridge (w);
 if ((low[w] == pre[w]) || (low[w] > pre[v]))
 (v, w) is a branch edge;
 low[v] = min{ low[v], low[w]};
 }
 else low[v] = min{ low[v], pre[w]}; // if (v, w) is a back edge
 } }
A biconnected component is a connected component without a cut vertex. Biconnected components of a graph are partitions of edges of the graph, that is, every edge must be in a block, and two different blocks don’t contain common edges.

In Figure 11.6, vertex b is a common vertex for block 3 and block 4, vertex c is a common vertex for block 3 and block 1, and vertex e is a common vertex for block 2 and block 4. The three vertices are cut vertices for the graph. The graph isn’t connected when one of the three vertices is deleted.
cut vertices b, c, e are common vertices for two blocks
The key to finding a block in an undirected graph is to find a cut vertex. DFS is used to get \textit{low} and \textit{pre} (initial values for $\textit{pre}[]$ are -1) and calculate blocks in the undirected graph. The process is as follow.

For vertex v, u is the parent for v: if u is the root, (u, v) is the first edge for the block; else suppose f is u’s parent. If u is deleted, v and f aren’t connected, then $\{f, u, v\}$ isn’t biconnected, (u, v) is the first edge for the new block; else (u, v) and (f, u) is in a same block. A stack is used to store vertices in the current block.
Knights of the Round Table

- Source: ACM Central Europe 2005
- IDs for Online Judge: POJ 2942, UVA 3523
Maximum Matching in Bipartite Graphs

- A bipartite graph is a graph that its vertex set can be divided into two disjoint subsets such that each edge connects a vertex in one of the two subsets to a vertex in the other subset.
- Given a bipartite graph \(G(V, E) \), a matching is a subset of edges \(M \subseteq E \), if there is no common vertex for any two edges in \(M \).
- A maximum matching is a matching of maximum cardinality, that is, a matching \(M \) is called a maximum matching, if for any other matching \(M' \), \(|M| \geq |M'| \).
finding a maximum matching in a bipartite graph
A perfect matching is a matching which matches all vertices of the graph. That is, every vertex of the graph is incident to exactly one edge of the matching. Every perfect matching must be a maximum matching.
For a bipartite graph, Hungarian algorithm is used to find a maximum matching or a perfect matching.
Hungarian algorithm used to find a maximum matching

- Hungarian algorithm is the foundation for all algorithms for bipartite matching.
- Given a bipartite graph $G(V, E)$ and a matching M, the set of vertices with which edges in M are incident is called a cover. For matching M, an alternating path is a path which the edges belong alternatively to M and not to M, and an augmenting path is an alternating path that starts from and ends on unmatched vertices. Matching M is the maximum matching in G, if there is no other matching M' in G such that $|M'| > |M|$.
Hungarian algorithm

- [1] Initially matching M is empty;
DFS algorithm can be used to find an augmenting path. DFS algorithm takes an unmatched vertex as the starting vertex, and it produces an augmenting path p in which the edges belong alternatively to M and not to M.
DFS algorithm is as follow.

```cpp
bool dfs(int i) {    // Determine whether there is an augmenting path starting from vertex i in X
    for (int j=1; j<=m; j++)
        if (!v[j] && (a[i][j])) {       // Search all unvisited vertices which are adjacent to vertex i
            v[j]=1;                      // visit vertex j
            if (pre[j]==0 || dfs(pre[j])) {       //If the precursor for j is unmatched or there exists an augmenting path starting from the precursor for j, then edge (i, j) is in matching, and return true
                pre[j]=i;
                return 1;
            }
        }
    return 0;                                   //return false
}
```
If $dfs(i)$ returns true, then vertex i is matched. Obviously, for every vertex i, $dfs(i)$ is called, and a maximum matching in a bipartite graph is gotten. Therefore Hungarian algorithm is as follow.

```
int ans=0;                //Initialization
for (int i=1; i<=n; i++)  //Enumeration
    memset(v, 0, sizeof(v));
    if (dfs(i)) ans++;
```
Suppose there are e edges in a bipartite graph G, vertices in G are divided into two disjoint sets X and Y such that $|X| = |Y| = n$, and M is a matching in G. The time complexity of finding an augmenting path is $O(e)$. In order to get a maximum matching, at most n augmenting paths are required to calculate. Therefore the time complexity of Hungarian algorithm is $O(n^*e)$.
Conference

- Source: Bulgarian Online Contest September 2001
- IDs for Online Judge: Ural 1109