A Fibonacci heap can be viewed as an extension of Binomial heaps which supports **DECREASE-KEY** and **DELETE** operations efficiently.

<table>
<thead>
<tr>
<th>Heap Operation</th>
<th>Binary Heap (worst-case)</th>
<th>Binomial Heap (amortized)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAKE-HEAP</td>
<td>Θ(1)</td>
<td>Θ(1)</td>
</tr>
<tr>
<td>INSERT</td>
<td>O(log n)</td>
<td>Θ(1)</td>
</tr>
<tr>
<td>MINIMUM</td>
<td>Θ(1)</td>
<td>Θ(1)</td>
</tr>
<tr>
<td>EXTRACT-MIN</td>
<td>O(log n)</td>
<td>O(log n)</td>
</tr>
<tr>
<td>UNION</td>
<td>Θ(n)</td>
<td>Θ(1)</td>
</tr>
<tr>
<td>DECREASE-KEY</td>
<td>O(log n)</td>
<td>–</td>
</tr>
<tr>
<td>DELETE</td>
<td>O(log n)</td>
<td>–</td>
</tr>
</tbody>
</table>
Fibonacci Heaps *(Fredman & Tarjan, 1984)*

A *Fibonacci heap* can be viewed as an extension of Binomial heaps which supports **DECREASE-KEY** and **DELETE** operations efficiently.

<table>
<thead>
<tr>
<th>Heap Operation</th>
<th>Binary Heap (worst-case)</th>
<th>Binomial Heap (amortized)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAKE-HEAP</td>
<td>$\Theta(1)$</td>
<td>$\Theta(1)$</td>
</tr>
<tr>
<td>INSERT</td>
<td>$O(\log n)$</td>
<td>$\Theta(1)$</td>
</tr>
<tr>
<td>MINIMUM</td>
<td>$\Theta(1)$</td>
<td>$\Theta(1)$</td>
</tr>
<tr>
<td>EXTRACT-MIN</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>UNION</td>
<td>$\Theta(n)$</td>
<td>$\Theta(1)$</td>
</tr>
<tr>
<td>DECREASE-KEY</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$ (worst case)</td>
</tr>
<tr>
<td>DELETE</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$ (worst case)</td>
</tr>
</tbody>
</table>
Fibonacci Heaps
(Fredman & Tarjan, 1984)

A Fibonacci heap can be viewed as an extension of Binomial heaps which supports DECREASE-KEY and DELETE operations efficiently.

<table>
<thead>
<tr>
<th>Heap Operation</th>
<th>Binary Heap (worst-case)</th>
<th>Binomial Heap (amortized)</th>
<th>Fibonacci Heap (amortized)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAKE-HEAP</td>
<td>Θ(1)</td>
<td>Θ(1)</td>
<td>Θ(1)</td>
</tr>
<tr>
<td>INSERT</td>
<td>O(log n)</td>
<td>Θ(1)</td>
<td>Θ(1)</td>
</tr>
<tr>
<td>MINIMUM</td>
<td>Θ(1)</td>
<td>Θ(1)</td>
<td>Θ(1)</td>
</tr>
<tr>
<td>EXTRACT-MIN</td>
<td>O(log n)</td>
<td>O(log n)</td>
<td>O(log n)</td>
</tr>
<tr>
<td>UNION</td>
<td>Θ(n)</td>
<td>Θ(1)</td>
<td>Θ(1)</td>
</tr>
<tr>
<td>DECREASE-KEY</td>
<td>O(log n)</td>
<td>O(log n)</td>
<td>Θ(1)</td>
</tr>
<tr>
<td>DELETE</td>
<td>O(log n)</td>
<td>O(log n)</td>
<td>O(log n)</td>
</tr>
</tbody>
</table>
Dijkstra’s SSSP Algorithm with a Min-Heap
(SSSP: Single-Source Shortest Paths)

Input: Weighted graph $G = (V, E)$ with vertex set V and edge set E, a weight function w, and a source vertex $s \in G[V]$.

Output: For all $v \in G[V]$, $v.d$ is set to the shortest distance from s to v.

```
Dijkstra-SSSP ( G = (V,E), w, s )
1.  for each $v \in G[V]$ do $v.d \leftarrow \infty$
2.  $s.d \leftarrow 0$
3.  $H \leftarrow \phi$  {empty min-heap}
4.  for each $v \in G[V]$ do INSERT( H, v )
5.  while $H \neq \phi$ do
6.      $u \leftarrow EXTRACT-MIN( H )$
7.      for each $v \in Adj[u]$ do
8.        if $v.d > u.d + w_{u,v}$ then
9.          DECREASE-KEY( H, v, u.d + w_{u,v} )
10.     $v.d \leftarrow u.d + w_{u,v}$
```
Dijkstra’s SSSP Algorithm with a Min-Heap
(SSSP: Single-Source Shortest Paths)

Input: Weighted graph $G = (V, E)$ with vertex set V and edge set E, a weight function w, and a source vertex $s \in G[V]$.

Output: For all $v \in G[V]$, $v.d$ is set to the shortest distance from s to v.

Let $n = |G[V]|$ and $m = |G[E]|$

INSERTS = n
EXTRACT-MINS = n
DECREASE-KEYS $\leq m$

Total cost

\[
\leq n (cost_{Insert} + cost_{Extract-Min}) + m (cost_{Decrease-Key})
\]
Dijkstra’s SSSP Algorithm with a Min-Heap
(SSSP: Single-Source Shortest Paths)

Input: Weighted graph $G = (V, E)$ with vertex set V and edge set E, a weight function w, and a source vertex $s \in G[V]$.

Output: For all $v \in G[V]$, $v.d$ is set to the shortest distance from s to v.

Let $n = |G[V]|$ and $m = |G[E]|$

For Binary Heap (worst-case costs):

\[
\begin{align*}
\text{cost} & _{\text{Insert}} = O(\log n) \\
\text{cost} & _{\text{Extract-Min}} = O(\log n) \\
\text{cost} & _{\text{Decrease-Key}} = O(\log n)
\end{align*}
\]

\[\therefore\] Total cost (worst-case)
\[= O((m + n) \log n)\]
Dijkstra’s SSSP Algorithm with a Min-Heap

SSSP: Single-Source Shortest Paths

Input: Weighted graph $G = (V, E)$ with vertex set V and edge set E, a weight function w, and a source vertex $s \in G[V]$.

Output: For all $v \in G[V]$, $v.d$ is set to the shortest distance from s to v.

Let $n = |G[V]|$ and $m = |G[E]|$

For Binomial Heap (amortized costs):

- $cost_{\text{Insert}} = O(1)$
- $cost_{\text{Extract-Min}} = O(\log n)$
- $cost_{\text{Decrease-Key}} = O(\log n)$ (worst-case)

\[\therefore \text{Total cost (worst-case)} = O((m + n) \log n) \]
Dijkstra’s SSSP Algorithm with a Min-Heap
(SSSP: Single-Source Shortest Paths)

Input: Weighted graph \(G = (V, E) \) with vertex set \(V \) and edge set \(E \), a weight function \(w \), and a source vertex \(s \in G[V] \).

Output: For all \(v \in G[V] \), \(v.d \) is set to the shortest distance from \(s \) to \(v \).

Algorithm:

\[
\text{Dijkstra-SSSP} \ (G = (V,E), w, s) \\
1. \quad \text{for each } v \in G[V] \text{ do } v.d \leftarrow \infty \\
2. \quad s.d \leftarrow 0 \\
3. \quad H \leftarrow \emptyset \quad \{ \text{empty min-heap} \} \\
4. \quad \text{for each } v \in G[V] \text{ do INSERT}(H, v) \\
5. \quad \text{while } H \neq \emptyset \text{ do} \\
6. \quad \quad u \leftarrow \text{EXTRACT-MIN}(H) \\
7. \quad \quad \text{for each } v \in \text{Adj}[u] \text{ do} \\
8. \quad \quad \quad \text{if } v.d > u.d + w_{u,v} \text{ then} \\
9. \quad \quad \quad \quad \text{DECREASE-KEY}(H, v, u.d + w_{u,v}) \\
10. \quad \quad \quad v.d \leftarrow u.d + w_{u,v}
\]

Let \(n = |G[V]| \) and \(m = |G[E]| \)

Total cost
\[
\leq n(\text{cost}_{\text{Insert}} + \text{cost}_{\text{Extract-Min}}) \\
+ m(\text{cost}_{\text{Decrease-Key}})
\]

Observation:

Obtaining a worst-case bound for a sequence of \(n \) \text{INSERTS}, \(n \) \text{EXTRACT-MINS} and \(m \) \text{DECREASE-KEYS} is enough.

\[\therefore \text{Amortized bound per operation is sufficient.} \]

Dijkstra's SSSP Algorithm with a Min-Heap

SSSP: Single-Source Shortest Paths

Input: Weighted graph $G = (V, E)$ with vertex set V and edge set E, a weight function w, and a source vertex $s \in G[V]$.

Output: For all $v \in G[V]$, $v.d$ is set to the shortest distance from s to v.

Let $n = |G[V]|$ and $m = |G[E]|$

Total cost

$$\leq n(cost_{\text{Insert}} + cost_{\text{Extract-Min}}) + m(cost_{\text{Decrease-Key}})$$

Observation:
For $n(cost_{\text{Insert}} + cost_{\text{Extract-Min}})$ the best possible bound is $\Theta(n \log n)$. (else violates sorting lower bound)

Perhaps $m(cost_{\text{Decrease-Key}})$ can be improved to $o(m \log n)$.

Dijkstra-SSSP

1. *for each* $v \in G[V]$ *do* $v.d \leftarrow \infty$
2. $s.d \leftarrow 0$
3. $H \leftarrow \emptyset$ {empty min-heap}
4. *for each* $v \in G[V]$ *do* $\text{INSERT}(H, v)$
5. *while* $H \neq \emptyset$ *do*
6. \hspace{1em} $u \leftarrow \text{EXTRACT-MIN}(H)$
7. \hspace{1em} *for each* $v \in \text{Adj}[u]$ *do*
8. \hspace{2em} *if* $v.d > u.d + w_{u,v}$ *then*
9. \hspace{3em} $\text{DECREASE-KEY}(H, v, u.d + w_{u,v})$
10. \hspace{2em} $v.d \leftarrow u.d + w_{u,v}$
A Fibonacci heap can be viewed as an extension of Binomial heaps which supports **DECREASE-KEY** and **DELETE** operations efficiently.

But the trees in a Fibonacci heap are no longer binomial trees as we will be cutting subtrees out of them.

However, all operations (except **DECREASE-KEY** and **DELETE**) are still performed in the same way as in binomial heaps.

The *rank* of a tree is still defined as the number of children of the root, and we still link two trees if they have the same rank.
Implementing Decrease-Key

Decrease-Key (H, x, k): One possible approach is to cut out the subtree rooted at x from H, reduce the value of x to k, and insert that subtree into the root list of H.

Problem: If we cut out a lot of subtrees from a tree its size will no longer be exponential in its rank. Since our analysis of Extract-Min in binomial heaps was highly dependent on this exponential relationship, that analysis will no longer hold.

Solution: Limit #cuts among the children of any node to 2. We will show that the size of each tree will still remain exponential in its rank.

When a 2nd child is cut from a node x, we also cut x from its parent leading to a possible sequence of cuts moving up towards the root.
Analysis of Fibonacci Heap Operations

Recurrence for Fibonacci numbers:

\[f_n = \begin{cases}
0 & \text{if } n = 0, \\
1 & \text{if } n = 1, \\
f_{n-1} + f_{n-2} & \text{otherwise.}
\end{cases} \]

We showed in a previous lecture:

\[f_n = \frac{1}{\sqrt{5}} (\phi^n - \hat{\phi}^n), \]

where \(\phi = \frac{1+\sqrt{5}}{2} \) and \(\hat{\phi} = \frac{1+\sqrt{5}}{2} \) are the roots \(z^2 - z - 1 = 0 \).
Analysis of Fibonacci Heap Operations

Lemma 1: For all integers $n \geq 0$, $f_{n+2} = 1 + \sum_{i=0}^{n} f_i$.

Proof: By induction on n.

Base case: $f_2 = 1 = 1 + 0 = 1 + f_0 = 1 + \sum_{i=0}^{n} f_i$.

Inductive hypothesis: $f_{k+2} = 1 + \sum_{i=0}^{k} f_i$ for $0 \leq k \leq n - 1$.

Then $f_{n+2} = f_{n+1} + f_n = f_n + (1 + \sum_{i=0}^{n-1} f_i) = 1 + \sum_{i=0}^{n} f_i$.
Lemma 2: For all integers $n \geq 0$, $f_{n+2} \geq \phi^n$.

Proof: By induction on n.

Base case: $f_2 = 1 = \phi^0$ and $f_3 = 2 > \phi^1$.

Inductive hypothesis: $f_{k+2} \geq \phi^k$ for $0 \leq k \leq n - 1$.

Then $f_{n+2} = f_{n+1} + f_n$
\[\geq \phi^{n-1} + \phi^{n-2} \]
\[= (\phi + 1)\phi^{n-2} \]
\[= \phi^2 \phi^{n-2} \]
\[= \phi^n \]
Lemma 3: Let x be any node in a Fibonacci heap, and suppose that $k = \text{rank}(x)$. Let y_1, y_2, \ldots, y_k be the children of x in the order in which they were linked to x, from the earliest to the latest. Then $\text{rank}(y_i) \geq \max\{0, i - 2\}$ for $1 \leq i \leq k$.

Proof: Obviously, $\text{rank}(y_1) \geq 0$.

For $i > 1$, when y_i was linked to x, all of $y_1, y_2, \ldots, y_{i-1}$ were children of x. So, $\text{rank}(x) \geq i - 1$.

Because y_i is linked to x only if $\text{rank}(y_i) = \text{rank}(x)$, we must have had $\text{rank}(y_i) \geq i - 1$ at that time.

Since then, y_i has lost at most one child, and hence $\text{rank}(y_i) \geq i - 2$.

Analysis of Fibonacci Heap Operations
Lemma 4: Let \(z \) be any node in a Fibonacci heap with \(n = \text{size}(z) \) and \(r = \text{rank}(z) \). Then \(r \leq \log_\phi n \).

Proof: Let \(s_k \) be the minimum possible size of any node of rank \(k \) in any Fibonacci heap. Trivially, \(s_0 = 1 \) and \(s_1 = 2 \).

Since adding children to a node cannot decrease its size, \(s_k \) increases monotonically with \(k \).

Let \(x \) be a node in any Fibonacci heap with \(\text{rank}(x) = r \) and \(\text{size}(x) = s_r \).
Analysis of Fibonacci Heap Operations

Lemma 4: Let \(z \) be any node in a Fibonacci heap with \(n = \text{size}(z) \) and \(r = \text{rank}(z) \). Then \(r \leq \log_{\phi} n \).

Proof (continued): Let \(y_1, y_2, \ldots, y_r \) be the children of \(x \) in the order in which they were linked to \(x \), from the earliest to the latest.

Then \(s_r \geq 1 + \sum_{i=1}^{r} s_{\text{rank}(y_i)} \geq 1 + \sum_{i=1}^{r} s_{\max\{0,i-2\}} = 2 + \sum_{i=2}^{r} s_{i-2} \)

We now show by induction on \(r \) that \(s_r \geq f_{r+2} \) for all integer \(r \geq 0 \).

Base case: \(s_0 = 1 = f_2 \) and \(s_1 = 2 = f_3 \).

Inductive hypothesis: \(s_k \geq f_{k+2} \) for \(0 \leq k \leq r - 1 \).

Then \(s_r \geq 2 + \sum_{i=2}^{r} s_{i-2} \geq 2 + \sum_{i=2}^{r} f_i = 1 + \sum_{i=1}^{r} f_i = f_{r+2} \).

Hence \(n \geq s_r \geq f_{r+2} \geq \phi^r \Rightarrow r \leq \log_{\phi} n \).
Analysis of Fibonacci Heap Operations

Corollary: The maximum degree of any node in an n node Fibonacci heap is $O(\log n)$.

Proof: Let z be any node in the heap.

Then from Lemma 4,

$$ degree(z) = rank(z) \leq \log_\phi(size(z)) \leq \log_\phi n = O(\log n). $$
Analysis of Fibonacci Heap Operations

All nodes are initially unmarked.

We mark a node when

- it loses its first child

We unmark a node when

- it loses its second child, or
- becomes the child of another node (e.g., \textsc{linked})

We extend the potential function used for binomial heaps:

\[\Phi(D_i) = 2t(D_i) + 3m(D_i), \]

where \(D_i \) is the state of the data structure after the \(i^{th} \) operation, \(t(D_i) \) is the number of trees in the root list, and \(m(D_i) \) is the number of marked nodes.
Analysis of Fibonacci Heap Operations

We extend the potential function used for binomial heaps:

\[\Phi(D_i) = 2t(D_i) + 3m(D_i), \]

where \(D_i \) is the state of the data structure after the \(i^{th} \) operation, \(t(D_i) \) is the number of trees in the root list, and \(m(D_i) \) is the number of marked nodes.

Decrease-Key(\(H, x, k_x \)): Let \(k = \#\text{cascading cuts performed} \).

Then the actual cost of cutting the tree rooted at \(x \) is 1, and the actual cost of each of the cascading cuts is also 1.

\[\therefore \text{overall actual cost, } c_i = 1 + k \]
Fibonacci Heaps from Binomial Heaps

Potential function: $\Phi(D_i) = 2t(D_i) + 3m(D_i)$

DECREASE-KEY(H, x, k_x):

New trees: 1 tree rooted at x, and

1 tree produced by each of the k cascading cuts.

$\therefore t(D_i) - t(D_{i-1}) = 1 + k$

Marked nodes: 1 node unmarked by each cascading cut, and

at most 1 node marked by the last cut/cascading cut.

$\therefore m(D_i) - m(D_{i-1}) \leq -k + 1$

Potential drop, $\Delta_i = \Phi(D_i) - \Phi(D_{i-1})$

$= 2(t(D_i) - t(D_{i-1})) + 3(m(D_i) - m(D_{i-1}))$

$\leq 2(1 + k) + 3(-k + 1)$

$= -k + 5$
Fibonacci Heaps from Binomial Heaps

Potential function: \(\Phi(D_i) = 2t(D_i) + 3m(D_i) \)

DECREASE-KEY(H, x, k_x):

Amortized cost, \(\hat{c}_i = c_i + \Delta_i \)
\[
\leq (1 + k) + (-k + 5)
\]
\[
= 6
\]
\[
= O(1)
\]
Fibonacci Heaps from Binomial Heaps

Potential function: $\Phi(D_i) = 2t(D_i) + 3m(D_i)$

EXTRACT-MIN(H):

Let d_n be the max degree of any node in an n-node Fibonacci heap. Cost of creating the array of pointers is $\leq d_n + 1$.

Suppose we start with k trees in the doubly linked list, and perform l link operations during the conversion from linked list to array version. So we perform $k + l$ work, and end up with $k - l$ trees.

Cost of converting to the linked list version is $k - l$.

actual cost, $c_i \leq d_n + 1 + (k + l) + (k - l) = 2k + d_n + 1$

Since no node is marked, and each link reduces the #trees by 1, potential change, $\Delta_i = \Phi(D_i) - \Phi(D_{i-1}) \geq -2l$
Fibonacci Heaps from Binomial Heaps

Potential function: \(\Phi(D_i) = 2t(D_i) + 3m(D_i) \)

Extract-Min(H):

actual cost, \(c_i \leq d_n + 1 + (k + l) + (k - l) = 2k + d_n + 1 \)

potential change, \(\Delta_i = \Phi(D_i) - \Phi(D_{i-1}) \geq -2l \)

amortized cost, \(\hat{c}_i = c_i + \Delta_i \leq 2(k - l) + d_n + 1 \)

But \(k - l \leq d_n + 1 \) (as we have at most one tree of each rank)

So, \(\hat{c}_i \leq 3d_n + 3 = O(\log n) \).
Fibonacci Heaps from Binomial Heaps

Potential function: \(\Phi(D_i) = 2t(D_i) + 3m(D_i) \)

Delete \((H, x)\):

1. **Step 1**: **Decrease-Key** \((H, x, -\infty)\)
2. **Step 2**: **Extract-Min** \((H)\)

Amortized cost, \(\hat{c}_i = \) amortized cost of **Decrease-Key**
 + amortized cost of **Extract-Min**
 = \(O(1) + O(\log n) \)
 = \(O(\log n) \)